INVARIANT RANDOM SUBGROUPS OF INDUCTIVE LIMITS
OF FINITE ALTERNATING GROUPS

SIMON THOMAS AND ROBIN TUCKER-DROB

Abstract. We classify the ergodic invariant random subgroups of inductive limits of finite alternating groups.

1. Introduction

A simple locally finite group G is said to be an L(Alt)-group if we can express $G = \bigcup_{i \in \mathbb{N}} G_i$ as the union of a strictly increasing chain of finite alternating groups $G_i = \text{Alt} (\Delta_i)$. Here we allow arbitrary embeddings $G_i \hookrightarrow G_{i+1}$. In this paper, we will classify the ergodic invariant random subgroups of the L(Alt)-groups, and we will consider the relationship between the existence of “nontrivial” ergodic IRSs, “nontrivial” characters $\chi : G \to \mathbb{C}$ and “nontrivial” 2-sided ideals $I \subseteq CG$.

Let G be a countably infinite group and let Sub_G be the compact space of subgroups $H \leq G$. Then a Borel probability measure ν on Sub_G which is invariant under the conjugation action of G on Sub_G is called an invariant random subgroup or IRS. For example, if $N \trianglelefteq G$ is a normal subgroup, then the corresponding Dirac measure δ_N is an IRS of G. Further examples of IRSs arise from the stabilizer distributions of measure-preserving actions, which are defined as follows. Suppose that G acts via measure-preserving maps on the Borel probability space (Z, μ) and let $f : Z \to \text{Sub}_G$ be the G-equivariant map defined by $z \mapsto G_z = \{ g \in G \mid g \cdot z = z \}$.

Then the corresponding stabilizer distribution $\nu = f_* \mu$ is an IRS of G. In fact, by a result of Abért-Glasner-Virag [1], every IRS of G can be realized as the stabilizer distribution of a suitably chosen measure-preserving action. Moreover, by Creutz-Peterson [2], if ν is an ergodic IRS of G, then ν is the stabilizer distribution of an ergodic action $G \acts (Z, \mu)$.

Definition 1.1. A countably infinite group G is said to be strongly simple if the only ergodic IRSs of G are δ_1 and δ_G.

In other words, a (necessarily simple) group G is strongly simple if G has no nontrivial ergodic IRSs.

As we pointed out in Thomas-Tucker-Drob [18], if G is a countably infinite locally finite group and $G \acts (Z, \mu)$ is an ergodic action, then an application of the Pointwise Ergodic Theorem for actions of locally finite groups to the associated character $\chi (g) = \mu(\text{Fix}_Z (g))$ allows us to regard $G \acts (Z, \mu)$ as the “limit” of a suitable sequence of finite permutation groups $G_n \acts (\Omega_n, \mu_n)$, where μ_n is the uniform probability measure on Ω_n.

2010 Mathematics Subject Classification. 20F50, 37A15 (primary), 20F69, 20B35 (secondary). Research partially supported by NSF Grants DMS 1362974 and DMS 1303921.
Definition 1.2. If G is a countable group, then the function $\chi : G \to \mathbb{C}$ is a character if the following conditions are satisfied:

(i) $\chi(ghh^{-1}) = \chi(g)$ for all $g, h \in G$.
(ii) $\sum_{i,j=1}^{n} \lambda_i \lambda_j \chi(g_i^{-1} g_j) \geq 0$ for all $\lambda_1, \cdots, \lambda_n \in \mathbb{C}$ and $g_1, \cdots, g_n \in G$.
(iii) $\chi(1_G) = 1$.

A character χ is said to be indecomposable or extremal if it is impossible to express $\chi = r \chi_1 + (1 - r) \chi_2$, where $0 < r < 1$ and $\chi_1 \neq \chi_2$ are distinct characters.

The set $\mathcal{F}(G)$ of characters of G always contains the two “trivial” characters χ_{con} and χ_{reg}, where $\chi_{\text{con}}(g) = 1$ for all $g \in G$ and $\chi_{\text{reg}}(g) = 0$ for all $1 \neq g \in G$. It is well-known that χ_{con} is indecomposable, and that χ_{reg} is indecomposable if and only if G is an i.c.c. group, i.e. the conjugacy class gG of every nonidentity element $g \in G$ is infinite. (For example, see Peterson-Thom [12].) We will say that $\mathcal{F}(G)$ is trivial if every $\chi \in \mathcal{F}(G)$ is a convex combination of χ_{con} and χ_{reg}.

Theorem 1.3. If the countably infinite simple group G is not strongly simple, then $\mathcal{F}(G)$ is nontrivial.

Proof. Suppose that $\nu \neq \delta_1, \delta_G$ is a nontrivial ergodic IRS of G. Then, by Creutz-Peterson [2, Proposition 3.1.1], we can suppose that ν is the stabilizer distribution of an ergodic action $G \curvearrowright (Z, \mu)$. Let $\chi(g) = \mu(\text{Fix}_Z(g))$ be the associated character. Suppose that there exists $0 \leq r \leq 1$ such that $\chi = r \chi_{\text{con}} + (1 - r) \chi_{\text{reg}}$. Then, since $\nu \neq \delta_1, \delta_G$, it follows that $0 < r < 1$; and so $\inf_{g \in G} \mu(\text{Fix}_Z(g)) = r > 0$. Applying Ioana-Kechris-Tsankov [6, Theorem 1(i)] in the special case when E is the identity relation, it follows that there exists a positive integer $m \leq 1/r$ and a Borel subset $A \subseteq Z$ with $\mu(A) > 0$ such that $|G \cdot a \cap A| = m$ for all $a \in A$. (Here $G \cdot a$ denotes the G-orbit $\{ g(a) \mid g \in G \}$. Fix some Borel linear ordering \preceq of Z and let $T \subseteq A$ be the subset defined by

$$t \in T \iff t \text{ is the } \preceq \text{-least element of } G \cdot t \cap A.$$

Then T is a Borel subset of Z such that $\mu(T) = \mu(A)/m > 0$ with the property that if $t \neq t' \in T$, then $G \cdot t \neq G \cdot t'$. Since G acts ergodically on (Z, μ), it follows that there exists a point $t_0 \in T$ such that $\mu(\{ t_0 \}) = \mu(T) > 0$; and this implies that $G \cdot t_0$ is a finite orbit and that $\mu(G \cdot t_0) = 1$. Since G is an infinite simple group, it follows that G acts trivially on the finite set $G \cdot t_0$ and hence $\mu(\{ t_0 \}) = 1$. But this means that $\nu = \delta_G$, which is a contradiction. Consequently, $\chi(g)$ is not a convex combination of χ_{con} and χ_{reg}.

There exist examples of ergodic actions $G \curvearrowright (Z, \mu)$ of countably infinite groups such that the associated character χ is not indecomposable. For example, if the ergodic action $G \curvearrowright (Z, \mu)$ is essentially free, then $\chi = \chi_{\text{reg}}$, and so χ is indecomposable if and only if G is an i.c.c. group. There also exist more interesting examples.

Theorem 1.4. There exists an ergodic action $\text{Alt}(\mathbb{N}) \curvearrowright (Z, \mu)$ such that the associated character is not indecomposable.

Proof. Suppose that χ is an indecomposable character of the infinite alternating group $\text{Alt}(\mathbb{N})$. Then, by Thoma [17, Satz 6], there exists an indecomposable character θ of the group $\text{Fin}(\mathbb{N})$ of finitary permutations of the natural numbers such that $\chi = \theta \upharpoonright \text{Alt}(\mathbb{N})$; and hence, by Thoma [17, Satz 1], we have that

$$\chi((12)(34)(56)(78)) = \chi((12)(34)) \chi((56)(78)).$$
Thus it suffices to find an ergodic action $\text{Alt}(\mathbb{N}) \curvearrowright (Z, \mu)$ such that the associated character $\chi(g) = \mu(\text{Fix}_Z(g))$ fails to satisfy the multiplicative property (1.1).

Let m be the usual uniform product probability measure on $2^\mathbb{N}$. Then $\text{Alt}(\mathbb{N})$ acts ergodically on $(2^\mathbb{N}, m)$ via the shift action $(g \cdot \xi)(n) = \xi(g^{-1}(n))$. For each $\xi \in 2^\mathbb{N}$ and $i = 0, 1$, let $B_i^\xi = \{ n \in \mathbb{N} \mid \xi(n) = i \}$. Let $f : 2^\mathbb{N} \to \text{Sub}_{\text{Alt}(\mathbb{N})}$ be the $\text{Alt}(\mathbb{N})$-equivariant map defined by $\xi \mapsto \text{Alt}(B_0^\xi) \times \text{Alt}(B_1^\xi)$ and let $\nu = f_* m$ be the corresponding ergodic IRS of $\text{Alt}(\mathbb{N})$. Then, by Creutz-Peterson [2], ν is the stabilizer distribution of an ergodic action $\text{Alt}(\mathbb{N}) \curvearrowright (Z, \mu)$; and the associated character χ is given by

$$
\chi(g) = \nu(\{ H \in \text{Sub}_{\text{Alt}(\mathbb{N})} \mid g \in H \}) = m(\{ \xi \in 2^\mathbb{N} \mid g \in \text{Alt}(B_0^\xi) \times \text{Alt}(B_1^\xi) \}).
$$

Clearly $(1 \ 2 \ 3 \ 4) \in \text{Alt}(B_0^\xi) \times \text{Alt}(B_1^\xi)$ if and only if $\xi(1) = \xi(2) = \xi(3) = \xi(4)$; and it follows that

$$
\chi((1 \ 2 \ 3 \ 4)) = \chi((56 \ 78)) = 1/2^4 + 1/2^4 = 1/2^3.
$$

On the other hand, we have that

$$
\chi((1 \ 2 \ 3 \ 4)(56 \ 78)) = \frac{(1) + (1) + (1)}{2^8} = 1/2^5.
$$

Since the multiplicative property (1.1) fails, it follows that χ is not indecomposable.

\[\square \]

Problem 1.5. Find necessary and sufficient conditions for the associated character of an ergodic action $G \curvearrowright (Z, \mu)$ to be indecomposable.

Vershik [20] has proved a very interesting sufficient condition; namely, that if $G \curvearrowright (Z, \mu)$ is ergodic and $N_G(z) = G_z$ for μ-a.e. $z \in Z$, then the associated character is indecomposable. Using Vershik’s criterion, together with our classification of the ergodic IRSs of the $L(\text{Alt})$-groups $G \not\cong \text{Alt}(\mathbb{N})$, we will prove the following result.

Theorem 1.6. If $G \not\cong \text{Alt}(\mathbb{N})$ is an $L(\text{Alt})$-group and $G \curvearrowright (Z, \mu)$ is an ergodic action, then the associated character is indecomposable.

It is clear from Theorems 1.4 and 1.6 that $\text{Alt}(\mathbb{N})$ plays an exceptional role within the class of $L(\text{Alt})$-groups. In Section 9, adapting and slightly correcting Vershik’s analysis of the ergodic IRSs of the group $\text{Fin}(\mathbb{N})$ of finitary permutations of the natural numbers, we will state the classification of the ergodic IRSs of $\text{Alt}(\mathbb{N})$ and we will characterize the ergodic actions $\text{Alt}(\mathbb{N}) \curvearrowright (Z, \mu)$ such that the associated character $\chi(g) = \mu(\text{Fix}_Z(g))$ is indecomposable.

The $L(\text{Alt})$-groups with a nontrivial ergodic IRS will be classified as follows. Suppose that $G = \bigcup_{i \in \mathbb{N}} G_i$ is the union of the strictly increasing chain of finite alternating groups $G_i = \text{Alt}(\Delta_i)$, where $|\Delta_0| \geq 5$. For each $i \in \mathbb{N}$, let $s_i + 1$ be the number of natural orbits of G_i on $\Delta_i + 1$ and let c_{i+1} be the number of points $x \in \Delta_i + 1$ which lie in a nontrivial non-natural G_i-orbit. (Here an orbit Ω of $G_i = \text{Alt}(\Delta_i)$ on $\Delta_i + 1$ is said to be *natural* if $|\Omega| = |\Delta_i|$ and the action $G_i \curvearrowright \Omega$ is isomorphic to the natural action $G_i \curvearrowright \Delta_i$.) Also for each $i < j$, let $s_{ij} = s_{i+1}s_{i+2}\cdots s_j$. Recall that $G = \bigcup_{i \in \mathbb{N}} G_i$ is said to be a *diagonal limit* if $s_{i+1} > 0$.
Definition 1.7. $G = \bigcup_{i \in \mathbb{N}} G_i$ is an almost diagonal limit if $s_{i+1} > 0$ for all $i \in \mathbb{N}$ and $\sum_{i=1}^{\infty} e_i < \infty$.

Theorem 1.8. If G is an $L(\text{Alt})$-group, then G has a nontrivial ergodic IRS if and only if G can be expressed as an almost diagonal limit of finite alternating groups.

We will present an explicit classification of the ergodic IRSs of the $L(\text{Alt})$-groups $G \nless \text{Alt}(\mathbb{N})$ in Sections 3 and 4. The classification involves a fundamental dichotomy which was originally introduced by Leinen-Puglisi [10, 11] in the more restrictive setting of diagonal limits of alternating groups, i.e. the linear vs sublinear natural orbit growth condition. This dichotomy arose unexpectedly in the work of Leinen-Puglisi [10, 11] without any natural explanation. By contrast, in this paper, it will appear as a natural consequence of the Pointwise Ergodic Theorem for actions of locally finite groups.

In [21], Vershik showed that the indecomposable characters of the group $\text{Fin}(\mathbb{N})$ of finitary permutations of the natural numbers were very closely connected with the ergodic IRSs of $\text{Fin}(\mathbb{N})$; and in [20], he suggested that this should also be true of various other locally finite groups. Combining our classification of the ergodic IRSs of the $L(\text{Alt})$-groups with the earlier work of Leinen-Puglisi [11], it follows that if $G = \bigcup_{i \in \mathbb{N}} G_i$ is a diagonal limit of finite alternating groups and $G \nless \text{Alt}(\mathbb{N})$, then the indecomposable characters of G are precisely the associated characters of the ergodic IRSs of G.

Question 1.9. Does there exist a strongly simple locally finite group G such that $\mathcal{F}(G)$ is nontrivial?

If G is a countable group and $\chi \in \mathcal{F}(G)$ is a character, then we can extend χ to a linear function $\chi : CG \to \mathbb{C}$ and define a corresponding proper 2-sided ideal I_{χ} of the group ring CG by

$$I_{\chi} = \{ x \in CG \mid \chi(gx) = 0 \text{ for all } g \in G \}.$$

For example, let $\omega(CG)$ be the augmentation ideal, i.e. the kernel of the homomorphism $CG \to \mathbb{C}$ defined by $\sum \lambda_i g_i \mapsto \sum \lambda_i$. Then it is easily checked that if χ is a character of G, then $I_{\chi} = \omega(CG)$ if and only if $\chi = \chi_{\text{con}}$. It is also easily seen that $I_{\chi_{\text{reg}}} = \{0\}$. In [24], Zalesskii asked whether there exists a simple locally finite group G with an indecomposable character $\chi \neq \chi_{\text{reg}}$ such that $I_{\chi} = \{0\}$; and he conjectured that if G is a simple locally finite group such that $\omega(CG)$ is the only nontrivial proper 2-sided ideal of CG, then $\mathcal{F}(G)$ is trivial. In Section 3, we will give an example of a simple locally finite group G such that:

(a) the augmentation ideal $\omega(CG)$ is the only nontrivial proper 2-sided ideal of CG; and

(b) G has infinitely many indecomposable characters χ such that $I_{\chi} = \{0\}$.

It should be pointed out that Leinen-Puglisi [10] gave the first examples of simple locally finite groups G with indecomposable characters $\chi \neq \chi_{\text{reg}}$ such that $I_{\chi} = \{0\}$. However, in their examples, the corresponding group rings CG had infinitely many nontrivial proper 2-sided ideals.

