MATHEMATICS 503 FALL 2014

Instructor: H. J. Sussmann

Exercises for the first week of classes, i.e., for the lectures of September 2 and 4.

You should practice by doing (or trying to do) the problems in Chapter 1 of the book. (Most of them are easy and short.) And, in addition, here is a list of harder problems.

PROBLEM 1. Prove that if $f: \mathbb{C} \mapsto \mathbb{R}$ is a continuous function such that $\lim _{|z| \rightarrow \infty} f(z)=+\infty$, then f has a minimum (that is, there exists $z_{0} \in \mathbb{C}$ such that $f\left(z_{0}\right) \leq f(z)$ for all $z \in \mathbb{C}$). (NOTE: " $\lim _{|z| \rightarrow \infty} f(z)=+\infty$ " means "for every real number R there exists a real number S such that $f(z)>R$ whenever $|z|>S$.")
PROBLEM 2. Prove that if $P(z)$ is a nonconstant complex polynomial (that is, P is a function from \mathbb{C} to \mathbb{C} such that

$$
\begin{equation*}
P(z)=a_{0}+a_{1} z+\ldots+a_{n} z^{n} \quad \text { for all } z \in \mathbb{C} \tag{1}
\end{equation*}
$$

where n is an integer such that $n>0, a_{0}, a_{1}, \ldots, a_{n}$ are complex numbers, and $\left.a_{n} \neq 0\right)$, then $\lim _{|z| \rightarrow \infty}|P(z)|=+\infty$.
PROBLEM 3. Prove that if $P(z)$ is a nonconstant complex polynomial as in Problem 2, then the real-valued function $f: \mathbb{C} \mapsto \mathbb{R}$ given by $f(z)=|P(z)|$ for $z \in \mathbb{C}$ cannot have a minimum at a point z_{0} such that $P\left(z_{0}\right) \neq 0$. (HINT: Assume f has a minimum at z_{0} and $u_{0}=P\left(z_{0}\right) \neq 0$. Let $Q(h)=P\left(z_{0}+h\right)-P\left(z_{0}\right)$, so Q is a nonconstant complex polynomial in h such that $Q(0)=0$. Show that there exists $h_{0} \in \mathbb{C}$ such that $h_{0} \neq 0$ having the property that the curve $[0, \infty) \ni r \mapsto Q\left(r h_{0}\right)$ points in the direction of $-u_{0}$ at $r=0$, in the sense that $\lim _{r \downarrow 0} \frac{Q\left(r h_{0}\right)}{r^{\nu}}=-u_{0}$ for some positive integer ν. Conclude from this that $\left|P\left(z_{0}+r h_{0}\right)\right|<\left|P\left(z_{0}\right)\right|$ for small enough positive r.)
PROBLEM 4. Using the results of Problems 1,2 and 3 ,

1. Prove the Fundamental Theorem of Algebra: If P is a nonconstant complex polynomial, then there exists a $z_{0} \in \mathbb{C}$ such that $P\left(z_{0}\right)=0$.
2. Explain where the proof proposed here does not work to prove a "fundamental theorem of algebra for the real field": for a nonconstant real polynomial $P(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$, with $a_{0}, a_{1}, \ldots, a_{n}$ real, $n>0$, $a_{n} \neq 0$, there exists a real x_{0} such that $P\left(x_{0}\right)=0$.
PROBLEM 5. Let

$$
g(z, w)=\frac{z-w}{1-z \bar{w}}
$$

1. Prove that
a. $|g(z, w)| \leq 1$ if $\bar{z} \cdot w \neq 1,|z| \leq 1$ and $|w| \leq 1$,
b. $|g(z, w)|<1$ if $\bar{z} \cdot w \neq 1,|z|<1$ and $|w|<1$,
b. $|g(z, w)|=1$ if $\bar{z} \cdot w \neq 1,|z| \leq 1,|w| \leq 1$, and either $|z|=1$ or $|w|=1$.
HINT: Prove first the identity

$$
1-|g(z, w)|^{2}=\frac{\left(1-|z|^{2}\right)\left(1-|w|^{2}\right)}{|1-\bar{z} w|^{2}}
$$

2. Conclude from the results of Part 1 that, if $w \in \mathbb{D}$ then the transformation G_{w} given by $G_{w}(z)=g(z, w)$ maps \mathbb{D} into \mathbb{D} and $\partial \mathbb{D}$ to $\partial \mathbb{D}$. (Here \mathbb{D} is the open unit disc $\{z \in \mathbb{C}:|z|<1\}$, and $\partial \mathbb{D}$ is the unit circle $\{z \in \mathbb{C}:|z|=1\}$.)
3. Prove that, as a map from \mathbb{D} to \mathbb{D}, G_{w} is one-to-one and onto (provided that $w \in \mathbb{D}$), and show that the inverse $\operatorname{map} G_{w}^{-1}: \mathbb{D} \mapsto \mathbb{D}$ is of the form G_{u} for some $u \in \mathbb{D}$ that you should determine explicitly.

