
MATHEMATICS 503 FALL 2014
Instructor: H. J. Sussmann

Exercises for the first week of classes,
i.e., for the lectures of September 2 and 4.

You should practice by doing (or trying to do) the problems in Chapter 1 of
the book. (Most of them are easy and short.) And, in addition, here is a list
of harder problems.

PROBLEM 1. Prove that if f : C 7→ R is a continuous function such that
lim|z|→∞ f(z) = +∞, then f has a minimum (that is, there exists z0 ∈ C such that
f(z0) ≤ f(z) for all z ∈ C). (NOTE: “lim|z|→∞ f(z) = +∞” means “for every real
number R there exists a real number S such that f(z) > R whenever |z| > S.”)

PROBLEM 2. Prove that if P (z) is a nonconstant complex polynomial (that is,
P is a function from C to C such that

(1) P (z) = a0 + a1z + . . .+ anz
n for all z ∈ C ,

where n is an integer such that n > 0, a0, a1, . . . , an are complex numbers, and
an 6= 0), then lim|z|→∞ |P (z)| = +∞.

PROBLEM 3. Prove that if P (z) is a nonconstant complex polynomial as in
Problem 2, then the real-valued function f : C 7→ R given by f(z) = |P (z)| for
z ∈ C cannot have a minimum at a point z0 such that P (z0) 6= 0. (HINT: Assume
f has a minimum at z0 and u0 = P (z0) 6= 0. Let Q(h) = P (z0 +h)−P (z0), so Q is
a nonconstant complex polynomial in h such that Q(0) = 0. Show that there exists
h0 ∈ C such that h0 6= 0 having the property that the curve [0,∞) 3 r 7→ Q(rh0)
points in the direction of −u0 at r = 0, in the sense that limr↓0

Q(rh0)
rν = −u0 for

some positive integer ν. Conclude from this that |P (z0 + rh0)| < |P (z0)| for small
enough positive r.)

PROBLEM 4. Using the results of Problems 1,2 and 3,
1. Prove the Fundamental Theorem of Algebra: If P is a nonconstant com-

plex polynomial, then there exists a z0 ∈ C such that P (z0) = 0.
2. Explain where the proof proposed here does not work to prove a “fun-

damental theorem of algebra for the real field”: for a nonconstant real
polynomial P (x) = a0 + a1x+ . . .+ anx

n, with a0, a1, . . . , an real, n > 0,
an 6= 0, there exists a real x0 such that P (x0) = 0.

PROBLEM 5. Let
g(z, w) =

z − w
1− zw̄

.

1. Prove that
a. |g(z, w)| ≤ 1 if z̄ · w 6= 1, |z| ≤ 1 and |w| ≤ 1,
b. |g(z, w)| < 1 if z̄ · w 6= 1, |z| < 1 and |w| < 1,
b. |g(z, w)| = 1 if z̄ · w 6= 1, |z| ≤ 1, |w| ≤ 1, and either |z| = 1 or
|w| = 1.

HINT: Prove first the identity

1− |g(z, w)|2 =
(1− |z|2)(1− |w|2)

|1− z̄w|2
.
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2. Conclude from the results of Part 1 that, if w ∈ D then the transformation
Gw given by Gw(z) = g(z, w) maps D into D and ∂D to ∂D. (Here
D is the open unit disc {z ∈ C : |z| < 1}, and ∂D is the unit circle
{z ∈ C : |z| = 1}.)

3. Prove that, as a map from D to D, Gw is one-to-one and onto (provided
that w ∈ D), and show that the inverse map G−1

w : D 7→ D is of the form
Gu for some u ∈ D that you should determine explicitly.

PROBLEM 6. An ordered field is a field F endowed with a distinguished subset
P (called “the set of positive members of F”) such that

1. If a, b ∈ P then a+ b ∈ P and a · b ∈ P ,
2. If a ∈ F then one and only one of the following holds: a ∈ P , −a ∈ P ,
a = 0.

Verify that R, with P = {x ∈ R : x > 0}, is an ordered field, and prove that there
is no choice of a subset P of C that makes C an ordered field. (NOTE: This means
that you cannot, and should not, talk about a complex number being “larger” than
another complex number, or about a complex-valued function having a maximum
or a minimum.)

PROBLEM 7. An integer n is a 2-square if it is the sum of two squares of
integers, i.e., if there exist integers u, v such that n = u2 + v2. Prove that the
product of two 2-squares is a 2-square. (Example: 5 = 22 + 12, 13 = 32 + 22, and
5 · 13 = 65 = 82 + 12.) (NOTE: If you are wondering what this problem about
integer arithmetic is doing in Math 503, believe me, there is a reason.)

PROBLEM 8. The sum of two subsets S1, S2 of C (or of any vector space), is
the set S1 + S2 given by

S1 + S2 = {z1 + z2 : z1 ∈ S1, z2 ∈ S2} .
Prove or disprove each of the following statements:

1. If K1 and K2 are compact then K1 +K2 is compact.
2. If C1 and C2 are closed then C1 + C2 is closed.
3. If U1 and U2 are open then U1 + U2 is open.
4. If U1 is open and U2 is an arbitray set then U1 + U2 is open.