This paper is organized as follows. In Section 2, we will briefly discuss the pointwise ergodicity and weak mixing properties of ergodic actions of countably
infinite locally finite groups. In Section 3, we will discuss the notion of an almost diagonal limit of finite alternating groups and the notions of linear/sublinear natural orbit growth; and we will discuss the ergodic IRSs of the $L(\text{Alt})$-groups with linear natural orbit growth. In Section 4, we will discuss the ergodic IRSs of almost diagonal limits with sublinear natural orbit growth. In Section 5, we will present a characterization of the almost diagonal limits of finite alternating groups. In Section 6, we will present a series of lemmas concerning upper bounds for the values of the normalized permutation characters of various actions $\text{Alt}(\Delta) \curvearrowright \Omega$ of the finite alternating group $\text{Alt}(\Delta)$. In Sections 7 and 8, we will present our proof of the classification of the ergodic IRSs of the $L(\text{Alt})$-groups $G \not\cong \text{Alt}(\mathbb{N})$; and in Section 9, we will present the classification of the ergodic IRSs of the infinite alternating group $\text{Alt}(\mathbb{N})$. Finally, in Section 10, we will use the classification of the ergodic IRSs of the $L(\text{Alt})$-groups to deduce the classification of their uniformly recurrent subgroups. (The notion of a uniformly recurrent subgroup was recently introduced by Glasner-Weiss [4] as a topological analog of the notion of invariant random subgroup.)

Our probability-theoretic notation is standard. In particular, if E is an event, then $P[E]$ denotes its probability; and if N is a random variable, then $\mathbb{E}[N]$ denotes its expectation, $\text{Var}[N]$ denotes its variance and $\sigma = (\text{Var}[N])^{1/2}$ denotes its standard deviation. If ν is an IRS of G, then we will sometimes write “let $H \in \text{Sub}_G$ be a ν-generic subgroup” as an abbreviation for “let $H \in \text{Sub}_G$ be a subgroup which lies in the countably many ν-measure 1 subsets that have been mentioned up to this point in the proof”.

Throughout this paper, if Δ is a set and $\ell \in \mathbb{N}$, then $[\Delta]^{\ell} = \{ \Sigma | \Sigma \subseteq \Delta, |\Sigma| = \ell \}$ will denote the set of ℓ-subsets of Δ. We will occasionally make use of the notation $n = \{0, 1, \ldots, n-1\}$.

If $G \curvearrowright Z$ is a group action and $g \in G$, then $\text{Fix}_Z(g) = \{ z \in Z | g \cdot z = z \}$ and $\text{supp}_Z(g) = \{ z \in Z | g \cdot z \neq z \}$.

2. The Ergodic Theory of Locally Finite Groups

In this section, we will briefly discuss the pointwise ergodicity and weak mixing properties of ergodic actions of countably infinite locally finite groups. Throughout, let $G = \bigcup_{i \in \mathbb{N}} G_i$ be the union of the strictly increasing chain of finite subgroups G_i and let $G \curvearrowright (Z, \mu)$ be an ergodic action on a Borel probability space. The following is a special case of more general results of Vershik [19, Theorem 1] and Lindenstrauss [9, Theorem 1.3].

The Pointwise Ergodic Theorem. With the above hypotheses, if $B \subseteq Z$ is a μ-measurable subset, then for μ-a.e. $z \in Z$,

$$\mu(B) = \lim_{i \to \infty} \frac{1}{|G_i|} |\{ g \in G_i | g \cdot z \in B \}|.$$

In particular, the Pointwise Ergodic Theorem applies when B is the μ-measurable subset $\text{Fix}_Z(g) = \{ z \in Z | g \cdot z = z \}$ for some $g \in G$. For each $z \in Z$ and $i \in \mathbb{N}$, let $\Omega_i(z) = \{ g \cdot z | g \in G_i \}$ be the corresponding G_i-orbit. Then, as pointed out in Thomas-Tucker-Drob [18, Theorem 2.1], the following result is an easy consequence of the Pointwise Ergodic Theorem.
Theorem 2.1. With the above hypotheses, for \(\mu \)-a.e. \(z \in Z \), for all \(g \in G \),
\[
\mu(\text{Fix}_Z(g)) = \lim_{i \to \infty} \frac{|\text{Fix}_{\Omega_i}(g)|}{|\Omega_i(z)|}.
\]

The normalized permutation character \(|\text{Fix}_{\Omega_i}(g)|/|\Omega_i(z)|\) is the probability that an element of \(\{\Omega_i(z), \mu_i\} \) is fixed by \(g \in G_i \), where \(\mu_i \) is the uniform probability measure on \(\Omega_i(z) \); and, in this sense, we can regard \(G \acts (Z, \mu) \) as the “limit” of the sequence of finite permutation groups \(G_i \acts (\Omega_i(z), \mu_i) \). Of course, the permutation group \(G_i \acts \Omega_i(z) \) is isomorphic to \(G_i \acts G_i/H_i \), where \(G_i/H_i \) is the set of cosets of \(H_i = \{ h \in G_i \mid h \cdot z = z \} \) in \(G_i \). The following simple observation will be used repeatedly in our later applications of Theorem 2.1. (For example, see Thomas-Tucker-Drob [18, Proposition 2.2].)

Proposition 2.2. If \(H \leq A \) are finite groups and \(\theta \) is the normalized permutation character corresponding to the action \(A \acts A/H \), then
\[
\theta(g) = \frac{|gA \cap H|}{|gA|} = \frac{|\{ s \in A \mid sgs^{-1} \in H \}|}{|A|}.
\]

The following consequence of Proposition 2.2 implies that when computing upper bounds for the normalized permutation characters of actions \(A \acts A/H \), we can restrict our attention to those coming from maximal subgroups \(H < A \).

Corollary 2.3. If \(H \leq H' \leq A \) are finite groups and \(\theta, \theta' \) are the normalized permutation characters corresponding to the actions \(A \acts A/H \) and \(A \acts A/H' \), then \(\theta(g) \leq \theta'(g) \) for all \(g \in A \).

Finally we point out the following straightforward but useful observations.

Theorem 2.4. If \(G \) is a countably infinite simple locally finite group, then every ergodic action \(G \acts (Z, \mu) \) is weakly mixing.

Proof. Suppose that the ergodic action \(G \acts (Z, \mu) \) is not weakly mixing. Then, by Schmidt [15, Proposition 2.2], it follows that \(G \) has a nontrivial finite dimensional unitary representation; and since \(G \) is simple, this representation is necessarily faithful. However, this is impossible since Schur [16] has proved that every locally finite linear group over the complex field has an abelian subgroup of finite index. (For a more accessible reference, see Curtis-Reiner [3, Theorem 36.14].) \(\square \)

Corollary 2.5. If \(G \) is a countably infinite simple locally finite group and the action \(G \acts (Z, \mu) \) is ergodic, then the product action \(G \acts (Z^r, \mu \otimes \cdots \otimes \mu) \) is also ergodic for every \(r \geq 2 \).

3. Linear Natural Orbit Growth

In this section, we will begin our analysis of the ergodic IRSs of the \(L(\text{Alt}) \)-groups \(G \neq \text{Alt}(\mathbb{N}) \). First we need to introduce some notation. For the remainder of this paper, suppose that \(G = \bigsqcup_{i \in \mathbb{N}} G_i \) is the union of the strictly increasing chain of finite alternating groups \(G_i = \text{Alt}(\Delta_i) \), where \(|\Delta_i| \geq 5 \). For each \(i \in \mathbb{N} \), let
- \(n_i = |\Delta_i| \);
- \(n_{i+1} \) be the number of natural orbits of \(G_i \) on \(\Delta_{i+1} \);
- \(f_{i+1} \) be the number of trivial orbits of \(G_i \) on \(\Delta_{i+1} \);
- \(c_{i+1} = n_{i+1} - (n_{i+1}n_i + f_{i+1}) \); and
- \(t_{i+1} = c_{i+1} + f_{i+1} \).
Thus e_{i+1} is the number of points $x \in \Delta_{i+1}$ which lie in a nontrivial non-natural G_i-orbit and $t_{i+1} = n_{i+1} - s_{i+1} n_i$ is the number of points $x \in \Delta_{i+1}$ which lie in a (possibly trivial) non-natural G_i-orbit. For each $i < j$, let $s_{ij} = s_{i+1} s_{i+2} \cdots s_j$.

Remark 3.1. Clearly G_i has at least s_{ij} natural orbits on Δ_j. However, it is easy to construct examples for which G_i has strictly more than s_{ij} natural orbits on Δ_j.

For example, suppose that:

1. $\Delta_{i+1} = \Delta_i \cup \{ \alpha \}$, with G_i acting naturally on Δ_i and fixing the point α;
2. $\Delta_{i+2} = [\Delta_{i+1}]^2$, with G_{i+1} acting in the obvious fashion.

Then $s_{i+1} = 1$ and $s_{i+2} = 0$, while G_i has the natural orbit $\{ \{ \alpha, \delta \} \mid \delta \in \Delta_i \}$ on Δ_{i+2}.

Definition 3.2. $G = \bigcup_{i \in \mathbb{N}} G_i$ is an almost diagonal limit if $s_{i+1} > 0$ for all $i \in \mathbb{N}$ and $\sum_{i=1}^{\infty} \frac{e_i}{s_0} < \infty$.

Remark 3.3. If $s_{i+1} > 0$ and $e_{i+1} = 0$ for all $i \in \mathbb{N}$, then $G = \bigcup_{i \in \mathbb{N}} G_i$ is a diagonal limit in the sense of Zalesskii [23].

The following observation will be used repeatedly throughout this paper.

Proposition 3.4. Suppose that $G = \bigcup_{i \in \mathbb{N}} G_i$ is an almost diagonal limit of the finite alternating groups $G_i = \text{Alt} (\Delta_i)$. If $(j_i \mid i \in \mathbb{N})$ is a strictly increasing sequence of natural numbers and $G_i' = \text{Alt} (\Delta_{j_i})$, then $G = \bigcup_{i \in \mathbb{N}} G_i'$ is also an almost diagonal limit.

Proof. For each $i < j$, let e_{ij} be the number of points $x \in \Delta_j$ which lie in a nontrivial non-natural G_i-orbit. Then an easy induction on $j \geq i + 1$ shows that

$$e_{ij} \leq \sum_{k=i+1}^{j-1} s_k e_k + e_j.$$

Let e'_{i+1}, s'_{i+1} be the corresponding parameters for the increasing union $G = \bigcup_{i \in \mathbb{N}} G_i'$. Then $e'_{i+1} = e_{j_i j_{i+1}}$ and $s'_{i+1} \geq s_{j_i+1} \cdots s_{j_{i+1}}$. It follows that

$$s'_{0 i+1} = s'_1 \cdots s'_{i+1} \geq (s_{j_0+1} \cdots s_{j_1}) \cdots (s_{j_i+1} \cdots s_{j_{i+1}}) = s_{0 j_0}^{-1} s_{0 j_{i+1}}^{-1};$$

and hence we obtain that

$$e'_{i+1} / s'_{0 i+1} \leq \frac{s_{0 j_0}}{s_{0 j_{i+1}}} \sum_{k=j_i+1}^{j_{i+1}-1} s_{k j_i+1} e_k + e_{j_i+1} = s_{0 j_0} \sum_{k=j_i+1}^{j_{i+1}} e_k / s_{0 k}.$$

The result follows. \qed

Remark 3.5. Suppose that $G = \bigcup_{i \in \mathbb{N}} G_i$ is an almost diagonal limit of finite alternating groups. If $s_{i+1} = 1$ for all but finitely many $i \in \mathbb{N}$, then $e_{i+1} = 0$ for all but finitely many $i \in \mathbb{N}$, and it follows that $G \cong \text{Alt}(\mathbb{N})$. Hence, applying Proposition 3.4, if $G \ncong \text{Alt}(\mathbb{N})$, then we can suppose that the almost diagonal limit $\bigcup_{i \in \mathbb{N}} G_i$ has been chosen such that $s_{i+1} > 1$ for all $i \in \mathbb{N}$.

Definition 3.6. The $L(\text{Alt})$-group G has almost diagonal type if G can be expressed as an almost diagonal limit of finite alternating groups.
Remark 3.11. Note that growth, then G has almost diagonal type.

Theorem 3.7. If G is an $L(\text{Alt})$-group, then G has a nontrivial ergodic IRS if and only if G has almost diagonal type.

The classification of the ergodic IRSs of the groups of almost diagonal type involves a fundamental dichotomy which was introduced by Leinen-Puglisi [10, 11] in the more restrictive setting of diagonal limits of alternating groups, i.e. the linear vs sublinear natural orbit growth condition. The statement and proof of the following lemma are identical to Leinen-Puglisi [11, Lemma 2.2]. (Note that the following lemma does not require that $G = \bigcup_{i \in \mathbb{N}} G_i$ is an almost diagonal limit.)

Lemma 3.8. For each $i \in \mathbb{N}$, the limit $a_i = \lim_{j \to \infty} s_{ij}/n_j$ exists.

Proof. If $i < j < k$, then $s_{ik} = s_{ij}s_{jk}$ and clearly $n_js_{jk} \leq n_k$. Hence

$$\frac{s_{ik}}{n_k} = \frac{s_{ij}}{n_j} \frac{n_js_{jk}}{n_k} \leq \frac{s_{ij}}{n_j}$$

and the sequence $(s_{ij}/n_j | i < j \in \mathbb{N})$ converges to $\inf_{j \geq i} s_{ij}/n_j$. □

Definition 3.9. $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth if $a_i > 0$ for some $i \in \mathbb{N}$. Otherwise, $G = \bigcup_{i \in \mathbb{N}} G_i$ has sublinear natural orbit growth.

Remark 3.10. We will soon see that if $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth, then G has almost diagonal type.

Remark 3.11. Note that $a_i = s_{i+1}a_{i+1}$. Thus G has linear natural orbit growth if and only if $a_i > 0$ for all but finitely many $i \in \mathbb{N}$.

We will next prove that if $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth, then G has a nontrivial ergodic IRS. Note that if $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth, then $s_{i+1} > 0$ for all but finitely many $i \in \mathbb{N}$. Hence, after replacing the increasing union $G = \bigcup_{i \in \mathbb{N}} G_i$ by $G = \bigcup_{i \leq n} G_i$ for some suitably chosen $n \in \mathbb{N}$, we can suppose that $s_{i+1} > 0$ for all $i \in \mathbb{N}$. We will initially work with this strictly weaker hypothesis. As we will see, the linear vs sublinear natural orbit growth dichotomy will appear naturally in our analysis via an application of the Pointwise Ergodic Theorem for actions of locally finite groups. Let $t_0 = n_0$ and recall that $t_{i+1} = c_{i+1} + f_{i+1} = n_{i+1} - s_{i+1}n_i$. Clearly we can suppose that:

- $\Delta_0 = \{ \alpha_{i+1}^\ell | \ell < t_0 \}$; and
- $\Delta_{i+1} = \{ \sigma \cdot k | \sigma \in \Delta_i, 0 \leq k < s_{i+1} \} \cup \{ \alpha_{i+1}^\ell | 0 \leq \ell < t_{i+1} \}$;

and that the embedding $\varphi_i: \text{Alt}(\Delta_i) \to \text{Alt}(\Delta_{i+1})$ satisfies

$$\varphi_i(g)(\sigma \cdot k) = g(\sigma)^{-k}$$

for each $\sigma \in \Delta_i$ and $0 \leq k < s_{i+1}$. Let Δ consist of all sequences of the form $(\alpha_{i+1}^{t_1}, k_{i+1}, k_{i+2}, k_{i+3}, \cdots)$, where $i \in \mathbb{N}$ and k_j is an integer such that $0 \leq k_j < s_j$. For each $i \in \mathbb{N}$ and $\sigma \in \Delta_i$, let $\Delta(\sigma) \subseteq \Delta$ be the subset of sequences of the form $\sigma \cdot (k_{i+1}, k_{i+2}, k_{i+3}, \cdots)$. Then the sets $\Delta(\sigma)$ form a clopen basis for a locally compact topology on Δ. (This is a special case of the “space of paths” of Lavrenyuk-Nekrashevych [8].) Consider the action $G \curvearrowright \Delta$ defined by

$$g \cdot (\alpha_{i+1}^{t_1}, k_{i+1}, \cdots, k_j, k_{j+1}, \cdots) = (g(\alpha_{i+1}^{t_1}, k_{i+1}, \cdots, k_j), k_{j+1}, \cdots), \quad g \in G_i.$$

Then we will show that there exists a G-invariant ergodic probability measure on Δ if and only if $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth; in which case, the action $G \curvearrowright \Delta$ is uniquely ergodic.
In the absence of a readable image of the text, I cannot provide a natural text representation as requested. If you have a readable version of the text or any specific questions about the content, please let me know, and I'll be happy to assist you with those.
to be proved that \(m_0 \) is \(\sigma \)-additive. As we will soon see, this is an easy consequence of the following result.

