MATHEMATICS 503 FALL 2014

Instructor: H. J. Sussmann

Exercises for the Thanksgiving week.

QUESTION 1. Prove that if U is an open subset of \mathbb{C}, a, b are real numbers such that $a<b, f_{t}$ is a holomorphic function on U for each $t \in[a, b]$, and the function $f: U \times[a, b] \mapsto \mathbb{C}$ given by $f(z, t)=f_{t}(z)$ is continuous, then
(1) the function $F: U \mapsto \mathbb{C}$ given by

$$
F(z)=\int_{a}^{b} f(z, t) d t
$$

is holomorphic.
(2) The function $g: U \times[a, b] \mapsto \mathbb{C}$ given by $g(z, t)=f_{t}^{\prime}(z)$ is continuous.
(3) The derivative F^{\prime} of F is given by

$$
F^{\prime}(z)=\int_{a}^{b} g(z, t) d t
$$

(NOTE: You don't necessarily have to prove (1) first, then (2), then (3). It could be that it is more convenient to prove them in a different order. For example, you may ${ }^{1}$ choose to prove (2) first.)

QUESTION 2. Book, Page 83, Problems 1, 2, 3, 4, 5. (NOTE: "Analytic isomorphism" means the same as "biholomorphic function.")

QUESTION 3. 172, Problems 11, 12. (The order of a point z for a meromorphic fiunction f is n if z is a zero of f of order $n,-n$ if z is a pole of f of order n, and 0 if z is neither a zero nor a pole of f.)

QUESTION 4. Book, Page 213, Problem 1.
QUESTION 5. Book 159, 7, 8, 9.

[^0]
[^0]: ${ }^{1}$ But you don't have to.