PROBLEM 9. A lattice point (in the complex plane C) is a point x + iy of C
such that x and y are integers. Let ν(R) be the number of lattice points belonging
to the open disc D(R) = {z ∈ C : |z| < R}. Find an asymptotic formula for ν(R).
More precisely, find a simple polynomial p(R) such that limR→+∞

ν(R)
p(R) = 1.

PROBLEM 10. This problem has a long introduction, and you should read it
carefully. You will find near the end the list of things you are asked to prove.

A function f : U 7→ R
m, defined on an open subset U of Rn, is said to be

differentiable at a point x∗ of U if here exists a linear map L : Rn 7→ R
m such that

lim
h→0

‖f(x∗ + h)− f(x∗)− Lh‖
‖h‖

= 0 .

(Here, if v = (v1, . . . , vd) ∈ Rd, the norm ‖v‖ is the Euclidean norm1 of v, that

is, the number
√∑d

j=1 v
2
j .) It is well known that L is unique. The map L is the

1But, for those who are familiatr with these things, everything we are doing would work
equally well with any other norm, because all norms on Rn are equivalent.
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differential of f at x∗, and we use Df(x∗) or df(x∗) to denote it2. It is also well
known that if f is differentiable at x∗ then the partial derivatives ∂f

∂xj
(x∗) exist,

and satisfy
∂f

∂xj
(x∗) = df(x∗).ej ,

where ej is the vector (0, . . . , 0, 1, 0, . . . , 0) with the 1 in he j-th place (that is:
ej = (δ1

j , . . . , δ
n
j ), where δkj is Kronecker’s delta, defined by δjj = 1 and δkj = 0 if

j 6= k). This implies that, if h ∈ Rn,

df(x∗) · h = df(x∗)(
n∑
j=1

hjej)

=
n∑
j=1

(df(x∗) · ej)hj

=
n∑
j=1

∂f

∂xj
(x∗)hj .

In particular, the differential dxk of the function xk is given by

dxk(x∗) · h = hk ,

because ∂xk
∂xj

= δkj . Hence

df(x∗) · h =
n∑
j=1

∂f

∂xj
(x∗) · (dxk(x∗) · h) ,

which can be written, omitting the arguments x∗, h as

df =
n∑
j=1

∂f

∂xj
dxk .

In the case when n = m = 2, we may identify R2 with C in the usual way, and
then a function f : U 7→ R

2 as before can be regarded as a function from an open
subset of C to C. For such a function, the notion of differentiability defined above
will be referred to as real differentiablity. And, if f : U 7→ C is real-differentiable
at a point x∗ ∈ U , then, at x∗,

df =
∂f

∂x
dx+

∂f

∂y
dy .

On the other hand, z = x+ iy and z̄ = x− iy are C-valued functions on U , whose
differentials are given by dz = dx+ idy and dz̄ = dx− idy.

Prove that if f is real-differentiable at x∗ then, at x∗,

df =
∂f

∂z
· dz +

∂f

∂z̄
· dz̄,

2This notation is consistent with, for example, the one used for differentials in differential

geometry. For us, if U is open in Rn, and f : U 7→ R
m, then df(x∗) is a linear map from R

n to
R
m. In the special case when m = 1, df(x∗) is a linear map from R

n to R, i.e., a linear functional

on Rn. And Rn is naturally identified with the tangent space to U at x∗, so df(x∗) is a member
of the dual of that tangent space.
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where ∂f
∂z and ∂f

∂z̄ are defined by

∂f

∂z
=

1
2

(∂f
∂x
− i∂f

∂y

)
,

∂f

∂z̄
=

1
2

(∂f
∂x

+ i
∂f

∂y

)
.

Then prove that the following conditions are equivalent:
a. f is complex-differentiable3.
b. f is real-differentiable at x∗ and the differential df(x∗) is a complex-linear

map4.
c. f is real-differentiable at x∗ and ∂f

∂z̄ (x∗) = 0.
d. f is real-differentiable at x∗ and, if we write f = u + iv with u, v real-

valued, then the Cauchy-Riemann equations
∂u

∂x
=
∂v

∂y
,
∂u

∂y
= −∂v

∂x

hold at x∗.
Conclude that,

1. If U is open in C and f : U 7→ C, then f is holomorphic if and only if f
is real-differentiable at every point of U , and

∂f

∂z̄
≡ 0 .

2. If U is open in C, f : U 7→ C, and f is holomorphic, then

f ′ ≡ ∂f

∂z
.

3We say that f is complex-differentiable at x∗ if the limit limh→0
f(x∗+h)−f(x∗)

h
exists

(where, of course, h goes to zero through complex values).
4Recall that df(x∗) is an R-linear map from R

2 to R2, and R2is identified with C, so df(x∗)
is a map from C to C.