Lemma 3.15. If \(s_{i+1} > 0 \) for all \(i \in \mathbb{N} \) and \(G = \bigcup_{i \in \mathbb{N}} G_i \) has linear natural orbit growth, then \(\lim_{i \to \infty} b_i = 0 \).

The proof of Lemma 3.15 will make use of the following result.

Lemma 3.16. If \(s_{i+1} > 0 \) for all \(i \in \mathbb{N} \), then the following are equivalent:

(i) \(G = \bigcup_{i \in \mathbb{N}} G_i \) has linear natural orbit growth.

(ii) \(\sum_{k=1}^{\infty} t_k / s_{0k} < \infty \).

Proof. An easy induction shows that if \(j > 0 \), then

\[
 n_j = s_{0j} n_0 + \sum_{k=1}^{j-1} s_{kj} t_k + t_j
\]

and hence

\[
 1 = \frac{s_{0j}}{n_j} n_0 + \frac{s_{0j}}{n_j} \sum_{k=1}^{j} \frac{t_k}{s_{0k}}.
\]

Since \(s_{i+1} > 0 \) for all \(i \in \mathbb{N} \), it follows that \(G = \bigcup_{i \in \mathbb{N}} G_i \) has linear natural orbit growth if and only if \(a_0 = \inf_{j > 0} s_{0j}/n_j > 0 \). The result follows. \(\square \)

Remark 3.17. Since \(e_k \leq t_k \), it follows that if \(s_{i+1} > 0 \) for all \(i \in \mathbb{N} \) and \(G = \bigcup_{i \in \mathbb{N}} G_i \) has linear natural orbit growth, then \(G = \bigcup_{i \in \mathbb{N}} G_i \) is an almost diagonal limit.

Proof of Lemma 3.15. Another easy induction shows that if \(j > i \), then

\[
 t_{ij} = \sum_{k=i+1}^{j-1} s_{kj} t_k + t_j
\]

It follows that

\[
 \frac{t_{ij}}{n_j} = \frac{s_{0j}}{n_j} \sum_{k=i+1}^{j} \frac{t_k}{s_{0k}}
\]

and hence

\[
 (3.2) \quad b_i = a_0 \sum_{k=i+1}^{\infty} \frac{t_k}{s_{0k}}.
\]

Since \(\sum_{i=1}^{\infty} t_i / s_{0i} < \infty \), it follows that \(b_i \to 0 \) as \(i \to \infty \). \(\square \)

Proposition 3.18. If \(G = \bigcup_{i \in \mathbb{N}} G_i \) has linear natural orbit growth, then the action \(G \curvearrowright \Delta \) is uniquely ergodic.

Proof. Since any probability measure \(\mu \) on \(\Delta \) is uniquely determined by \(\mu \upharpoonright \mathcal{A} \), it is already clear that there exists at most one \(G \)-invariant ergodic probability measure on \(\Delta \). Hence it is enough to show that the function \(m_0 \), defined by (3.1), can be extended to a \(G \)-invariant probability measure on \(\Delta \). Since \(a_k = a_0 / s_{0k} \), equation (3.2) implies that

\[
 b_i = a_0 \sum_{k=i+1}^{\infty} \frac{t_k}{s_{0k}} = \sum_{k=i+1}^{\infty} t_k a_k;
\]
and it follows easily that m_0 is σ-additive. Thus m_0 is a pre-measure on A. By the Carathéodory Extension Theorem, m_0 can be extended to a probability measure m on Δ; and since m_0 is G-invariant, it follows that m is also G-invariant. □

Applying Corollary 2.5, if $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth, then the action $G \curvearrowright (\Delta^r, m^{\text{gr}})$ is also ergodic for all $r \geq 2$, and hence the corresponding stabilizer distribution ν_r is an ergodic IRS of G. We are now in a position to state the second of the main results of this paper.

Theorem 3.19. If $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth, then the ergodic IRSs of G are $\{\delta_1, \delta_G\} \cup \{\nu_r \mid r \in \mathbb{N}^+\}$.

In particular, if $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth, then the collection $\{\nu_r \mid r \in \mathbb{N}^+\}$ is independent of the particular expression of G as a limit with linear natural orbit growth. From now on, whenever $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth, then we will refer to $G \curvearrowright (\Delta, m^{\text{gr}})$ as the canonical ergodic action. The following observation will be used repeatedly throughout this paper.

Proposition 3.20. If $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth and $r \geq 1$, then G_x is self-normalizing for m^{gr}-a.e. $\bar{x} \in \Delta^r$.

Proof. Let $\bar{x} = (x_1, \cdots, x_r) \in \Delta^r$ and let

$$G_x = \{ g \in G \mid g \cdot x_\ell = x_\ell \text{ for } 1 \leq \ell \leq r \}$$

be the corresponding stabilizer. Then it is easily checked that

$$\text{Fix}_A(G_x) = \{ x_\ell \mid 1 \leq \ell \leq r \}.$$

Suppose that $g \in N_G(G_x) \setminus G_x$. Then g permutes the elements of the set $\text{Fix}_A(G_x)$ nontrivially, and hence there exist $1 \leq \ell < m \leq r$ such that $g \cdot x_\ell = x_m$. But this implies that the sequences x_ℓ and x_m are eventually equal; and it is clear that for m^{gr}-a.e. $\bar{x} = (x_1, \cdots, x_r) \in \Delta^r$, if $1 \leq \ell < m \leq r$, then x_ℓ and x_m are not eventually equal. Hence G_x is self-normalizing for m^{gr}-a.e. $\bar{x} \in \Delta^r$. □

We are now ready to present the proof of Theorem 1.6. So suppose that G is an $L(\text{Alt})$-group with $G \not\cong \text{Alt}(\mathbb{N})$ and that $G \curvearrowright (Z, \mu)$ is an ergodic action. Let ν be the corresponding stabilizer distribution and let $\chi(g) = \mu(\text{Fix}_Z(g))$ be the associated character. By Theorem 3.7, if G does not have almost diagonal type, then $\nu \in \{\delta_1, \delta_G\}$ and so $\chi \in \{\chi_{\text{reg}}, \chi_{\text{con}}\}$, and it follows that χ is indecomposable. Hence we can suppose that G has almost diagonal type; and so Theorem 1.6 is a consequence of the following result.

Theorem 3.21. If $G \not\cong \text{Alt}(\mathbb{N})$ has almost diagonal type and $G \curvearrowright (Z, \mu)$ is an ergodic action, then the associated character $\chi(g) = \mu(\text{Fix}_Z(g))$ is indecomposable.

Proof. Let ν be the stabilizer distribution of the ergodic action $G \curvearrowright (Z, \mu)$. Then, as above, we can suppose that $\nu \neq \delta_1, \delta_G$. Express $G = \bigcup_{i \in \mathbb{N}} G_i$ as an almost diagonal limit of finite alternating groups $G_i = \text{Alt}(\Delta_i)$. Let $\tau = \sum_{i=1}^{\infty} \frac{1}{s_i} < \infty$. By Remark 3.5, since $G \not\cong \text{Alt}(\mathbb{N})$, we can suppose that $s_{i+1} > 1$ for all $i \in \mathbb{N}$. Of course, since G_i is simple, this implies that if $1 \neq G_1' \leq G_i$, then G_1' also has at least 2 nontrivial orbits on Δ_{i+1}.

First suppose that $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth. Then, applying Theorem 3.19, it follows that $\nu = \nu_r$ is the stabilizer distribution of the ergodic action $G \curvearrowright (\Delta^r, m^{\text{gr}})$ for some $r \geq 1$, where $G \curvearrowright (\Delta, m)$ is the canonical ergodic
action. By Proposition 3.20, \(G_2 \) is self-normalizing for \(m^{\otimes r} \)-a.e. \(\bar{x} \in \Delta^r \), and this implies that \(G_2 \) is self-normalizing for \(\mu \)-a.e. \(z \in Z \). Applying Vershik [20], it follows that \(\chi \) is indecomposable.

Hence we can suppose that \(G = \bigcup_{i \in \mathbb{N}} G_i \) has sublinear natural orbit growth. For each \(\ell \in \mathbb{N} \), define the subsets \(\Delta^\ell_j \subseteq \Delta_j \) and subgroups \(G(\ell)_j = \text{Alt}(\Delta^\ell_j) \) for \(j \geq \ell \) inductively as follows:

- \(\Delta^\ell_j = \Delta_\ell; \)
- \(\Delta^\ell_{j+1} = \Delta_{j+1} \setminus \text{Fix}_{\Delta_{j+1}}(G(\ell)_j) \).

Since \(G(\ell)_j \) has at least 2 nontrivial orbits on \(\Delta_{j+1} \), it follows that each \(G(\ell)_j \) is strictly contained in \(G(\ell)_{j+1} \). Let \(G(\ell) = \bigcup_{j \leq s \in \mathbb{N}} G(\ell)_j \). Then it is easily checked that if \(\ell < m \), then \(G(\ell) \leq G(m) \) and that \(G = \bigcup_{\ell \in \mathbb{N}} G(\ell) \).

Claim 3.22. \(G(\ell) \) has linear natural orbit growth for all \(\ell \in \mathbb{N} \).

Proof. For each \(i \geq \ell \), let \(n^\ell_i = |\Delta^\ell_i| \) and let \(s^\ell_{i+1} \) be the number of natural \(G(\ell)_i \)-orbits on \(\Delta^\ell_{i+1} \). Then clearly \(s^\ell_{i+1} \geq s_{i+1} \) and

\[
n^\ell_{i+1} \leq s^\ell_{i+1} n^\ell_i + e_{i+1}.
\]

If \(\ell \leq i < j \), let \(s^\ell_{ij} = s^\ell_{i+1} \cdots s^\ell_j \). Then it follows inductively that

\[
n^\ell_j \leq s^\ell_{ij} n^\ell_i + \sum_{k=i+1}^j s^\ell_{kj} e_k
\]

\[= s^\ell_{ij} n^\ell_i + s^\ell_{0j} \sum_{k=i+1}^j e_k/s^\ell_{0k}.\]

Since \(s^\ell_{0k} \geq s_{0k} \), it follows that

\[
n^\ell_j \leq s^\ell_{ij} n^\ell_i + s^\ell_{0j} \sum_{k=i+1}^j e_k/s_{0k} \leq s^\ell_{ij} n^\ell_i + s^\ell_{0j} \tau = s^\ell_{ij} (n^\ell_i + s^\ell_{0j} \tau).
\]

Thus \(n^\ell_j / s^\ell_{ij} \leq n^\ell_i + s^\ell_{0j} \tau \) and it follows that \(\lim_{j \to \infty} s^\ell_{ij} / n^\ell_j > 0 \). \(\square \)

In particular, it follows that each \(G(\ell) \) is a proper subgroup of \(G \). For each \(\ell \in \mathbb{N} \), let \(G(\ell) \cap (\Delta_\ell, m^\ell_\ell) \) be the canonical ergodic action and for each \(r \in \mathbb{N}^+ \), let \(\nu(\ell)_r \) be the stabilizer distribution of \(G(\ell) \cap (\Delta^r, m^\ell_\ell) \). Let \(\nu_{G(\ell)} \) be the IRS of \(G(\ell) \) arising from the \(G(\ell) \)-equivariant map \(\text{Sub}_G \to \text{Sub}_{G(\ell)} \) defined by \(H \mapsto H \cap G(\ell) \). Then Theorem 3.19 implies that there exist \(\alpha(\ell), \beta(\ell), \gamma(\ell)_r \in [0, 1] \) with \(\alpha(\ell) + \beta(\ell) + \sum_{r \in \mathbb{N}^+} \gamma(\ell)_r = 1 \) such that

\[
\nu_{G(\ell)} = \alpha(\ell) \delta_1 + \beta(\ell) \delta_{G(\ell)} + \sum_{r \in \mathbb{N}^+} \gamma(\ell)_r \nu(\ell)_r.
\]

Recall that \(\nu \neq \delta_1, \delta_G \). Thus (3.3), together with Proposition 3.20, implies that for \(\nu \)-a.e. \(H \in \text{Sub}_G \), there exists an integer \(\ell_H \) such that \(H \cap G(\ell) \) is a (proper) self-normalizing subgroup of \(G(\ell) \) for all \(\ell \geq \ell_H \), and this implies that \(H \) is a self-normalizing subgroup of \(G \). It follows that \(G_2 \) is self-normalizing for \(\mu \)-a.e. \(z \in Z \); and applying Vershik [20] once again, this implies that \(\chi \) is indecomposable. \(\square \)

For later use, we record the following recognition theorem, which will play a key role in the proofs of Theorems 3.7 and 3.19.
Theorem 3.23. Suppose that $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth and that ν is an ergodic IRS of G. If there exists a constant $s \geq 1$ such that for ν-a.e. $H \in \text{Sub}_G$, for all but finitely many $i \in \mathbb{N}$, there exists an integer $1 \leq r_i \leq s$ and a subset $\Sigma_i \in [\Delta_i]^r_i$ such that $H_i = H \cap G_i = \text{Alt}(\Delta_i \setminus \Sigma_i)$, then $\nu = \nu_r$ for some $1 \leq r \leq s$.

Proof. Recall that $\Delta_{i+1} = (\Delta_i \times s_{i+1}) \cup \{ \alpha_{t+1}^i \mid 0 \leq t < s_{i+1} \}$. For each $i < j$, let

$$\Phi_{ij} = \Delta_i \times s_{i+1} \times \cdots \times s_j.$$

Thus Φ_{ij} is the union of the “obvious” natural G_i-orbits on Δ_j. For each $i \in \mathbb{N}$ and $1 \leq t \leq s$, let p_{it} be the ν-probability that there exists $\Sigma_i \in [\Delta_i]^t$ such that $H_i = \text{Alt}(\Delta_i \setminus \Sigma_i)$. By Lemma 3.15, since G has linear natural orbit growth, we have that $\lim_{j \to \infty} b_j = 0$, where

$$b_j = \lim_{k \to \infty} \frac{(n_k - s_j n_j)}{n_k}.$$

It follows that for all $i \in \mathbb{N}$, if $j > i$ is sufficiently large, then b_j is sufficiently small so that there exists $k > j$ such that

$$\sum_{t=1}^{t=s} P_{kt} \left[1 - \left(\frac{t_k n_j}{n_k} \right) \right] \leq \left(\frac{1}{2} \right)^{i+1}.$$

Hence we can inductively define a sequence of integers k_i such that

$$\sum_{t=1}^{t=s} P_{kt+i} \left[1 - \left(\frac{t_k n_j}{n_k} \right) \right] \leq \left(\frac{1}{2} \right)^{i+1}.$$

Applying the Borel-Cantelli Lemma, it follows that for ν-a.e. $H \in \text{Sub}_G$, for all but finitely many $i \in \mathbb{N}$, there exists a subset $\Sigma_{k_i+1} \subseteq \Phi_{k_i k_i+1}$ of cardinality r_{k_i+1} such that $H_{k_i+1} = \text{Alt}(\Delta_{k_i+1} \setminus \Sigma_{k_i+1})$. Furthermore, by ergodicity, there exists a constant $1 \leq r \leq s$ such that $r = \lim \inf r_{k_i}$ for ν-a.e. $H \in \text{Sub}_G$. Suppose that $H \in \text{Sub}_G$ is such a ν-generic subgroup and that $\Sigma_{k_i+1} \subseteq \Phi_{k_i k_i+1}$ is a subset of cardinality $r_{k_i+1} = r$ such that $H_{k_i+1} = \text{Alt}(\Delta_{k_i+1} \setminus \Sigma_{k_i+1})$. Using the fact that $\Sigma_{k_i+1} \subseteq \Phi_{k_i k_i+1}$ is contained in the union of the natural G_i-orbits on Δ_{k_i+1}, it follows that there exists a subset $\Sigma_{k_i} \subseteq \Delta_{k_i}$ such that $r_{k_i} \leq |\Sigma_{k_i}| \leq |\Sigma_{k_i+1}| = r$ and $\text{Alt}(\Delta_{k_i} \setminus \Sigma_{k_i}) \subseteq H_{k_i}$. Consequently, it follows that $k_i = r$ for all but finitely many $i \in \mathbb{N}$.

