MATHEMATICS 503 FALL 2014 Instructor: H. J. Sussmann

Exercises for the first week of classes, i.e., for the lectures of September 2 and 4.

You should practice by doing (or trying to do) the problems in Chapter 1 of the book. (Most of them are easy and short.) And, in addition, here is a list of harder problems.

PROBLEM 1. Prove that if $f : \mathbb{C} \to \mathbb{R}$ is a continuous function such that $\lim_{|z|\to\infty} f(z) = +\infty$, then f has a minimum (that is, there exists $z_0 \in \mathbb{C}$ such that $f(z_0) \leq f(z)$ for all $z \in \mathbb{C}$). (NOTE: " $\lim_{|z|\to\infty} f(z) = +\infty$ " means "for every real number R there exists a real number S such that f(z) > R whenever |z| > S.")

PROBLEM 2. Prove that if P(z) is a nonconstant complex polynomial (that is, P is a function from \mathbb{C} to \mathbb{C} such that

(1)
$$P(z) = a_0 + a_1 z + \ldots + a_n z^n \quad \text{for all } z \in \mathbb{C},$$

where n is an integer such that $n > 0, a_0, a_1, \ldots, a_n$ are complex numbers, and $a_n \neq 0$, then $\lim_{|z|\to\infty} |P(z)| = +\infty$.

PROBLEM 3. Prove that if P(z) is a nonconstant complex polynomial as in Problem 2, then the real-valued function $f : \mathbb{C} \to \mathbb{R}$ given by f(z) = |P(z)| for $z \in \mathbb{C}$ cannot have a minimum at a point z_0 such that $P(z_0) \neq 0$. (HINT: Assume f has a minimum at z_0 and $u_0 = P(z_0) \neq 0$. Let $Q(h) = P(z_0 + h) - P(z_0)$, so Q is a nonconstant complex polynomial in h such that Q(0) = 0. Show that there exists $h_0 \in \mathbb{C}$ such that $h_0 \neq 0$ having the property that the curve $[0, \infty) \ni r \mapsto Q(rh_0)$ points in the direction of $-u_0$ at r = 0, in the sense that $\lim_{r\downarrow 0} \frac{Q(rh_0)}{r^{\nu}} = -u_0$ for some positive integer ν . Conclude from this that $|P(z_0 + rh_0)| < |P(z_0)|$ for small enough positive r.)

PROBLEM 4. Using the results of Problems 1,2 and 3,

- 1. Prove the Fundamental Theorem of Algebra: If P is a nonconstant complex polynomial, then there exists a $z_0 \in \mathbb{C}$ such that $P(z_0) = 0$.
- 2. Explain where the proof proposed here does not work to prove a "fundamental theorem of algebra for the real field": for a nonconstant real polynomial $P(x) = a_0 + a_1 x + \ldots + a_n x^n$, with a_0, a_1, \ldots, a_n real, n > 0, $a_n \neq 0$, there exists a real x_0 such that $P(x_0) = 0$.

PROBLEM 5. Let

$$g(z,w) = \frac{z-w}{1-z\bar{w}}$$

1. Prove that

a.
$$|g(z, w)| \le 1$$
 if $\bar{z} \cdot w \ne 1$, $|z| \le 1$ and $|w| \le 1$

- b. |g(z,w)| < 1 if $\bar{z} \cdot w \neq 1$, |z| < 1 and |w| < 1,
- b. |g(z,w)| = 1 if $\overline{z} \cdot w \neq 1$, $|z| \leq 1$, $|w| \leq 1$, and either |z| = 1 or |w| = 1.

HINT: Prove first the identity

$$1 - |g(z,w)|^2 = \frac{(1 - |z|^2)(1 - |w|^2)}{|1 - \bar{z}w|^2}$$

- 2. Conclude from the results of Part 1 that, if $w \in \mathbb{D}$ then the transformation G_w given by $G_w(z) = g(z, w)$ maps \mathbb{D} into \mathbb{D} and $\partial \mathbb{D}$ to $\partial \mathbb{D}$. (Here \mathbb{D} is the open unit disc $\{z \in \mathbb{C} : |z| < 1\}$, and $\partial \mathbb{D}$ is the unit circle $\{z \in \mathbb{C} : |z| = 1\}$.)
- 3. Prove that, as a map from \mathbb{D} to \mathbb{D} , G_w is one-to-one and onto (provided that $w \in \mathbb{D}$), and show that the inverse map $G_w^{-1} : \mathbb{D} \mapsto \mathbb{D}$ is of the form G_u for some $u \in \mathbb{D}$ that you should determine explicitly.

