MATHEMATICS 503 FALL 2014

Instructor: H. J. Sussmann

Exercises for the first week of classes,
i.e., for the lectures of September 2 and 4.

You should practice by doing (or trying to do) the problems in Chapter 1 of
the book. (Most of them are easy and short.) And, in addition, here is a list
of harder problems.

PROBLEM 1. Prove that if f : C +— R is a continuous function such that
lim|;| o f(2) = 400, then f has a minimum (that is, there exists zo € C such that
f(z0) < f(2) for all z € C). (NOTE: “lim|;|_,o f(2) = +00” means “for every real
number R there exists a real number S such that f(z) > R whenever |z| > S.”)

PROBLEM 2. Prove that if P(z) is a nonconstant complex polynomial (that is,
P is a function from C to C such that

(1) P(z)=ao+a1z+ ...+ apz" for all z € C,

where n is an integer such that n > 0, ag,aq,...,a, are complex numbers, and
an # 0), then lim|,|_ o |P(2)| = +o0.

PROBLEM 3. Prove that if P(z) is a nonconstant complex polynomial as in
Problem 2, then the real-valued function f : C — R given by f(z) = |P(z)| for
z € C cannot have a minimum at a point zg such that P(zp) # 0. (HINT: Assume
f has a minimum at zy and ug = P(z9) # 0. Let Q(h) = P(z0+h) — P(z0), so Q is
a nonconstant complex polynomial in h such that Q(0) = 0. Show that there exists
ho € C such that hg # 0 having the property that the curve [0,00) 3 7 — Q(rho)
points in the direction of —uy at r = 0, in the sense that lim, o Q(:,flo) = —uy for
some positive integer v. Conclude from this that |P(z¢ + rho)| < |P(20)]| for small

enough positive r.)

PROBLEM 4. Using the results of Problems 1,2 and 3,

1. Prove the Fundamental Theorem of Algebra: If P is a nonconstant com-
plex polynomial, then there exists a zy € C such that P(zy) = 0.

2. Explain where the proof proposed here does not work to prove a “fun-
damental theorem of algebra for the real field”: for a nonconstant real
polynomial P(z) = ap + a1z + ...+ apz™, with agp,aq,...,a, real, n > 0,
an # 0, there exists a real xy such that P(xg) = 0.

PROBLEM 5. Let

1. Prove that

a. |g(z,w)| <1Tifz-w#1, |z <1and |w <1,

b. |g(z,w)|<1lifz-w+#1, |z| <1and |w| <1,

b. lg(z,w)| =1if z-w # 1, |z2] <1, |Jw| <1, and either |z] = 1 or
lw| = 1.

HINT: Prove first the identity
(1— =) — [w]?)
[1— zw]|? '

1—|g(z,w)]* =



2. Conclude from the results of Part 1 that, if w € D then the transformation
Gy given by Gy(z) = g(z,w) maps D into D and 0D to 0D. (Here
D is the open unit disc {z € C : |z|] < 1}, and D is the unit circle
{zeC:|z|=1})

3. Prove that, as a map from D to D, G,, is one-to-one and onto (provided
that w € D), and show that the inverse map G' : D +— D is of the form
G, for some u € D that you should determine explicitly.

PROBLEM 6. An ordered field is a field F' endowed with a distinguished subset
P (called “the set of positive members of F”) such that

1. Ifa,b€ Pthena+b€ Panda-be P,

2. If a € F then one and only one of the following holds: a € P, —a € P,

a=0.

Verify that R, with P = {& € R : 2 > 0}, is an ordered field, and prove that there
is no choice of a subset P of C that makes C an ordered field. (NOTE: This means
that you cannot, and should not, talk about a complex number being “larger” than
another complex number, or about a complex-valued function having a maximum
or a minimum.)

PROBLEM 7. An integer n is a 2-square if it is the sum of two squares of
integers, i.e., if there exist integers u,v such that n = u? 4+ v2. Prove that the
product of two 2-squares is a 2-square. (Example: 5 = 22 + 12, 13 = 32 + 22, and
5-13 = 65 = 82 +12.) (NOTE: If you are wondering what this problem about
integer arithmetic is doing in Math 503, believe me, there is a reason.)