Let S_r be the standard Borel space of subgroups $H \leq G$ such that for all but finitely many $i \in \mathbb{N}$, there is a subset $\Sigma_{k_i} \in [\Delta_{k_i}]^r$ such that $H_{k_i} = \text{Alt}(\Delta_{k_i} \setminus \Sigma_{k_i})$. Then we have shown that the ergodic IRS ν concentrates on S_r. Since the stabilizer distribution ν_r of $G \rtimes (\Delta^r, m_0^\otimes r)$ also concentrates on S_r, the following claim completes the proof of Theorem 3.23.

Claim 3.24. The action $G \rtimes S_r$ is uniquely ergodic.

(The following argument is essentially identical to the proof of Thomas-Tucker-Drob [18, Proposition 6.8].) In order to prove Claim 3.24, it is enough to show that if μ is an ergodic probability measure on S_r and $B \subseteq \text{Sub}_G$ is a basic clopen subset, then $\mu(B) = \nu_r(B)$. Let $B = \{ H \in \text{Sub}_G \mid H \cap G_\ell = L \}$, where $\ell \in \mathbb{N}$ and $L \leq G_\ell$.
is a subgroup. By the Pointwise Ergodic Theorem, there exists $H \in \mathcal{S}_r$ such that
\[
\mu(B) = \lim_{i \to \infty} \frac{|\{ g \in G_i \mid gHg^{-1} \in B \}|}{|G_i|} = \lim_{i \to \infty} \frac{|\{ g \in G_i \mid gH_i g^{-1} \cap G_{\ell} = L \}|}{|G_i|} = \lim_{i \to \infty} \frac{|\{ g \in G_{k_i} \mid gH_{k_i} g^{-1} \cap G_{\ell} = L \}|}{|G_{k_i}|},
\]
where $H_i = H \cap G_i$. Similarly, there exists $H' \in \mathcal{S}_r$ such that
\[
\nu_r(B) = \lim_{i \to \infty} \frac{|\{ g \in G_{k_i} \mid gH'_{k_i} g^{-1} \cap G_{\ell} = L \}|}{|G_{k_i}|},
\]
where $H'_i = H' \cap G_i$. Since $H, H' \in \mathcal{S}_r$, there exists $i_0 \in \mathbb{N}$ such that H_{k_i} and H'_{k_i} are conjugate in G_{k_i} for all $i \geq i_0$ and this implies that
\[
\lim_{i \to \infty} \frac{|\{ g \in G_{k_i} \mid gH_{k_i} g^{-1} \cap G_{\ell} = L \}|}{|G_{k_i}|} = \lim_{i \to \infty} \frac{|\{ g \in G_{k_i} \mid gH'_{k_i} g^{-1} \cap G_{\ell} = L \}|}{|G_{k_i}|}.
\]
\[\square\]

Finally recall that if G is a countable group and $\chi \in \mathcal{F}(G)$ is a character, then the corresponding proper 2-sided ideal I_χ of the group ring $\mathbb{C}G$ is defined by
\[I_\chi = \{ x \in \mathbb{C}G \mid \chi(gx) = 0 \text{ for all } g \in G \}.
\]
As explained in Section 1, the following result exhibits a counterexample to Zalesskii [24, Conjecture 1.24] and also answers Zalesskii [23, Question 5.12].

Proposition 3.25. There exists an $L(\text{Alt})$-group G such that:

(i) The augmentation ideal $\omega(\mathbb{C}G)$ is the only nontrivial proper 2-sided ideal of $\mathbb{C}G$.

(ii) G has infinitely many nontrivial ergodic IRSs.

(iii) G has infinitely many indecomposable characters χ such that $I_\chi = \{ 0 \}$.

Proof. Define $G_i = \text{Alt}(\Delta_i)$ and s_{i+1} inductively as follows.

- $\Delta_0 = \{ 0, 1, 2, 3, 4 \}$;
- $\Delta_{i+1} = \{ \sigma \upharpoonright k \mid \sigma \in \Delta_i, 0 \leq k < s_{i+1} \} \cup G_i$, where $s_{i+1} = 2^i |G_i|$;

and the embedding $\varphi_i : \text{Alt}(\Delta_i) \to \text{Alt}(\Delta_{i+1})$ is defined by

- $\varphi_i(g)(\sigma \upharpoonright k) = g(\sigma) \upharpoonright k$ for each $\sigma \in \Delta_i$ and $0 \leq k < s_{i+1}$;
- $\varphi_i(g)(h) = gh$ for each $h \in G_i$.

Let $G = \bigcup_{i \in \mathbb{N}} G_i$. By construction, if $i < j$, then G_i has a regular orbit on Δ_j.

Hence, by Zalesskii [23, Lemma 14], it is impossible to express G as a diagonal limit of finite alternating groups; and so, by Zalesskii [23, Theorem 1], the augmentation ideal is the only nontrivial proper 2-sided ideal of $\mathbb{C}G$. Also s_{i+1} is clearly the number of natural orbits of G_i on Δ_{i+1}. Furthermore, an easy induction shows that if $i < j$, then
\[|\Delta_j| = s_{ij} |\Delta_i| + \sum_{k=i}^{j-2} s_{k+1} |G_k| + |G_{j-1}|\]
and hence
\[
n_{ij} = |\Delta_i| + \sum_{k=1}^{j-1} \frac{s_{k+1}}{s_{ij}} |G_{j-1}| \frac{|G_j|}{s_{ij}}
\]
\[
\leq |\Delta_i| + \sum_{k=1}^{j-1} \frac{|G_{j-1}|}{s_{k+1}}
\]
\[
= |\Delta_i| + \sum_{k=1}^{j-1} \frac{1}{2^k} < |\Delta_i| + 2.
\]

It follows that \(a_i = \lim_{j \to \infty} s_{ij}/n_{ij} > 0 \) and thus \(G \) has linear natural orbit growth. Let \(G \subset (\Delta, m) \) be the canonical ergodic action. Then for each \(r \geq 1 \),
\[
\chi_r(g) = m^{\otimes r}(\text{Fix}_{\Delta_r}(g))
\]
is an indecomposable character of \(G \); and it is easily checked that if \(r \neq s \), then \(\chi_r \neq \chi_s \). Since \(\chi_r \neq \chi_{\text{con}} \), it follows that \(I_{\chi_r} \neq \omega(CG) \) and so \(I_{\chi_r} = \{0\} \).

4. Sublinear natural orbit growth

In this section, we will discuss the ergodic IRSs of the almost diagonal limits \(G = \bigcup_{i \in \mathbb{N}} G_i \) with sublinear natural orbit growth. Examining the list of the ergodic IRSs in the statement of Theorem 3.19, we see that if \(G = \bigcup_{i \in \mathbb{N}} G_i \) has linear natural orbit growth and \(\nu \neq \delta_1, \delta_G \) is an ergodic IRS, then \(\nu \) concentrates on the subspace of subgroups \(H \in \text{Sub}_G \) such that there exists a fixed integer \(r \geq 1 \) such that for all but finitely many \(i \in \mathbb{N} \), there exists a subset \(\Sigma_i \subseteq \Delta_i \) of cardinality \(r \) such that:

- \(H \cap G_i = \text{Alt}(\Delta_i \setminus \Sigma_i) \); and
- \(\Sigma_{i+1} \) is contained in the union of the natural \(G_i \)-orbits on \(\Delta_i \).

As is suggested by the proof of Theorem 3.21, a similar result holds if \(G = \bigcup_{i \in \mathbb{N}} G_i \) is an almost diagonal limit with sublinear natural orbit growth, except that in this case:

- \(d_i = |\Sigma_i| \to \infty \) as \(i \to \infty \); and
- \(\Sigma_{i+1} \) is contained in the union of the natural and trivial \(G_i \)-orbits on \(\Delta_{i+1} \).

In order to simplify the notation, we will work with the \(G \)-invariant probability measures on the space of corresponding sequences of subsets \((\Sigma_i) \) rather than directly with the IRSs on \(\text{Sub}_G \). Of course, such a measure can be identified with a corresponding IRS via the map
\[
\sigma = (\Sigma_{i}) \mapsto H(\sigma) = \bigcup \text{Alt}(\Delta_i \setminus \Sigma_i).
\]

Throughout this section, we will suppose that \(G = \bigcup_{i \in \mathbb{N}} G_i \) is an almost diagonal limit of the finite alternating groups \(G_i = \text{Alt}(\Delta_i) \). Let \(\tau = \sum_{i=1}^{\infty} e_i/s_{i0} < \infty \).

Initially we will not assume that \(G = \bigcup_{i \in \mathbb{N}} G_i \) has sublinear natural orbit growth. Let \(\Sigma \) consist of the infinite sequences of sets \((\Sigma_i)_{i \geq i_0} \) for some \(i_0 \in \mathbb{N} \) such that the following conditions are satisfied for all \(i \geq i_0 \):

- \(\Sigma_i \subseteq \Delta_i \);
- \(\text{Alt}(\Delta_{i+1} \setminus \Sigma_{i+1}) \cap G_i = \text{Alt}(\Delta_i \setminus \Sigma_i) \);
- \(\Sigma_{i+1} \) is contained in the union of the natural and trivial \(G_i \)-orbits on \(\Delta_{i+1} \); and
- if \(i_0 > 0 \), then \(\Sigma_{i_0} \) is not contained in the union of the natural and trivial \(G_{i_0-1} \)-orbits on \(\Delta_{i_0} \).
Then the natural action of G on Σ corresponds to the conjugacy action of G on the subspace of subgroups $\{ \bigcup_{i \geq i_0} \text{Alt}(\Delta_i \setminus \Sigma_i) \mid (\Sigma_i)_{i \geq i_0} \in \Sigma \}$.

Remark 4.1. For later use, note that if $(\Sigma_i)_{i \geq i_0} \in \Sigma$ and $i_0 \leq i < j$, then $|\Sigma_i| \leq |\Sigma_j|$; and if $|\Sigma_i| = |\Sigma_j|$, then Σ_j is contained in the union of the natural G_i-orbits on Δ_j.

Fix some $\beta \in (0, \infty)$. Let $\beta_0 = \beta$ and let $\gamma_0 = \beta_0 \tau = \beta_0 \sum_{i=1}^{\infty} e_i/s_{0i}$. For each $i \in \mathbb{N}$, let

1. $\beta_{i+1} = \beta_i/s_{i+1} = \beta_0/s_{0i+1}$; and
2. $\gamma_{i+1} = \gamma_i - \beta_i e_{i+1}/s_{i+1} = \beta_0 \sum_{j=i+2}^{\infty} e_j/s_{0j}$.

For each $i \in \mathbb{N}$ and $X \subseteq \Delta_i$, let $\Sigma(X)$ be the set of sequences $(\Sigma_j)_{j \geq j_0} \in \Sigma$ for some $j_0 \leq i$ such that $\Sigma_i = X$. Then the sets $\Sigma(X)$ form a clopen basis for a locally compact topology on Σ. First define μ_β on the basic clopen sets by

\[
\mu_\beta(\Sigma(X)) = \frac{1}{e^{\beta_0 n_0 + \gamma_0}} (e^{\beta_0} - 1)^{|X|}.
\]

Note that (4.2) can be rewritten as:

\[
\mu_\beta(\Sigma(X)) = \frac{1}{e^{\beta_0 n_0 + \gamma_0}} \left(1 - \frac{1}{e^{\beta_0}}\right)^{|X|} \left(\frac{1}{e^{\beta_0}}\right)^{n_0 - |X|}.
\]

Remark 4.2. Consider the special case when $G = \bigcup_{i \in \mathbb{N}} G_i$ is a diagonal limit. Then each $\gamma_i = 0$; and for each subset $X \subseteq \Delta_i$, the μ_β-probability that $\Sigma_i = X$ is the probability of the event that X is the set of selected points given by the binomial distribution when the probability of selecting each point $x \in \Delta_i$ is $p_i = 1 - (1/e^{\beta_0})$. In the general case, it is necessary to introduce the “correction factor” $1/e^{\gamma_0}$.

Let \mathcal{A} be the algebra of Borel subsets of Σ generated by the basic clopen sets $\Sigma(X)$. Note that if $A \in \mathcal{A}$, then there exists $i \in \mathbb{N}$ and $S \subseteq \mathcal{P}(\Delta_i)$ such that either:

1. $A = \bigcup \{ \Sigma(X) \mid X \in S \}$ or
2. $A = \bigcup \{ \Sigma(X) \mid X \in S \} \cup (\Sigma \setminus B_i)$, where $B_i = \bigcup \{ \Sigma(X) \mid X \in \mathcal{P}(\Delta_i) \}$.

We next extend μ_β to the algebra \mathcal{A} by defining

\[
\mu_\beta(A) = \left\{ \begin{array}{ll}
\sum_{X \in S} \mu_\beta(\Sigma(X)), & \text{if (a) holds;} \\
\sum_{X \in S} \mu_\beta(\Sigma(X)) + (1 - (1/e)^{\gamma_0}), & \text{if (b) holds.}
\end{array} \right.
\]

We claim that μ_β is a pre-measure on \mathcal{A}. Of course, we must first check that μ_β is well-defined. To see this, fix some $i \in \mathbb{N}$ and for each $X \subseteq \Delta_i$, let E_X be the collection of subsets $Y \subseteq \Delta_{i+1}$ such that $\text{Alt}(\Delta_{i+1} \setminus Y) \cap G_i = \text{Alt}(\Delta_i \setminus X)$ and Y is contained in the union of the natural and trivial G_i-orbits on Δ_{i+1}. We will prove by induction on $\ell = |X|$ that $\mu_\beta(\Sigma(X)) = \sum_{Y \in E_X} \mu_\beta(\Sigma(Y))$. First suppose that $\ell = 0$. Then

\[
\mu_\beta(\Sigma(\emptyset)) = \frac{1}{e^{\beta_0 n_0 + \gamma_0}}.
\]
Also $Y \in E_0$ if and only if Y is a subset of the trivial G_i-orbits on Δ_{i+1}. Thus

$$\mu_\beta(E_0) = \frac{1}{e^{\beta_{i+1} n_i + \gamma_{i+1}}} \sum_{t=0}^{f_{i+1}} \binom{f_{i+1}}{t} (e^{\beta_{i+1}} - 1)^t$$

By definition, we have that

$$\mu_\beta = \frac{1}{e^{\beta_{i+1} n_i + \gamma_{i+1}}} e^{\beta_{i+1} f_{i+1}}$$

$$= \frac{1}{e^{\beta_{i+1} (n_i + f_{i+1}) + \gamma_{i+1}}}.$$

Thus

$$\mu_\beta(\Sigma(X)) = \frac{1}{e^{\beta_{i+1} n_i + \gamma_i} (e^{\beta_i} - 1)^{\ell+1}}.$$