PROBLEM 6. An ordered field is a field F endowed with a distinguished subset P (called "the set of positive members of F") such that

- 1. If $a, b \in P$ then $a + b \in P$ and $a \cdot b \in P$,
- 2. If $a \in F$ then one and only one of the following holds: $a \in P, -a \in P$, a = 0.

Verify that \mathbb{R} , with $P = \{x \in \mathbb{R} : x > 0\}$, is an ordered field, and prove that there is no choice of a subset P of \mathbb{C} that makes \mathbb{C} an ordered field. (NOTE: This means that you cannot, and should not, talk about a complex number being "larger" than another complex number, or about a complex-valued function having a maximum or a minimum.)

PROBLEM 7. An integer *n* is a 2-square if it is the sum of two squares of integers, i.e., if there exist integers u, v such that $n = u^2 + v^2$. Prove that the product of two 2-squares is a 2-square. (Example: $5 = 2^2 + 1^2$, $13 = 3^2 + 2^2$, and $5 \cdot 13 = 65 = 8^2 + 1^2$.) (NOTE: If you are wondering what this problem about integer arithmetic is doing in Math 503, believe me, there is a reason.)

PROBLEM 8. The *sum* of two subsets S_1, S_2 of \mathbb{C} (or of any vector space), is the set $S_1 + S_2$ given by

$$S_1 + S_2 = \{z_1 + z_2 : z_1 \in S_1, \, z_2 \in S_2\}.$$

Prove or disprove each of the following statements:

- 1. If K_1 and K_2 are compact then $K_1 + K_2$ is compact.
- 2. If C_1 and C_2 are closed then $C_1 + C_2$ is closed.
- 3. If U_1 and U_2 are open then $U_1 + U_2$ is open.
- 4. If U_1 is open and U_2 is an arbitrary set then $U_1 + U_2$ is open.

PROBLEM 9. A lattice point (in the complex plane \mathbb{C}) is a point x + iy of \mathbb{C} such that x and y are integers. Let $\nu(R)$ be the number of lattice points belonging to the open disc $D(R) = \{z \in \mathbb{C} : |z| < R\}$. Find an asymptotic formula for $\nu(R)$. More precisely, find a simple polynomial p(R) such that $\lim_{R \to +\infty} \frac{\nu(R)}{n(R)} = 1$.

PROBLEM 10. This problem has a long introduction, and you should read it carefully. You will find near the end the list of things you are asked to prove.

A function $f : U \mapsto \mathbb{R}^m$, defined on an open subset U of \mathbb{R}^n , is said to be differentiable at a point x_* of U if here exists a linear map $L : \mathbb{R}^n \mapsto \mathbb{R}^m$ such that

$$\lim_{h \to 0} \frac{\|f(x_* + h) - f(x_*) - Lh\|}{\|h\|} = 0$$

(Here, if $v = (v_1, \ldots, v_d) \in \mathbb{R}^d$, the norm ||v|| is the Euclidean norm¹ of v, that is, the number $\sqrt{\sum_{j=1}^d v_j^2}$.) It is well known that L is unique. The map L is the

¹But, for those who are familiatr with these things, everything we are doing would work equally well with any other norm, because all norms on \mathbb{R}^n are equivalent.

differential of f at x_* , and we use $Df(x_*)$ or $df(x_*)$ to denote it². It is also well known that if f is differentiable at x_* then the partial derivatives $\frac{\partial f}{\partial x_j}(x_*)$ exist, and satisfy

$$\frac{\partial f}{\partial x_j}(x_*) = df(x_*).e_j \,,$$

where e_j is the vector $(0, \ldots, 0, 1, 0, \ldots, 0)$ with the 1 in he *j*-th place (that is: $e_j = (\delta_j^1, \ldots, \delta_j^n)$, where δ_j^k is Kronecker's delta, defined by $\delta_j^j = 1$ and $\delta_j^k = 0$ if $j \neq k$). This implies that, if $h \in \mathbb{R}^n$,

$$df(x_*) \cdot h = df(x_*)(\sum_{j=1}^n h_j e_j)$$
$$= \sum_{j=1}^n (df(x_*) \cdot e_j)h_j$$
$$= \sum_{j=1}^n \frac{\partial f}{\partial x_j}(x_*)h_j.$$