PROBLEM 6. An ordered field is a field F endowed with a distinguished subset P (called "the set of positive members of F ") such that

1. If $a, b \in P$ then $a+b \in P$ and $a \cdot b \in P$,
2. If $a \in F$ then one and only one of the following holds: $a \in P,-a \in P$, $a=0$.
Verify that \mathbb{R}, with $P=\{x \in \mathbb{R}: x>0\}$, is an ordered field, and prove that there is no choice of a subset P of \mathbb{C} that makes \mathbb{C} an ordered field. (NOTE: This means that you cannot, and should not, talk about a complex number being "larger" than another complex number, or about a complex-valued function having a maximum or a minimum.)
PROBLEM 7. An integer n is a 2-square if it is the sum of two squares of integers, i.e., if there exist integers u, v such that $n=u^{2}+v^{2}$. Prove that the product of two 2 -squares is a 2 -square. (Example: $5=2^{2}+1^{2}, 13=3^{2}+2^{2}$, and $5 \cdot 13=65=8^{2}+1^{2}$.) (NOTE: If you are wondering what this problem about integer arithmetic is doing in Math 503, believe me, there is a reason.)
PROBLEM 8. The sum of two subsets S_{1}, S_{2} of \mathbb{C} (or of any vector space), is the set $S_{1}+S_{2}$ given by

$$
S_{1}+S_{2}=\left\{z_{1}+z_{2}: z_{1} \in S_{1}, z_{2} \in S_{2}\right\}
$$

Prove or disprove each of the following statements:

1. If K_{1} and K_{2} are compact then $K_{1}+K_{2}$ is compact.
2. If C_{1} and C_{2} are closed then $C_{1}+C_{2}$ is closed.
3. If U_{1} and U_{2} are open then $U_{1}+U_{2}$ is open.
4. If U_{1} is open and U_{2} is an arbitray set then $U_{1}+U_{2}$ is open.

PROBLEM 9. A lattice point (in the complex plane \mathbb{C}) is a point $x+i y$ of \mathbb{C} such that x and y are integers. Let $\nu(R)$ be the number of lattice points belonging to the open disc $D(R)=\{z \in \mathbb{C}:|z|<R\}$. Find an asymptotic formula for $\nu(R)$. More precisely, find a simple polynomial $p(R)$ such that $\lim _{R \rightarrow+\infty} \frac{\nu(R)}{p(R)}=1$.
PROBLEM 10. This problem has a long introduction, and you should read it carefully. You will find near the end the list of things you are asked to prove.

A function $f: U \mapsto \mathbb{R}^{m}$, defined on an open subset U of \mathbb{R}^{n}, is said to be differentiable at a point x_{*} of U if here exists a linear map $L: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ such that

$$
\lim _{h \rightarrow 0} \frac{\left\|f\left(x_{*}+h\right)-f\left(x_{*}\right)-L h\right\|}{\|h\|}=0 .
$$

(Here, if $v=\left(v_{1}, \ldots, v_{d}\right) \in \mathbb{R}^{d}$, the norm $\|v\|$ is the Euclidean norm ${ }^{1}$ of v, that is, the number $\sqrt{\sum_{j=1}^{d} v_{j}^{2}}$.) It is well known that L is unique. The map L is the

[^0]differential of f at x_{*}, and we use $D f\left(x_{*}\right)$ or $d f\left(x_{*}\right)$ to denote it ${ }^{2}$. It is also well known that if f is differentiable at x_{*} then the partial derivatives $\frac{\partial f}{\partial x_{j}}\left(x_{*}\right)$ exist, and satisfy
$$
\frac{\partial f}{\partial x_{j}}\left(x_{*}\right)=d f\left(x_{*}\right) \cdot e_{j}
$$
where e_{j} is the vector $(0, \ldots, 0,1,0, \ldots, 0)$ with the 1 in he j-th place (that is: $e_{j}=\left(\delta_{j}^{1}, \ldots, \delta_{j}^{n}\right)$, where δ_{j}^{k} is Kronecker's delta, defined by $\delta_{j}^{j}=1$ and $\delta_{j}^{k}=0$ if $j \neq k)$. This implies that, if $h \in \mathbb{R}^{n}$,
\[

$$
\begin{aligned}
d f\left(x_{*}\right) \cdot h & =d f\left(x_{*}\right)\left(\sum_{j=1}^{n} h_{j} e_{j}\right) \\
& =\sum_{j=1}^{n}\left(d f\left(x_{*}\right) \cdot e_{j}\right) h_{j} \\
& =\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}\left(x_{*}\right) h_{j}
\end{aligned}
$$
\]