Write $X = X_0 \cup \{x\}$, where $|X_0| = \ell$. Then each $Y \in E_X$ can be expressed uniquely as a disjoint union $Y = Y_0 \cup Z$ such that $Y_0 \in E_{X_0}$, $Z \in E_{\{x\}}$ and Z is contained in the union of the natural orbits of G_i on Δ_{i+1}. Thus

$$\mu_\beta(E_X) = \sum_{Y_0 \in E_{X_0}} \mu_\beta(\Sigma(Y_0)) \sum_{t=1}^{s_{i+1}} \binom{s_{i+1}}{t} (e^{\beta_i + 1} - 1)^t$$

$$= \frac{1}{e^{\beta_{i+1} n_i + \gamma_i}} (e^{\beta_i} - 1)^t (e^{\beta_{i+1} s_{i+1}} - 1)$$

$$= \frac{1}{e^{\beta_{i+1} n_i + \gamma_i}} (e^{\beta_i} - 1)^{\ell+1}.$$

Thus $\mu_\beta(A)$ is well-defined if $A = \bigsqcup \{\Sigma(X) \mid X \in S\}$ for some $S \subseteq \mathcal{P}(\Delta_i)$. Also, since

$$\mu_\beta(B_i) = \frac{1}{e^{\beta_{i+1} n_i + \gamma_i}} \sum_{\ell=0}^{n_i} \binom{n_i}{\ell} (e^{\beta_i} - 1)^\ell = \frac{1}{e^{\gamma_i}},$$

it follows that $\mu_\beta(A)$ is well-defined if $A = \bigsqcup \{\Sigma(X) \mid X \in S\} \cup (\Sigma \setminus B_i)$; and it also follows that $\mu_\beta(\Sigma) = 1$. Finally to check that μ_β is σ-additive, it is enough to show that for all $i \in \mathbb{N}$,

$$\sum_{j=1}^{\infty} \mu_\beta(B_{j+1} \setminus B_j) = \mu(\Sigma \setminus B_i) = 1 - (1/e)^{\gamma_i}.$$

To see this, note that if $k > i$, then

$$\sum_{j=i}^{k} \mu_\beta(B_{j+1} \setminus B_j) = \sum_{j=i}^{k} [(1/e)^{\gamma_{j+1}} - (1/e)^{\gamma_j}] = (1/e)^{\gamma_{k+1}} - (1/e)^{\gamma_i};$$

and since $\gamma_{k+1} = \beta_0 \sum_{j=k+1}^{\infty} e_{j+1}/s_{0j+1} \rightarrow 0$ as $k \rightarrow \infty$, it follows that

$$\sum_{j=i}^{k} \mu_\beta(B_{j+1} \setminus B_j) \rightarrow 1 - (1/e)^{\gamma_i}.$$
as \(k \to \infty \). This completes the proof that \(\mu_\beta \) is a pre-measure on \(\mathcal{A} \). Clearly \(\mu \) is \(G \)-invariant. Hence, by the Carathéodory Extension Theorem, \(\mu_\beta \) can be extended to a \(G \)-invariant probability measure \(\mu_\beta \) on \(\Sigma \).

Theorem 4.3. If \(G = \bigcup_{i \in \mathbb{N}} G_i \) is an almost diagonal limit of finite alternating groups and \(\beta \in (0, \infty) \), then the action \(G \curvearrowright (\Sigma, \mu_\beta) \) is ergodic if and only if \(G = \bigcup_{i \in \mathbb{N}} G_i \) has sublinear natural orbit growth.

We will begin with the easy direction in Theorem 4.3.

Proposition 4.4. If \(G = \bigcup_{i \in \mathbb{N}} G_i \) has linear natural orbit growth, then the action \(G \curvearrowright (\Sigma, \mu_\beta) \) is not ergodic.

Proof. If \(G = \bigcup_{i \in \mathbb{N}} G_i \) has linear natural orbit growth, then

\[
\lim_{i \to \infty} \beta_i n_i + \gamma_i = \lim_{i \to \infty} \frac{\beta_i}{\sigma_i} n_i + \gamma_i = \frac{\beta_0}{a_0} > 0.
\]

Hence if \(\sigma \in \Sigma \) is the sequence with constant value \(\emptyset \) and \(X_0 = \{ \sigma \} \), then

\[
\mu_\beta(X_0) = \lim_{i \to \infty} \frac{1}{e^{\beta_i n_i + \gamma_i}} = \frac{1}{e^{\beta_0/a_0}}.
\]

Since \(X_0 \) is a \(G \)-invariant Borel subset with \(0 < \mu_\beta(X_0) < 1 \), it follows that the action \(G \curvearrowright (\Sigma, \mu_\beta) \) is not ergodic. \(\square \)

Remark 4.5. If \(G = \bigcup_{i \in \mathbb{N}} G_i \) has linear natural orbit growth, then we can calculate the ergodic decomposition of the action \(G \curvearrowright (\Sigma, \mu_\beta) \) as follows. Let \(\lambda = \beta_0/a_0 \). For each \(r \geq 0 \), if \(X_r \subseteq \Sigma \) is the Borel subset consisting of the sequences \((\Sigma_j)_{j \geq j_0} \) such that \(|\Sigma_j| = r \) for all but finitely many \(j \geq j_0 \), then

\[
\mu_\beta(X_r) = \frac{1}{e^\lambda} \frac{\lambda^r}{r!}.
\]

To see this, note that

\[
\mu_\beta(X_1) = \lim_{j \to \infty} \frac{1}{\beta_j n_j + \gamma_j} \cdot n_j (e^{\beta_j n_j + \gamma_j} - 1) = \frac{1}{e^{\lambda}} \cdot \lambda,
\]

and that if \(r \geq 2 \), then

\[
\mu_\beta(X_r) = \lim_{j \to \infty} \frac{1}{\beta_j n_j + \gamma_j} \binom{n_j}{r} \left(e^{\beta_j n_j + \gamma_j} - 1\right)^r = \lim_{j \to \infty} \frac{1}{r!} \binom{n_j}{r} \left(e^{\beta_j n_j + \gamma_j} - 1\right)^r = \frac{1}{e^\lambda} \frac{\lambda^r}{r!}.
\]

If we identify \(\mu_\beta \) with the corresponding IRS of \(G \), then \(X_r \) corresponds to the IRS \(\nu_r \) of Theorem 3.19. Thus, writing \(\delta_0 = \nu_0 \), we obtain the ergodic decomposition:

\[
\mu_\beta = \frac{1}{e^\lambda} \sum_{r=0}^{\infty} \frac{\lambda^r}{r!} \nu_r.
\]

For the remainder of this section, we will suppose that \(G = \bigcup_{i \in \mathbb{N}} G_i \) has sublinear natural orbit growth. Here the analysis splits into two cases depending on whether or not \(G \cong \text{Alt}(\mathbb{N}) \); equivalently, on whether or not \(s_{i+1} = 1 \) and \(e_{i+1} = 0 \) for all but finitely many \(i \in \mathbb{N} \). First suppose that \(G \cong \text{Alt}(\mathbb{N}) \). In order to simplify notation, we will suppose that \(s_{i+1} = 1 \) and \(e_{i+1} = 0 \) for all \(i \in \mathbb{N} \). And we can also suppose
that $G = \text{Alt}(\mathbb{N})$ and that each $\Delta_i = \{0, 1, \cdots, n_i - 1\}$. Let $\alpha_0 = 1 - (1/e^{\beta_i})$ and $\alpha_1 = 1/e^{\beta_i}$. Let p_α be the probability measure on $\{0, 1\}$ defined by $p_\alpha(\ell) = \alpha_\ell$ and let μ_α be the corresponding product probability measure on $2^\mathbb{N}$. Then $\text{Alt}(\mathbb{N})$ acts ergodically on $(2^\mathbb{N}, \mu_\alpha)$ via the shift action $(g \cdot \xi)(n) = \xi(g^{-1}(n))$. Let $\xi_i : (2^\mathbb{N})_{\geq 0} \to \text{Alt}(\mathbb{N})$ be the Alt(\mathbb{N})-equivariant map from $2^\mathbb{N}$ to Σ defined by

$$\Sigma_i = \{k \in \Delta_i \mid \xi(k) = 0\}.$$

Then $\mu_\beta = (f_\alpha)_* \mu_\alpha$ and it follows that the action $\text{Alt}(\mathbb{N}) \acts \Sigma$ is ergodic. (Using the notation of Section 9, the stabilizer distribution corresponding to μ_β is the ergodic IRS $\nu_{\text{erg}}^\mathbb{N}$ of $\text{Alt}(\mathbb{N})$.)

Thus we can suppose that $G \not\supseteq \text{Alt}(\mathbb{N})$ and hence that $\lim_{i \to \infty} \beta_i = 0$. In order to prove that $G \acts \Sigma$ is ergodic, it is enough to find a G-invariant Borel subset $\Sigma_\beta \subseteq \Sigma$ such that $\mu_\beta(\Sigma_\beta) = 1$ and such that if m is an ergodic probability measure on Σ_β, then $m(\Sigma(X) \cap \Sigma_\beta) = \mu_\beta(\Sigma(X))$.

for all $X \in \bigcup_{i \in \mathbb{N}} \mathcal{P}(\Delta_i)$. The definition of Σ_β will involve the following sequence of random variables.

Definition 4.6. For each $i \in \mathbb{N}$, let d_i be the random variable on Σ defined by

$$d_i((\Sigma_j)_{j \geq n_i}) = \begin{cases} |\Sigma_i|, & \text{if } i \geq j_0; \\ 0, & \text{otherwise.} \end{cases}$$

In preparation for an application of Chebyshev’s inequality, we will next compute the expectation $\mathbb{E}[d_i]$ and the variance $\text{Var}(d_i)$ of the random variable d_i. Here we will make use of the observation that modulo the “correction factor” $1/e^{\gamma_i}$, the probability that $\Sigma_i = X$ is that given by the binomial distribution when the probability of selecting each point $x \in \Delta_i$ is $p_i = 1 - (1/e^{\beta_i})$.

Lemma 4.7. $\mathbb{E}[d_i] = e^{-\gamma_i}(1 - e^{-\beta_i})n_i$.

Proof. Using equation (4.3), we see that

$$\mathbb{E}[d_i] = e^{-\gamma_i}n_ip_i = e^{-\gamma_i}(1 - e^{-\beta_i})n_i.$$

\qed

Lemma 4.8. $\text{Var}(d_i) = (e^{\gamma_i} - 1)\mathbb{E}[d_i]^2 + e^{-\beta_i}\mathbb{E}[d_i]$.

Proof. Again using equation (4.3), we see that

$$\mathbb{E}[d_i^2] = e^{-\gamma_i}[n_ip_i + n_i(n_i - 1)p_i^2]$$

and a routine computation shows that

$$\text{Var}(d_i) = \mathbb{E}[d_i^2] - \mathbb{E}[d_i]^2 = (e^{\gamma_i} - 1)\mathbb{E}[d_i]^2 + e^{-\beta_i}\mathbb{E}[d_i].$$

\qed

Proposition 4.9. There exists an increasing sequence $I = (i_k \mid k \in \mathbb{N})$ such that $\lim_{k \to \infty} d_{i_k}/\beta_i n_{i_k} = 1$ for μ_β-a.e. $(\Sigma_i)_{i \geq i_0} \in \Sigma$.

\qed
Lemma 4.8, we see that
\[E[d_i] \approx \beta_i n_i = \beta_0 \frac{n_i}{s_{0i}}. \]
In particular, since \(G \) has sublinear natural orbit growth and
\[E[d_i] \rightarrow \infty. \] Hence, letting \(\sigma(d_i) = \sqrt{\text{Var}(d_i)} \) denote the standard deviation, applying Lemma 4.8, we see that
\[(4.5) \quad \lim_{i \rightarrow \infty} \sigma(d_i)/E[d_i] = 0. \]
Combining (4.4) and (4.5), there exists an increasing sequence \(I = (i_k \mid k \in \mathbb{N}) \) such that for all \(k \in \mathbb{N} \),
(a) \((1 - 1/2^k) \beta_k n_{ik} \leq E[d_{ik}] \leq (1 + 1/2^k) \beta_k n_{ik} \) and
(b) \(\sigma(d_{ik}) \leq E[d_{ik}]/4^k. \)
Let \(E_k \) be the event that \(|d_{ik} - E[d_{ik}]| \geq E[d_{ik}]/2^k \). Applying Chebyshev’s inequality, since \(E[d_{ik}]/2^k \geq 2^k \sigma(d_{ik}) \), it follows that \(\mathbb{P}(E_k) \leq 1/4^k \). Applying the Borel-Cantelli Lemma, for \(\mu_\beta \)-a.e. \((\Sigma_{i} \mid i \geq i_0) \in \Sigma \), for all but finitely many \(k \in \mathbb{N} \),
\[(1 - 1/2^k) E[d_{ik}] \leq d_{ik} \leq (1 + 1/2^k) E[d_{ik}] \]
and hence
\[(1 - 1/2^k)^2 \beta_k n_{ik} \leq d_{ik} \leq (1 + 1/2^k)^2 \beta_k n_{ik}. \]
It follows that \(\lim_{k \rightarrow \infty} d_{ik}/\beta_k n_{ik} = 1 \) for \(\mu_\beta \)-a.e. \((\Sigma_{i} \mid i \geq i_0) \in \Sigma \).

Definition 4.10. \(\Sigma_\beta \) is the set of \((\Sigma_{i} \mid i \geq i_0) \in \Sigma \) such that \(\lim_{k \rightarrow \infty} d_{ik}/\beta_k n_{ik} = 1 \)

Since \(\mu_\beta(\Sigma_\beta) = 1 \), in order to show that \(G \cap (\Sigma, \mu_\beta) \) is ergodic, it is enough to prove the following result.

Proposition 4.11. If \(m \) is an ergodic probability measure on \(\Sigma_\beta \), then
\[m(\Sigma(X) \cap \Sigma_\beta) = \mu_\beta(\Sigma(X)) \]
for all \(X \in \bigcup_{i \in \mathbb{N}} \mathbb{P}(\Delta_i) \).

So suppose that \(m \) is an ergodic probability measure on \(\Sigma_\beta \). Then by the Pointwise Ergodic Theorem, there exists an element \((\Sigma_{k} \mid k \geq k_0) \in \Sigma_\beta \) such that
\[(4.6) \quad m(\Sigma(X) \cap \Sigma_\beta) = \lim_{j \rightarrow \infty} \frac{1}{|G_j|} \left| \{ g \in G_j \mid g \cdot (\Sigma_{k} \mid k \geq k_0) \in \Sigma(X) \} \right| \]
for all \(X \in \bigcup_{i \in \mathbb{N}} \mathbb{P}(\Delta_i) \). Fix some \(X \subseteq \Delta_i \). For each \(j > \max\{i, k_0\} \), let \(d_j = |\Sigma_j| \) and let
\[m_{ij} = s_{ij} n_i + \sum_{k=i+1}^{j-1} s_{kj} \epsilon_k + \epsilon_j \]
\[= s_{ij} n_i + s_{0j} \sum_{k=i+1}^{j} \epsilon_k/s_{0k}. \]
Then an easy induction on $\ell = |X|$ shows that
\[
\frac{1}{|G_j|} \left| \{ g \in G_j \mid g \cdot (\Sigma_k)_{k \geq k_0} \in \Sigma(X) \} \right| = \sum_{t=0}^{\ell} (-1)^{\ell-t} \binom{\ell}{t} \frac{\binom{n_j-m_j+t s_{ij}}{d_j}}{\binom{n_j}{d_j}};
\]
and a second induction using (4.6) shows that for all $0 \leq t \leq n_i$, the limit
\[
(4.7) \quad \lim_{j \to \infty} \frac{\binom{n_j-m_j+t s_{ij}}{d_j}}{\binom{n_j}{d_j}}
\]
extists. We will make repeated use of the following lemma in the remaining sections of this paper.

Lemma 4.12. Suppose that $(n_j)_{j \in \mathbb{N}}$, $(m_j)_{j \in \mathbb{N}}$ and $(d_j)_{j \in \mathbb{N}}$ are sequences of natural numbers such that the following conditions are satisfied:

(a) $m_j, d_j \leq n_j$.
(b) $m_j/n_j \to 0$ and $d_j/n_j \to 0$ as $j \to \infty$.
(c) $\lim_{j \to \infty} \left(\frac{n_j-m_j}{d_j} \right)$ exists.