In particular, the differential dx_k of the function x_k is given by

$$dx_k(x_*) \cdot h = h_k \,,$$

because $\frac{\partial x_k}{\partial x_j} = \delta_j^k$. Hence

$$df(x_*) \cdot h = \sum_{j=1}^n \frac{\partial f}{\partial x_j}(x_*) \cdot (dx_k(x_*) \cdot h),$$

which can be written, omitting the arguments x_*, h as

$$df = \sum_{j=1}^{n} \frac{\partial f}{\partial x_j} dx_k$$

In the case when n = m = 2, we may identify \mathbb{R}^2 with \mathbb{C} in the usual way, and then a function $f: U \mapsto \mathbb{R}^2$ as before can be regarded as a function from an open subset of \mathbb{C} to \mathbb{C} . For such a function, the notion of differentiability defined above will be referred to as *real differentiability*. And, if $f: U \mapsto \mathbb{C}$ is real-differentiable at a point $x_* \in U$, then, at x_* ,

$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \,.$$

On the other hand, z = x + iy and $\overline{z} = x - iy$ are \mathbb{C} -valued functions on U, whose differentials are given by dz = dx + idy and $d\overline{z} = dx - idy$.

Prove that if f is real-differentiable at x_* then, at x_* ,

$$df = \frac{\partial f}{\partial z} \cdot dz + \frac{\partial f}{\partial \bar{z}} \cdot d\bar{z},$$

²This notation is consistent with, for example, the one used for differentials in differential geometry. For us, if U is open in \mathbb{R}^n , and $f: U \mapsto \mathbb{R}^m$, then $df(x_*)$ is a linear map from \mathbb{R}^n to \mathbb{R}^m . In the special case when m = 1, $df(x_*)$ is a linear map from \mathbb{R}^n to \mathbb{R} , i.e., a linear functional on \mathbb{R}^n . And \mathbb{R}^n is naturally identified with the tangent space to U at x_* , so $df(x_*)$ is a member of the dual of that tangent space.

where $\frac{\partial f}{\partial z}$ and $\frac{\partial f}{\partial \bar{z}}$ are defined by

$$\frac{\partial f}{\partial z} = \frac{1}{2} \Big(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \Big) \,, \qquad \frac{\partial f}{\partial \bar{z}} = \frac{1}{2} \Big(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \Big)$$

Then **prove** that the following conditions are equivalent:

- a. f is complex-differentiable³.
- b. f is real-differentiable at x_* and the differential $df(x_*)$ is a complex-linear map^4 .
- c. f is real-differentiable at x_* and $\frac{\partial f}{\partial \bar{z}}(x_*) = 0$. d. f is real-differentiable at x_* and, if we write f = u + iv with u, v realvalued, then the Cauchy-Riemann equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

hold at x_* .

Conclude that,

1. If U is open in \mathbb{C} and $f: U \mapsto \mathbb{C}$, then f is holomorphic if and only if f is real-differentiable at every point of U, and

$$\frac{\partial f}{\partial \bar{z}} \equiv 0 \,.$$

2. If U is open in \mathbb{C} , $f: U \mapsto \mathbb{C}$, and f is holomorphic, then

$$f' \equiv \frac{\partial f}{\partial z} \,.$$

³We say that f is complex-differentiable at x_* if the limit $\lim_{h\to 0} \frac{f(x_*+h)-f(x_*)}{h}$ exists (where, of course, h goes to zero through complex values).

⁴Recall that $df(x_*)$ is an \mathbb{R} -linear map from \mathbb{R}^2 to \mathbb{R}^2 , and \mathbb{R}^2 is identified with \mathbb{C} , so $df(x_*)$ is a map from $\mathbb C$ to $\mathbb C$.