In particular, the differential $d x_{k}$ of the function x_{k} is given by

$$
d x_{k}\left(x_{*}\right) \cdot h=h_{k},
$$

because $\frac{\partial x_{k}}{\partial x_{j}}=\delta_{j}^{k}$. Hence

$$
d f\left(x_{*}\right) \cdot h=\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}\left(x_{*}\right) \cdot\left(d x_{k}\left(x_{*}\right) \cdot h\right),
$$

which can be written, omitting the arguments x_{*}, h as

$$
d f=\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}} d x_{k}
$$

In the case when $n=m=2$, we may identify \mathbb{R}^{2} with \mathbb{C} in the usual way, and then a function $f: U \mapsto \mathbb{R}^{2}$ as before can be regarded as a function from an open subset of \mathbb{C} to \mathbb{C}. For such a function, the notion of differentiability defined above will be referred to as real differentiablity. And, if $f: U \mapsto \mathbb{C}$ is real-differentiable at a point $x_{*} \in U$, then, at x_{*},

$$
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y
$$

On the other hand, $z=x+i y$ and $\bar{z}=x-i y$ are \mathbb{C}-valued functions on U, whose differentials are given by $d z=d x+i d y$ and $d \bar{z}=d x-i d y$.

Prove that if f is real-differentiable at x_{*} then, at x_{*},

$$
d f=\frac{\partial f}{\partial z} \cdot d z+\frac{\partial f}{\partial \bar{z}} \cdot d \bar{z}
$$

[^1]4
where $\frac{\partial f}{\partial z}$ and $\frac{\partial f}{\partial \bar{z}}$ are defined by

$$
\frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right), \quad \frac{\partial f}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right) .
$$

Then prove that the following conditions are equivalent:
a. f is complex-differentiable ${ }^{3}$.
b. f is real-differentiable at x_{*} and the differential $d f\left(x_{*}\right)$ is a complex-linear map 4.
c. f is real-differentiable at x_{*} and $\frac{\partial f}{\partial \bar{z}}\left(x_{*}\right)=0$.
d. f is real-differentiable at x_{*} and, if we write $f=u+i v$ with u, v realvalued, then the Cauchy-Riemann equations

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

hold at x_{*}.

Conclude that,

1. If U is open in \mathbb{C} and $f: U \mapsto \mathbb{C}$, then f is holomorphic if and only if f is real-differentiable at every point of U, and

$$
\frac{\partial f}{\partial \bar{z}} \equiv 0 .
$$

2. If U is open in $\mathbb{C}, f: U \mapsto \mathbb{C}$, and f is holomorphic, then

$$
f^{\prime} \equiv \frac{\partial f}{\partial z}
$$

[^2]
[^0]: ${ }^{1}$ But, for those who are familiatr with these things, everything we are doing would work equally well with any other norm, because all norms on \mathbb{R}^{n} are equivalent.

[^1]: ${ }^{2}$ This notation is consistent with, for example, the one used for differentials in differential geometry. For us, if U is open in \mathbb{R}^{n}, and $f: U \mapsto \mathbb{R}^{m}$, then $d f\left(x_{*}\right)$ is a linear map from \mathbb{R}^{n} to \mathbb{R}^{m}. In the special case when $m=1, d f\left(x_{*}\right)$ is a linear map from \mathbb{R}^{n} to \mathbb{R}, i.e., a linear functional on \mathbb{R}^{n}. And \mathbb{R}^{n} is naturally identified with the tangent space to U at x_{*}, so $d f\left(x_{*}\right)$ is a member of the dual of that tangent space.

[^2]: ${ }^{3}$ We say that f is complex-differentiable at x_{*} if the $\operatorname{limit}^{\lim }{ }_{h \rightarrow 0} \frac{f\left(x_{*}+h\right)-f\left(x_{*}\right)}{h}$ exists (where, of course, h goes to zero through complex values).
 ${ }^{4}$ Recall that $d f\left(x_{*}\right)$ is an \mathbb{R}-linear map from \mathbb{R}^{2} to \mathbb{R}^{2}, and \mathbb{R}^{2} is identified with \mathbb{C}, so $d f\left(x_{*}\right)$ is a map from \mathbb{C} to \mathbb{C}.