Then $\lim_{j \to \infty} d_j m_j/n_j$ exists and
\[
\lim_{j \to \infty} \frac{\binom{n_j-m_j}{d_j}}{\binom{n_j}{d_j}} = \left(\frac{1}{e} \right)^{\lim_{j \to \infty} d_j m_j/n_j}.
\]

Proof. In order to simply notation, we will write n, d, m instead of n_j, d_j, m_j.

Note that, since
\[
\frac{(n-m)}{d} = \frac{(n-m)}{n} \frac{(n-m-1)}{n-1} \cdots \frac{(n-m-d+1)}{(n-d+1)},
\]
it follows that
\[
\left(\frac{n-m-d+1}{n-d+1} \right)^d \leq \frac{(n-m)}{d} \leq \left(\frac{n-m}{n} \right)^d,
\]
and hence that
\[
(4.8) \quad \left(1 - \frac{m}{n-d+1} \right)^{\frac{n-d+1}{m} \times \frac{d}{n}} \leq \left(\frac{n-m}{d} \right) \leq \left(1 - \frac{m}{n} \right)^{\frac{n-d+1}{m} \times \frac{d}{n}}.
\]
Since $\frac{m}{n} \to 0$ and $\frac{m}{n-d+1} \to 0$, it follows that
\[
(4.9) \quad \left(1 - \frac{m}{n} \right)^{\frac{m}{n}} \to \left(\frac{1}{e} \right) \quad \text{and} \quad \left(1 - \frac{m}{n-d+1} \right)^{\frac{n-d+1}{m} \times \frac{d}{n}} \to \left(\frac{1}{e} \right).
\]
The result follows easily. \hfill \Box

We next check that Lemma 4.12 can be applied to each of the limits (4.7). First note that if $m_j = m_{ij} - t s_{ij}$, then
\[
\frac{m_j}{n_j} = \frac{s_{ij}}{n_j} (n_i - t) + \frac{s_{ij}}{n_j} \sum_{k+1}^{j} e_k / s_{0k} \leq \frac{s_{ij}}{n_j} (n_i - t) + s_{0i} \frac{s_{ij}}{n_j}.
\]
and since G has sublinear natural orbit growth, this implies that $m_j/n_j \to 0$. Also note that
\[
\lim_{k \to \infty} \frac{d_{jk}}{n_{jk}} = \lim_{k \to \infty} \frac{d_{jk}}{\beta_{jk} n_{jk}} = \lim_{k \to \infty} \beta_{jk} = 0.
\]
Hence, applying Lemma 4.12, we obtain that
(4.10) \[
\lim_{j \to \infty} \frac{d_j (n_j m_j + t s_{ij})}{\beta_j (m_j - t s_{ij}) / n_j} = \frac{1}{e} \lim_{k \to \infty} d_k (m_{ijk} - t s_{ijk}) / n_{ijk}.
\]

Lemma 4.13. For all $i \in \mathbb{N}$ and $0 \leq t \leq n_i$,
\[
\lim_{k \to \infty} d_{jk} (m_{ijk} - t s_{ijk}) / n_{jk} = \beta_i (n_i - t) + \gamma_i.
\]
Proof. First note that since $\beta_j t s_{ij} = t \beta_i$ and
\[
\beta_j m_{ij} = \beta_j s_{ij} n_i + \beta_j s_{0j} \sum_{k=i+1}^{j} c_k/s_{ok} = \beta_i n_i + \beta_0 \sum_{k=i+1}^{j} c_k/s_{ok},
\]
it follows that $\lim_{j \to \infty} \beta_j (m_{ij} - t s_{ij}) = \beta_i (n_i - t) + \gamma_i$. Hence, using the fact that $\lim_{k \to \infty} d_{jk}/\beta_j n_{jk} = 1$, we obtain that
\[
\lim_{k \to \infty} d_{jk} (m_{ijk} - t s_{ijk}) / n_{jk} = \lim_{k \to \infty} \frac{d_{jk}}{\beta_{jk} n_{jk}} \beta_j (m_{ijk} - t s_{ijk}) = \beta_i (n_i - t) + \gamma_i.
\]

Summing up, we have shown that if $X \subseteq \Delta$, with $|X| = \ell$, then
\[
m(\Sigma(X) \cap \Sigma_\beta) = \sum_{t=0}^{\ell} (-1)^{\ell-t} \binom{\ell}{t} \lim_{j \to \infty} \frac{d_j (n_j m_j + t s_{ij})}{\beta_j (m_j - t s_{ij}) / n_j} = \sum_{t=0}^{\ell} (-1)^{\ell-t} \binom{\ell}{t} \frac{1}{e} \beta_i (n_i - t) + \gamma_i = \left(\frac{1}{e}\right)^{\beta_i n_i + \gamma_i} \sum_{t=0}^{\ell} \binom{\ell}{t} e^{\beta_i t} (-1)^{\ell-t} = \left(\frac{1}{e}\right)^{\beta_i n_i + \gamma_i} (e^{\beta_i} - 1)^\ell = \mu_\beta(\Sigma(X)),
\]
as desired. This completes the proof that the action $G \curvearrowleft (\Sigma, \mu_\beta)$ is ergodic.

Definition 4.14. Let ν_β^Σ be the stabilizer distribution of the action $G \curvearrowleft (\Sigma, \mu_\beta)$.

We can now state the third main result of this paper.

Theorem 4.15. If $G = \bigcup_{\ell \in \mathbb{N}} G_\ell$ is an almost diagonal limit with sublinear natural orbit growth and $G \not\cong \text{Alt}(\mathbb{N})$, then the ergodic IRSs of G are
\[
\{ \delta_1, \delta_G \} \cup \{ \nu_\beta^\Sigma \mid \beta \in (0, \infty) \}.
\]

In particular, if $G = \bigcup_{\ell \in \mathbb{N}} G_\ell$ is an almost diagonal limit with sublinear natural orbit growth and $G \not\cong \text{Alt}(\mathbb{N})$, then the collection $\{ \nu_\beta^\Sigma \mid \beta \in (0, \infty) \}$ is independent of the particular expression of G as an almost diagonal limit of finite alternating groups.
5. Groups of almost diagonal type

In Section 3, we proved that an $L(\text{Alt})$-group $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth if and only if there exists a G-invariant ergodic probability measure on Δ. In this section, we will prove a corresponding characterization of the almost diagonal limits of sublinear natural orbit growth.

Theorem 5.1. Suppose that $G = \bigcup_{i \in \mathbb{N}} G_i$ is the union of a strictly increasing chain of finite alternating groups $G_i = \text{Alt}(\Delta_i)$ such that $s_{i+1} > 1$ for all $i \in \mathbb{N}$. Suppose also that G has sublinear natural orbit growth and that there exists a nonatomic G-invariant ergodic probability measure μ on Σ. Then:

(a) $G = \bigcup_{i \in \mathbb{N}} G_i$ is an almost diagonal limit; and

(b) there exists $\beta \in (0, \infty)$ such that $\mu = \mu_\beta$.

Proof. Applying the Pointwise Ergodic Theorem, let $(\Sigma_j)_{j \geq j_0} \subseteq \Sigma$ be such that for all $i \in \mathbb{N}$ and $X \subseteq \Delta_i$,

$$\mu(\Sigma(X)) = \lim_{j \to \infty} \frac{1}{|G_j|} |\{ g \in G_{j} \mid g \cdot (\Sigma_j)_{j \geq j_0} \subseteq \Sigma(X) \}|.$$

Let $|\Sigma_j| = d_j$.

Claim 5.2. $\lim_{j \to \infty} d_j = \infty$.

Proof of Claim 5.2. Suppose not. Then, by Remark 4.1, there exist integers $d \geq 0$ and $j_1 \geq j_0$ such that $d_j = d$ for all $j \geq j_1$. Suppose that $X \subseteq \Delta$, with $|X| = \ell \geq 1$ and that $\mu(\Sigma(X)) \neq 0$. Let $j = \max\{i, j_1\}$ and let

$$\Phi_{ij} = \Delta_i \times s_{i+1} \times \cdots \times s_j,$$

be the union of the “obvious” natural G_i-orbits on Δ_j. Then if $g \in G_j$ satisfies $g \cdot (\Sigma_i)_{i \geq j_0} \subseteq \Sigma(X)$, we must have that $|g(\Sigma_j) \cap \Phi_{ij}| \geq \ell$. Hence (5.1) implies that $\ell \leq d$ and that

$$\mu(\Sigma(X)) \leq \lim_{j \to \infty} \sum_{t=\ell}^{d} \binom{s_{ij}n_i}{t} \binom{n_{j}-m_{ij}}{d-t} \binom{n_{j}}{d}$$

$$= \lim_{j \to \infty} \sum_{t=\ell}^{d} \binom{d}{t} \binom{s_{ij}n_i}{t} \binom{n_{j}-m_{ij}}{d-t} \binom{n_{j}}{d-t}$$

$$\leq \lim_{j \to \infty} \sum_{t=\ell}^{d} \binom{d}{t} \binom{s_{ij}n_i}{t} \binom{n_{j}}{d-t},$$

Since G has sublinear natural orbit growth, it follows that if $\ell \leq t \leq d$, then

$$\lim_{j \to \infty} \frac{\binom{s_{ij}n_i}{t}}{\binom{n_{j}}{d-t}} = 0.$$

But this implies that $\mu(\Sigma(X)) = 0$, which is a contradiction. Thus no such $X \subseteq \Delta$ exists and it follows that μ concentrates on the G-invariant sequence $\sigma \in \Sigma$ with constant value 0, which is a contradiction.

Arguing as in Section 4, we see that if $X \subseteq \Delta_i$ with $|X| = \ell$, then

$$\mu(\Sigma(X)) = \lim_{j \to \infty} \sum_{t=0}^{\ell} (-1)^{t-\ell} \binom{\ell}{t} \binom{n_{j}-m_{ij}+t\sigma_i}{d_j}.$$
and that the limit
\[
\lim_{j \to \infty} \frac{(n_j - m_{ij} + ts_{ij})}{d_j}
\]
exists for all \(0 \leq t \leq n_i\). We will now work towards verifying that the hypotheses of Lemma 4.12 are satisfied. For each \(0 \leq t \leq n_i\), let \(m_{itj} = m_{ij} - ts_{ij}\).

Claim 5.3. If \(i \in \mathbb{N}\) and \(0 \leq t \leq n_i\), then \(\lim_{j \to \infty} m_{itj}/n_j = 0\).

Proof of Claim 5.3. Suppose that there exist integers \(i, t\) with \(0 \leq t \leq n_i\) such that \(\lim_{j \to \infty} m_{itj}/n_j \neq 0\). Since
\[
\frac{m_{itj}}{n_j} = (n_i - t)\frac{s_{ij}}{n_j} + \frac{s_{ij}}{n_j}\sum_{k=i+1}^{j} e_k/s_{0k}
\]
and \(\lim_{j \to \infty} s_{ij}/n_j = 0\), it follows that
\[
\limsup_{j \to \infty} \frac{m_{itj}}{n_j} = \limsup_{j \to \infty} \frac{s_{ij}}{n_j}\sum_{k=i+1}^{j} e_k/s_{0k} = 0
\]
and hence there exists a constant \(0 < c \leq 1\) such that \(\limsup_{j \to \infty} m_{itj}/n_j = c\) for all \(0 \leq t \leq n_i\). Note that if \(\ell < m\), then
\[
\frac{s_{ij}}{n_j}\sum_{k=i+1}^{j} e_k/s_{0k} = \frac{s_{ij}}{n_j}\sum_{k=\ell+1}^{m} e_k/s_{0k} + \frac{s_{ij}}{n_j}\sum_{k=m+1}^{j} e_k/s_{0k}
\]
and that \(\lim_{j \to \infty} \frac{s_{ij}}{n_j}\sum_{k=\ell+1}^{m} e_k/s_{0k} = 0\). It follows that \(\limsup_{j \to \infty} m_{itj}/n_j = c\) for all integers \(i, t\) with \(0 \leq t \leq n_i\). Since
\[
\frac{(n_j - m_{itj})}{n_j} \leq \left(1 - \frac{m_{itj}}{n_j}\right)^{d_j} = \left(1 - \frac{m_{jtj}}{n_j}\right)^{d_j}
\]
and \(\lim_{j \to \infty} d_j = \infty\), it follows that
\[
\lim_{j \to \infty} \left(\frac{n_j - m_{itj}}{n_j}\right) = \lim_{j \to \infty} \left(\frac{n_j - m_{jtj}}{n_j}\right) = 0
\]
for all integers \(i, t\) with \(0 \leq t \leq n_i\). But then (5.2) implies that \(\mu(\Sigma(X)) = 0\) for all \(X \in \bigcup_{i \in \mathbb{N}} \mathcal{P}(\Delta_i)\), which is a contradiction. \(\square\)

Claim 5.4. \(\lim_{j \to \infty} d_j/n_j = 0\).

Proof of Claim 5.4. Suppose not. Then there exists a constant \(0 < c \leq 1\) and an infinite subset \(J \subseteq \mathbb{N}\) such that \(d_j/n_j \geq c\) for all \(j \in J\). Let \(i, t\) be integers such that \(0 \leq t \leq n_i\). Since \(\lim_{j \to \infty} m_{itj}/n_j = 0\), there exists a cofinite subset \(J_{it} \subseteq J\) such that
\[
\frac{(n_j - m_{itj})}{d_j} \leq \left(1 - \frac{m_{itj}}{n_j}\right)^{d_j} \leq \left(1 - \frac{m_{jtj}}{n_j}\right)^{m_{jtj}} \leq \left(\frac{1}{2}\right)^{e_{m_{jtj}}}
\]
for all \(j \in J_{it}\). If \(0 \leq t < n_i\), then
\[
\lim_{j \to \infty} m_{itj} = \lim_{j \to \infty} \left[(n_i - t)s_{ij} + s_{ij}\sum_{k=i+1}^{j} e_k/s_{0k} \right] = \infty,
\]
and it follows that
\[\lim_{j \to \infty} \frac{(n_j - m_{ij} + ts_{ij})}{d_j} = \lim_{j \to \infty} \frac{(n_j - m_{ij})}{d_j} = 0. \]

But then (5.2) implies that \(\mu(\Sigma(X)) = 0 \) for all \(X \in \bigcup_{i \in \mathbb{N}} [P(\Delta_i) \setminus \{ \Delta_i \}] \); and so \(\mu \) concentrates on the \(G \)-invariant sequence \((\Delta_i)_{i \in \mathbb{N}} \), which is a contradiction. \(\square \)

Thus the hypotheses of Lemma 4.12 are satisfied; and so for all integers \(i, t \) with \(0 \leq t \leq n_i \), we have that
\[\lim_{j \to \infty} \frac{(n_j - m_{ij} + ts_{ij})}{d_j} = \frac{1}{e} \lambda_{ti}, \]

where \(\lambda_{ti} = \lim_{j \to \infty} d_j(m_{ij} - ts_{ij})/n_j \).

Claim 5.5. \(G = \bigcup_{i \in \mathbb{N}} G_i \) is an almost diagonal limit.