PROBLEM 8. The sum of two subsets Sy, 52 of C (or of any vector space), is
the set S7 + S> given by

S1+SQZ{21—|-ZQIZ1 ESl, Z9 ESQ}.
Prove or disprove each of the following statements:
1. If Ky and K5 are compact then K; + K5 is compact.
2. If Cq and Cy are closed then Cy + Cy is closed.

3. If Uy and U, are open then U; 4+ Us is open.
4. If Uy is open and Us is an arbitray set then Uy + Us is open.

PROBLEM 9. A lattice point (in the complex plane C) is a point = + iy of C
such that = and y are integers. Let v(R) be the number of lattice points belonging
to the open disc D(R) = {z € C: |z| < R}. Find an asymptotic formula for v(R).

More precisely, find a simple polynomial p(R) such that limpg_. 1 o % =1.

PROBLEM 10. This problem has a long introduction, and you should read it
carefully. You will find near the end the list of things you are asked to prove.

A function f : U — R™, defined on an open subset U of R", is said to be
differentiable at a point x, of U if here exists a linear map L : R™ — R"™ such that

o Nf (et h) = fz.) — L

lim =0.

h=0 (7]
(Here, if v = (v1,...,v4) € RY, the norm |jv|| is the Euclidean norm' of v, that
is, the number \/2?21 ’UJ2) It is well known that L is unique. The map L is the

1But, for those who are familiatr with these things, everything we are doing would work
equally well with any other norm, because all norms on R™ are equivalent.



3

differential of f at z., and we use Df(x.) or df(z.) to denote it% It is also well

known that if f is differentiable at z, then the partial derivatives %(x*) exist,
J

and satisfy
of
8—%_(33*) = df (z.).€;,
where e; is the vector (0,...,0,1,0,...,0) with the 1 in he J-th place (that is:
ej = (5}, ..., 07), where 5;“ is Kronecker’s delta, defined by 5; =1 and 5;»“ =0 if
j # k). This implies that, if h € R™,

df(z.)-h = df(x*)(z hje;)

Z(df(x*) -ej)h;

= a—%(QT*)h] .

j=1
In particular, the differential dxj of the function zj is given by

d$k(1?*) . h = hk,

because % = (5;“. Hence
J E

which can be written, omitting the arguments x,, h as
n
of
daf = ——dxy .
f =3 5
Jj=1

In the case when n = m = 2, we may identify R? with C in the usual way, and
then a function f : U — R? as before can be regarded as a function from an open
subset of C to C. For such a function, the notion of differentiability defined above
will be referred to as real differentiablity. And, if f : U — C is real-differentiable
at a point =, € U, then, at x.,,

of of
df = =—d —dy.
! oz " + oy Y
On the other hand, z = x + iy and z = = — iy are C-valued functions on U, whose
differentials are given by dz = dx + idy and dz = dz — idy.
Prove that if f is real-differentiable at x, then, at x,,

of

_ of

2This notation is consistent with, for example, the one used for differentials in differential
geometry. For us, if U is open in R™, and f : U — R™, then df(z) is a linear map from R" to
R™. In the special case when m = 1, df (x«) is a linear map from R™ to R, i.e., a linear functional
on R™. And R" is naturally identified with the tangent space to U at z«, so df (z«) is a member
of the dual of that tangent space.
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where % and % are defined by
of _1cof . 0f of _1cof  of
az’Q(ax Zay)’ az’z(ax“ay)'

Then prove that the following conditions are equivalent:

a. f is complex-differentiable?.

b. f is real-differentiable at x, and the differential df (z.) is a complex-linear
map?.

c. f is real-differentiable at z, and %(:17*) =0.

d. f is real-differentiable at x, and, if we write f = u + v with u,v real-

valued, then the Cauchy-Riemann equations

ou Ov Ou ov

dr 9y’ By oz
hold at z,.
Conclude that,
1. If U is open in C and f : U — C, then f is holomorphic if and only if f
1s real-differentiable at every point of U, and

g =
0z
2. If U is open in C, f: U — C, and f is holomorphic, then
of
! = —
r= 0z

7”(“"’_}2_“‘”*) exists

3We say that f is complez-differentiable at x, if the limit lim;_,¢

(where, of course, h goes to zero through complex values).
4Recall that df (z.) is an R-linear map from R? to R2, and R2is identified with C, so df ()
is a map from C to C.