Proof of Claim 5.5. Suppose not. Then, since \(\tau = \sum_{i=1}^{\infty} e_i/s_{0i} = \infty \) and
\[
d_jm_{ij}/n_j = \frac{n_i d_j s_{ij}}{n_j} + \frac{d_j s_{0j}}{n_j} \sum_{k=i+1}^{j} e_k/s_{0k},
\]

it follows that \(\lim_{j \to \infty} d_j s_{0j}/n_j = 0 \) and hence
\[
\lambda_{0i} = \lim_{j \to \infty} d_j m_{ij}/n_j = \lim_{j \to \infty} \frac{d_j s_{0j}}{n_j} \sum_{k=i+1}^{j} e_k/s_{0k}.\]

Also notice that
\[
\lambda_{0i} = \lim_{j \to \infty} \frac{d_j s_{0j}}{n_j} \left[\frac{e_{i+1}/s_{i+1} + \sum_{k=i+2}^{j} e_k/s_{0k}}{1} \right]
= \lim_{j \to \infty} \frac{d_j s_{0j}}{n_j} \sum_{k=i+2}^{j} e_k/s_{0k}
= \lambda_{0i+1}.
\]

Thus there exists a constant \(\lambda \) such that \(\lambda_{0i} = \lambda \) for all \(i \in \mathbb{N} \). Next notice that if \(0 \leq t \leq n_i \), then
\[
\lambda_{ti} = \lim_{j \to \infty} \left[d_j m_{ij}/n_j - \frac{t}{s_{0i}} d_j s_{0j}/n_j \right]
= \lim_{j \to \infty} d_j m_{ij}/n_j
= \lambda.
\]
Hence for all $i \in \mathbb{N}$ and $X \subseteq \Delta_i$, if $|X| = \ell$, then
\[
\mu(\Sigma(X)) = \sum_{t=0}^{\ell} (-1)^{\ell-t} \binom{\ell}{t} \left(\frac{1}{e} \right)^\lambda
\]
\[
= \begin{cases}
\left(\frac{1}{e} \right)^\lambda, & \text{if } \ell = 0; \\
0, & \text{otherwise.}
\end{cases}
\]

It follows that $\lambda = 0$ and that μ concentrates on the sequence $\sigma \in \Sigma$ with constant value \emptyset, which contradicts the assumption that μ is nonatomic. \(\square\)

Summing up, we have shown that $\tau = \sum_{i=1}^\infty c_i/s_0 < \infty$ and that if $X \subseteq \Delta_i$ with $|X| = \ell$, then
\[
\mu(\Sigma(X)) = \lim_{j \to \infty} \sum_{t=0}^{\ell} (-1)^{\ell-t} \binom{\ell}{t} \left(\frac{n_j - m_j + ts_j}{d_j} \right) \left(\frac{1}{e} \right)^{\lambda_{t_i}},
\]
where $\lambda_{t_i} = \lim_{j \to \infty} d_j(m_j - ts_j)/n_j$. In particular, the limit
\[
\lim_{j \to \infty} d_j m_{ij}/n_j = \lim_{j \to \infty} \left[\frac{n_i}{s_0} + \sum_{k=i+1}^j e_k/s_0k \right] \frac{d_j s_{0j}}{n_j}
\]
eexists; and this implies that $\beta = \lim_{j \to \infty} d_j s_{0j}/n_j$ exists. Furthermore, the proof of Claim 5.5 shows that $\beta \neq 0$. Notice that
\[
\lambda_{t_i} = \lim_{j \to \infty} d_j[(n_i - t)s_{ij} + s_{0j} \sum_{k=i+1}^j e_k/s_0k]/n_j
\]
\[
= \lim_{j \to \infty} \left[\frac{1}{s_0} \frac{d_j s_{0j}}{n_j} (n_i - t) + \frac{d_j s_{0j}}{n_j} \sum_{k=i+1}^j e_k/s_0k \right]
\]
\[
= \frac{1}{s_0} [\beta(n_i - t) + \beta \sum_{k=i+1}^\infty e_k/s_0k]
\]
\[
= \beta_i(n_i - t) + \gamma_i,
\]
where $\beta_i = \beta/s_0i$ and $\gamma_i = \beta \sum_{k=i+1}^\infty e_k/s_0k$. It follows that if $X \subseteq \Delta_i$ with $|X| = \ell$, then
\[
\mu(\Sigma(X)) = \frac{1}{e^{\beta_i n_i + \gamma_i}} (e^{\beta_i} - 1)^\ell.
\]
Thus $\mu = \mu_\beta$. This completes the proof of Theorem 5.1. \(\square\)

Remark 5.6. Examining the proofs of Proposition 4.11 and Theorem 5.1, we see that if $\beta \in (0, \infty)$ and $(\Sigma_j)_{j \geq j_0} \in \Sigma$ with $|\Sigma_j| = d_j$, then the following are equivalent:

(a) $\lim_{j \to \infty} d_j s_{0j}/n_j = \beta$.
(b) For all $i \in \mathbb{N}$ and $X \subseteq \Delta_i$,
\[
\mu(\Sigma(X)) = \lim_{j \to \infty} \frac{1}{|G_j|} \left| \{ g \in G_j \mid g \cdot (\Sigma_j)_{j \geq j_0} \in \Sigma(X) \} \right|.
\]
We have already noted that Theorem 4.15 implies if $G = \bigcup_{i \in \mathbb{N}} G_i$ is an almost diagonal limit with sublinear natural orbit growth and $G \not\cong \text{Alt}(\mathbb{N})$, then the collection $\{ \nu_\beta^G \mid \beta \in (0, \infty) \}$ is independent of the particular expression of G as an almost diagonal limit of finite alternating groups. The following special case will play a key role in the proof of Theorem 4.15.

Theorem 5.7. Suppose that $G = \bigcup_{i \in \mathbb{N}} G_i$ is an almost diagonal limit of finite alternating groups $G_i = \text{Alt}(\Delta_i)$. Let $(k_i \mid i \in \mathbb{N})$ be a strictly increasing sequence of natural numbers, let $\Delta_i' = \Delta_{k_i}$ and let Σ' be the associated space of sequences $(\Sigma'_i)_{i \geq i_0}$. Then $G = \bigcup_{i \in \mathbb{N}} G'_i$ is also an almost diagonal limit and there exists a positive λ such that $\nu_\Sigma^G = \nu_{\Sigma'_\beta}^G$ for all $\beta \in (0, \infty)$. Consequently, we have that

$$\{ \nu_\beta^G \mid \beta \in (0, \infty) \} = \{ \nu_{\beta'}^G \mid \beta' \in (0, \infty) \}.$$

Proof. Of course, by Proposition 3.4, we already know that $G = \bigcup_{i \in \mathbb{N}} G'_i$ is an almost diagonal limit.

Let $\sigma = (\Sigma_j)_{j \geq j_0} \in \Sigma$ and let $i_0 = \min\{ i \mid k_i \geq j_0 \}$. Then a moment's thought shows that if $i \geq i_1$, then Σ_{k_i} is contained in the union of the natural and trivial G_{k_i}-orbits on Δ_{k_i}, and thus there exists a unique $\sigma' = (\Sigma'_i)_{i \geq i_0} \in \Sigma'$ such that $i_0 \leq i_1$ and $\Sigma'_i = \Sigma_{k_i}$, for all $i \geq i_1$. Furthermore, it is clear that

$$H(\sigma) = \bigcup \text{Alt}(\Delta_j \setminus \Sigma_j) = \bigcup \text{Alt}(\Delta'_j \setminus \Sigma'_j) = H(\sigma').$$

Thus for every nonatomic G-invariant ergodic probability measure μ on Σ, there exists a nonatomic G'-invariant ergodic probability measure μ' on Σ' such that the corresponding stabilizer distributions coincide. Applying Theorem 5.1(b) to $G = \bigcup_{i \in \mathbb{N}} G'_i$ and Σ', it follows that for every $\beta \in (0, \infty)$, there exists $\beta' \in (0, \infty)$ such that $\nu_{\Sigma'}^G = \nu_{\Sigma'_\beta}^G$.

Let n', s' be the parameters associated with the union $G = \bigcup_{i \in \mathbb{N}} G'_i$; and suppose that $\beta, \beta' \in (0, \infty)$ are such that $\nu_{\Sigma'}^G = \nu_{\Sigma'_\beta}^G$. Then the Pointwise Ergodic Theorem and Remark 5.6 imply that there exist corresponding sequences $\sigma = (\Sigma_j)_{j \geq j_0} \in \Sigma$ and $\sigma' = (\Sigma'_i)_{i \geq i_0} \in \Sigma'$ such that:

- $\Sigma'_i = \Sigma_{k_i}$, for all but finitely many $i \in \mathbb{N}$,
- $\lim_{j \to \infty} |\Sigma_j| s_{0j}/n_j = \beta$, and
- $\lim_{i \to \infty} |\Sigma'_i| s'_{0i}/n'_i = \beta'$.

It follows that

$$\lambda = \frac{\beta'}{\beta} = \lim_{i \to \infty} \frac{|\Sigma'_i| s'_{0i}/n'_i}{|\Sigma_{k_i}| s_{0k_i}/n_{k_i}} = \lim_{i \to \infty} \frac{s'_{0i}}{s_{0k_i}}$$

is independent of the choice of β. \hfill \square

6. Normalized permutation characters of finite alternating groups

In this section, we will present a series of lemmas concerning upper bounds for the values of the normalized permutation characters of various actions $\text{Alt}(<\Delta) \act \Omega$ of the finite alternating group $\text{Alt}(\Delta)$ on a finite set Ω. No attempt will be made to prove the best possible results: we will be content to prove easy results which are good enough to serve our purposes in this paper.

Suppose that $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth. Let $\nu \neq \delta_1, \delta_0$ be an ergodic IRS of G. Then, applying Creutz-Peterson [2, Proposition 3.3.1], we can suppose that ν is the stabilizer distribution of an ergodic action $G \act (Z, \mu)$. Let $\chi(g) = \mu(\text{Fix}_Z(g))$ be the corresponding character. For each $z \in Z$ and $i \in \mathbb{N}$, let
Ω_i(z) = \{ g \cdot z \mid g \in G_i \}. Then, by Theorem 2.1, for \(\mu \)-a.e. \(z \in Z \), for all \(g \in G \), we have that
\[
\mu(\text{Fix}_Z(g)) = \lim_{i \to \infty} |\text{Fix}_{\Omega_i(z)}(g)| / |\Omega_i(z)|.
\]
Fix such an element \(z \in Z \) and let \(H = \{ h \in G \mid h \cdot z = z \} \) be the corresponding point stabilizer. Clearly we can suppose that \(z \) has been chosen such that if \(g \in H \), then \(\chi(g) > 0 \).

For each \(i \in \mathbb{N} \), let \(H_i = H \cap G_i \). Then, examining the list of ergodic IRSs in the statement of Theorem 3.19, we see that it is necessary to show that there exists a fixed integer \(r \geq 1 \) such that for all but finitely many \(i \in \mathbb{N} \), there is a subset \(\Sigma_i \subseteq \Delta_i \) of cardinality \(r \) such that \(H_i = \text{Alt}(\Delta_i \setminus \Sigma_i) \). We will eventually show that if this is not the case, then there exists an element \(g \in H \) such that
\[
\mu(\text{Fix}_Z(g)) = \lim_{i \to \infty} |g^{G_i} \cap H_i| / |g^{G_i}| = \frac{|\{ s \in G_i \mid sgs^{-1} \in H_i \}|}{|G_i|} = 0,
\]
which is a contradiction. For example, Lemma 6.1 will play a key role in the proof that there do not exist infinitely many \(i \in \mathbb{N} \) such that \(H_i \) acts primitively on \(\Delta_i \); and Lemmas 6.3 and 6.5 will play key roles in the proof that there do not exist infinitely many \(i \in \mathbb{N} \) such that \(H_i \) acts imprimitively on \(\Delta_i \).

For the remainder of this section, let \(\Delta = \{ 1, 2, \cdots, n \} \).

Lemma 6.1. For each prime \(p \) and real number \(a > 0 \), there exists \(n_{p,a} \in \mathbb{N} \) such that if \(n \geq n_{p,a} \) and

(i) \(g \in \text{Alt}(\Delta) \) is a product of \(b \geq an \) \(p \)-cycles;
(ii) \(K < \text{Alt}(\Delta) \) is a proper primitive subgroup;

then the normalized permutation character of the action \(\text{Alt}(\Delta) \curvearrowright \Omega = \text{Alt}(\Delta)/K \) satisfies
\[
|\text{Fix}_\Omega(g)| / |\Omega| < \frac{1}{n}.
\]

Proof. Clearly we can suppose that \(n \) has been chosen so that \(b \geq an \geq 2 \). In particular, since \(g \) contains at least two \(p \)-cycles, this implies that the conjugacy classes of \(g \) in \(\text{Alt}(\Delta) \) and \(\text{Sym}(\Delta) \) coincide and hence
\[
|g^{\text{Alt}(\Delta)}| = \frac{n!}{p^bb!(n-bp)!}.
\]
Applying Stirling’s Approximation and the fact that \(b \geq an \), it follows that there exist constants \(r, s > 0 \) such that
\[
|g^{\text{Alt}(\Delta)}| > r s^n \frac{n^n}{n^p(n-bp)^{n-bp}} > r s^n \frac{n^n}{n^{bp}n^{a-bp}} \geq r s^n (n^a)^{(p-1)a}.
\]
By Praeger-Saxl [13], since \(K \) is a proper primitive subgroup of \(\text{Alt}(\Delta) \), it follows that \(|K| < 4^n \). By Proposition 2.2, this implies that
\[
|\text{Fix}_\Omega(g)| / |\Omega| = |g^{\text{Alt}(\Delta)} \cap K| / |g^{\text{Alt}(\Delta)}| \leq |K| / |g^{\text{Alt}(\Delta)}| \leq \frac{4^n}{r s^n (n^a)^{(p-1)a}}.
\]
The result follows easily. \(\square \)

Lemma 6.2. Let \(\Omega = [\Delta]^\ell \) be the set of \(\ell \)-subsets of \(\Delta \) for some \(2 \leq \ell \leq n/2 \). Suppose that \(g \in \text{Alt}(\Delta) \) has prime order \(p > 2 \) and that \(c = |\text{Fix}_\Delta(g)| \leq n/4 \). Then the normalized permutation character of the action \(\text{Alt}(\Delta) \curvearrowright \Omega \) satisfies:

(i) \(|\text{Fix}_\Omega(g)| / |\Omega| < \frac{1}{4} |\text{Fix}_\Delta(g)| / |\Delta| \) if \(c \geq 16 \);
(ii) \(|\text{Fix}_\Omega(g)| / |\Omega| < \frac{3}{n} \) if \(c < 16 \).
Proof. First suppose that $\ell < p$. Then $\text{Fix}_\Omega(g) = [\text{Fix}_\Delta(g)]^\ell$. Clearly we can suppose that $c \geq \ell$ and since $c \leq n/4$, it follows that

$$\frac{\text{Fix}_\Omega(g)}{|\Omega|} = \left(\frac{c}{n}\right) = \frac{c(c-1)\cdots(c-\ell+1)}{n(n-1)\cdots(n-\ell+1)} \leq \frac{c(c-1)}{n(n-1)} \leq \frac{c}{4n} < \frac{1}{2\Delta}.$$

Next suppose that $\ell \geq p > 2$. Let $A = \{ S \in \text{Fix}_\Omega(g) \mid S \subseteq \text{Fix}_\Delta(g) \}$ and let $B = \text{Fix}_\Omega(g) \setminus A$. If $A \neq 0$, then

$$\frac{|A|}{|\Omega|} = \left(\frac{c}{n}\right) \leq \frac{c(c-1)(c-2)}{n(n-1)(n-2)} < \frac{c}{16n}.$$

For each $S \in B$, let $\alpha(S) = \min\{ s \in S \mid g \cdot s \neq s \}$. Then, since $\ell > 2$, it follows that the sets

$$B \cup \{(S \setminus \{\alpha(S)\}) \cup \{t\} \mid S \in B, t \in \Delta \setminus \left(S \cup \text{Fix}_\Delta(g)\right)\}$$

are distinct. Note that if $S \in B$, then $|S \cup \text{Fix}_\Delta(g)| \leq 3n/4$; and it follows that $(1 + \frac{3}{4})|B| \leq |\Omega|$ and so $|B|/|\Omega| < 4/3$. If $c \geq 16$, then

$$\frac{\text{Fix}_\Omega(g)}{|\Omega|} < \frac{c}{16n} + \frac{4}{n} < \frac{5}{16n} < \frac{1}{2\Delta};$$

while if $c < 16$, then

$$\frac{\text{Fix}_\Omega(g)}{|\Omega|} < \frac{c}{16n} + \frac{4}{n} < \frac{5}{n}.$$

\[\square\]

If P is a partition of Δ, then the subsets $B \in P$ will be called the blocks of P; and if $s \in \Delta$, then $[s]_P$ will denote the block of P which contains s.

Lemma 6.3. Let Ω be the set of partitions P of Δ into ℓ-sets for some fixed divisor ℓ of n such that $2 \leq \ell \leq n/2$. If $g \in \text{Alt}(\Delta)$ has prime order $p > 2$, then the normalized permutation character of the action $\text{Alt}(n) \cap \Omega$ satisfies $|\text{Fix}_\Omega(g)|/|\Omega| < 2/n$.

Proof. Let $P \in \text{Fix}_\Omega(g)$. Then we define the integer $\alpha(P)$ as follows.

(a) If P contains a g-invariant block B such that $g \mid B \neq \text{id}_B$, then $\alpha(P)$ is the least $s \in \Delta$ such that $[s]_P$ is g-invariant and $g \cdot s \neq s$.

(b) Otherwise, $\alpha(P)$ is the least $s \in \Delta$ such that $g \cdot s \neq s$. For each $t \in \Delta \setminus [\alpha(P)]_P$, we define $P(t) \in \Omega$ to be the partition obtained from P by replacing the block $[\alpha(P)]_P$ by $([\alpha(P)]_P \setminus \{\alpha(P)\}) \cup \{t\}$ and the block $[t]_P$ by $([t]_P \setminus \{t\}) \cup \{\alpha(P)\}$.

Claim 6.4. $P(t) \notin \text{Fix}_\Omega(g)$.

Proof of Claim 6.4. First suppose that P contains a g-invariant block B such that $g \mid B \neq \text{id}_B$. Then clearly $g \cdot [t]_P \neq [t]_P$. Also, since $\ell \geq p > 2$, it follows that $g \cdot [t]_P \cap [t]_P = \emptyset$. Hence $P(t) \notin \text{Fix}_\Omega(g)$.

Thus we can suppose that P does not contain a g-invariant block B such that $g \mid B \neq \text{id}_B$. For each $0 \leq i < p$, let $S_i = g^i \cdot [\alpha(P)]_P$. Since $p > 2$, there exists $0 < i < p$ such that $S_i \notin P(t)$. Since $S_0 = g^{p-i} \cdot S_i \notin P(t)$, it follows that $P(t) \notin \text{Fix}_\Omega(g)$.

If $P, P' \in \text{Fix}_\Omega(g)$ and $P(t) = P'(t')$, then it is easily checked that $P = P'$ and $t = t'$. Thus $(1 + n - \ell)|\text{Fix}_\Omega(g)| \leq |\Omega|$ and so $|\text{Fix}_\Omega(g)|/|\Omega| < 2/n$.

\[\square\]
The following two results are routine generalizations of Lemmas 5.2 and 5.3 of Thomas-Tucker-Drob [18].

Lemma 6.5. For any \(\varepsilon > 0 \) and \(0 < a \leq 1 \) and \(r \geq 0 \), there exists an integer \(d_{a,r,\varepsilon} \) such that if \(d_{a,r,\varepsilon} \leq d \leq (n - r)/2 \) and \(H < \text{Alt}(\Delta) \) is any subgroup such that

(i) there exists an \(H \)-invariant subset \(\Sigma \subseteq \Delta \) of cardinality \(r \), and

(ii) \(H \) acts imprimitively on \(\Delta \setminus \Sigma \) with a proper system of imprimitivity \(B \) of blocksize \(d \),

then for any element \(g \in \text{Alt}(\Delta) \) satisfying \(|\text{supp}(g)| \geq an \),

\[
\frac{|\{s \in \text{Alt}(\Delta) \mid sg^{-1} \in H\}|}{|\text{Alt}(\Delta)|} < \varepsilon.
\]

Lemma 6.6. For any \(\varepsilon > 0 \) and \(0 < a \leq 1 \), there exists an integer \(r_{a,\varepsilon} \) such that if \(r_{a,\varepsilon} \leq r \leq n/2 \) and \(H < \text{Alt}(\Delta) \) is a subgroup with an \(H \)-invariant set \(\Sigma \subseteq \Delta \) of cardinality \(|\Sigma| = r \), then for any element \(g \in \text{Alt}(\Delta) \) satisfying \(|\text{supp}(g)| \geq an \),

\[
\frac{|\{s \in \text{Alt}(\Delta) \mid sg^{-1} \in H\}|}{|\text{Alt}(\Delta)|} < \varepsilon.
\]

For the sake of completeness, we will sketch the main points of the proofs of Lemmas 6.5 and 6.6. As in Thomas-Tucker-Drob [18, Section 5], our approach will be probabilistic; i.e. we will regard the normalized permutation character

\[
\frac{|\{s \in \text{Alt}(\Delta) \mid sg^{-1} \in H\}|}{|\text{Alt}(\Delta)|}
\]

as the probability that a uniformly random permutation \(s \in \text{Alt}(\Delta) \) satisfies \(sg^{-1} \in H \). The proofs of Lemmas 6.5 and 6.6 make use of the following consequence of Chebyshev’s inequality. (See Thomas-Tucker-Drob [18, Lemma 5.1].)

Lemma 6.7. Suppose that \(\{N_k\} \) is a sequence of non-negative random variables such that \(\mathbb{E}[N_k] = \mu_k > 0 \) and \(\text{Var}[N_k] = \sigma_k^2 > 0 \). If \(\lim_{k \to \infty} \mu_k/\sigma_k = \infty \), then \(\mathbb{P}[N_k > 0] \to 1 \) as \(k \to \infty \).

In our arguments, it will be convenient to make use of big \(O \) notation. Recall that if \(\{a_m\} \) and \(\{x_m\} \) are sequences of real numbers, then \(a_m = O(x_m) \) means that there exists a constant \(C > 0 \) and an integer \(m_0 \in \mathbb{N} \) such that \(|a_m| \leq C|x_m| \) for all \(m \geq m_0 \). Also if \(\{c_m\} \) is another sequence of real numbers, then we write \(a_m = c_m + O(x_m) \) to mean that \(a_m - c_m = O(x_m) \).

Sketch proof of Lemma 6.5. Suppose that \(m = r + d\ell \), where \(\ell \geq 2 \), and that \(H < \text{Alt}(\Delta) \) has an \(H \)-invariant set \(\Sigma \subseteq \Delta \) of cardinality \(|\Sigma| = r \) such that \(H \) acts imprimitively on \(T = \Delta \setminus \Sigma \) with a proper system of imprimitivity \(B \) of blocksize \(d \). Let \(b = a/3 \) and suppose that \(g \in \text{Alt}(\Delta) \) satisfies \(|\text{supp}(g)| \geq an = 3bm \). Then there exists a subset \(Z \subseteq \text{supp}(g) \) such that \(g(Z) \cap Z = \emptyset \) and \(|Z| = cn \) for some \(b \leq c \leq 1/2 \). Fix an element \(z_0 \in Z \) and let \(y_0 = g(z_0) \). Let \(s \in \Sigma \) be a uniformly random permutation. If \(s(z_0), s(y_0) \in T \), let \(B_0, C_0 \in B \) be the blocks in \(B \) containing \(s(z_0) \) and \(s(y_0) \) respectively; otherwise, let \(B_0 = C_0 = \emptyset \). Let

\[
J(s) = \{z \in Z \setminus \{z_0\} \mid s(z) \in B_0 \text{ and } s(g(z)) \notin C_0\}.
\]

Note that if \(J(s) \neq \emptyset \), then \(sg^{-1}(B_0) \) intersects at least two of the blocks of \(B \) and thus \(sg^{-1} \notin H \). Hence it is enough to show that \(\mathbb{P}[|J(s)| > 0] > 1 - \varepsilon \) for all sufficiently large \(d \) (depending only on \(\varepsilon, a \) and \(r \)).
Since we wish to apply Lemma 6.7, we need to compute the asymptotics of the expectation and variance of the random variable $|J(s)|$. Arguing as in the proof of Thomas-Tucker-Drob [18, Lemma 5.2], it can be shown that

\begin{equation}
\mathbb{E}[|J(s)|] = cd(1 - \frac{d}{m}) + O(1); \tag{6.1}
\end{equation}

and that

\begin{equation}
\mathbb{E}[|J(s)|^2] = [cd(1 - \frac{d}{m})]^2 + O(d); \tag{6.2}
\end{equation}

and that

\begin{equation}
\mathbb{E}[|J(s)|^2] = [cd(1 - \frac{d}{m})]^2 + O(d), \tag{6.3}
\end{equation}

where the implied constants needed to witness the big-O inequalities are only dependent on the parameter r. Combining (6.2) and (6.3) we obtain that

\[\text{Var}(|J(s)|) = \mathbb{E}[|J(s)|^2] - \mathbb{E}[|J(s)|]^2 = O(d), \]

and hence \(\text{Var}(|J(s)|)^{1/2} = O(\sqrt{d})\). Of course, (6.1) implies that \(d = O(\mathbb{E}[|J(s)|])\). Thus there exists a constant \(C > 0\) such that \(\sigma^2 = \text{Var}(|J(s)|)^{1/2} \leq C\sqrt{d}\) and

\[d = O(\mathbb{E}[|J(s)|]) = C\mu \text{ for all sufficiently large } d. \]

It follows that

\[\frac{\mu}{\sigma} \geq C^{-1} d/C\sqrt{d} = C^{-2}\sqrt{d} \to \infty \quad \text{as } d \to \infty. \]

Applying Lemma 6.7, we conclude that \(\mathbb{P}[|J(s)| > 0] \to 1 \text{ as } d \to \infty\). This completes the proof of Lemma 6.5. \qed

Sketch proof of Lemma 6.6. Let \(b = a/3\). Suppose that \(H < \text{Alt}(\Delta)\) has an \(H\)-invariant set \(\Sigma \subseteq \Delta\) of cardinality \(|\Sigma| = r \leq n/2\) and that \(g \in \text{Alt}(\Delta)\) satisfies \(|\text{supp}(g)| \geq an = 3bm\). Then, once again, there exists a subset \(Z \subseteq \text{supp}(g)\) such that \(g(Z) \cap Z = \emptyset\) and \(|Z| = cn\) for some \(b \leq c \leq 1/2\). Let \(s \in \text{Alt}(\Delta)\) be a uniformly random permutation and let

\[I(s) = \{ z \in Z \mid s(z) \in \Sigma \text{ and } s(g(z)) \notin \Sigma \}. \]

If \(I(s) \neq \emptyset\), then \(\Sigma\) is not \(sg^{-1}\)-invariant and thus \(sg^{-1} \notin H\). Hence it is enough to show that \(\mathbb{P}[|I(s)| > 0] > 1 - \varepsilon\) for all sufficiently large \(r\) (depending only on \(\varepsilon\) and \(a\)).

Arguing as in the proof of Thomas-Tucker-Drob [18, Lemma 5.2], it can be shown that

\begin{equation}
\mathbb{E}[|I(s)|] = cr(1 - \frac{r}{m}) + O(1); \tag{6.4}
\end{equation}

and that

\begin{equation}
\mathbb{E}[|I(s)|^2] = [cr(1 - \frac{r}{m})]^2 + O(r); \tag{6.5}
\end{equation}

and that

\begin{equation}
\mathbb{E}[|I(s)|^2] = [cr(1 - \frac{r}{m})]^2 + O(r), \tag{6.6}
\end{equation}

where the implied constants needed to witness the big-O inequalities are absolute. It follows that \(\text{Var}(|I(s)|)^{1/2} = O(\sqrt{r})\) and \(r = O(\mathbb{E}[|I(s)|])\); and another application of Lemma 6.7 shows that \(\mathbb{P}[|I(s)| > 0] \to 1 \text{ as } r \to \infty\). \qed
7. Full limits of finite alternating groups

In this section, we will first prove that a “full limit” of finite alternating groups $G = \bigcup_{i \in \mathbb{N}} G_i$ has a nontrivial ergodic IRS if and only if $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth. Then we will classify the ergodic IRSs of the $L(\text{Alt})$-groups $G = \bigcup_{i \in \mathbb{N}} G_i$ with linear natural orbit growth.

Definition 7.1. Suppose that $G = \bigcup_{i \in \mathbb{N}} G_i$ is the union of the strictly increasing chain of finite alternating groups $G_i = \text{Alt}(\Delta_i)$.

(i) The embedding $\text{Alt}(\Delta_i) \hookrightarrow \text{Alt}(\Delta_{i+1})$ is said to be full if $\text{Alt}(\Delta_i)$ has no trivial orbits on Δ_{i+1}.

(ii) $G = \bigcup_{i \in \mathbb{N}} G_i$ is the full limit of the finite alternating groups $G_i = \text{Alt}(\Delta_i)$ if each embedding $\text{Alt}(\Delta_i) \hookrightarrow \text{Alt}(\Delta_{i+1})$ is full.

Warning 7.2. A composition of two full embeddings is not necessarily full. For example, suppose that $G_i \hookrightarrow G_{i+1}$ is any full embedding and that $\Delta_{i+2} = G_{i+1}/G_i$. Then the embedding $G_{i+1} \hookrightarrow G_{i+2}$ is also full, but the embedding $G_i \hookrightarrow G_{i+2}$ is not full. Consequently, if $G = \bigcup_{i \in \mathbb{N}} G_i$ is a full limit and $(k_i \mid i \in \mathbb{N})$ is a strictly increasing sequence of natural numbers, then $G = \bigcup_{i \in \mathbb{N}} G_{k_i}$ is not necessarily a full limit. The notion of a full limit is a purely technical one, introduced in order to formulate the following special case of Theorem 3.7, which will be proved in this section. (Of course, by Proposition 3.18, we already know that if a full limit $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth, then G has a nontrivial ergodic IRS.)

Proposition 7.3. If $G = \bigcup_{i \in \mathbb{N}} G_i$ is a full limit of finite alternating groups, then G has a nontrivial ergodic IRS if and only if $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth.

Until further notice, suppose that $G = \bigcup_{i \in \mathbb{N}} G_i$ is the full limit of the finite alternating groups $G_i = \text{Alt}(\Delta_i)$.

Lemma 7.4. Let $p > 2$ be an odd prime, let $a = 1/(p + 1)$ and let $n_{p,a}$ be the integer given by Lemma 6.1. Suppose that $|\Delta_i| \geq \max\{n_{p,a}, 5(p+1)\}$ and that $g \in \text{Alt}(\Delta_i)$ is an element of order p such that $|\text{Fix}_{\Delta_i}(g)| \leq |\Delta_i|/(p+1)$. Then $|\text{Fix}_{\Delta_i}(g)| \leq |\Delta_i|/(p + 1)$ for all $i \geq i_0$.

Proof. Let $i \geq i_0$ and suppose that $|\text{Fix}_{\Delta_i}(g)| \leq |\Delta_i|/(p + 1)$. It is enough to show that if Ω is an orbit of $\text{Alt}(\Delta_i)$ on Δ_{i+1}, then $|\text{Fix}_{\Delta_i}(g)|/|\Omega| \leq 1/(p+1)$. Let $\omega \in \Omega$ and let $H = \{h \in \text{Alt}(\Delta_i) \mid h \cdot \omega = \omega\}$ be the corresponding stabilizer. Let K be a maximal proper subgroup of $\text{Alt}(\Delta_i)$ such that $H \leq K$ and let θ_K be the normalized permutation character of the action $\text{Alt}(\Delta_i) \cap \text{Alt}(\Delta_i)/K$. Then, applying Corollary 2.3, we have that $|\text{Fix}_{\Delta_i}(g)|/|\Omega| \leq \theta_K(g)$.

First suppose that K acts primitively on Δ_i. Let g be a product of a_i p-cycles when regarded as an element of $\text{Alt}(\Delta_i)$. Since $|\text{Fix}_{\Delta_i}(g)| \leq |\Delta_i|/(p+1)$, it follows that $a_i \geq |\Delta_i|/(p+1)$. Hence, by Lemma 6.1, we have that

$$\theta_K(g) < 1/|\Delta_i| < 1/(p+1).$$

Next suppose that K acts imprimitively on Δ_i, preserving a system of imprimitivity \mathcal{P} of blocksize $2 \leq \ell \leq n/2$. Then $\text{Alt}(\Delta_i) \cap \text{Alt}(\Delta_i)/K$ is isomorphic to the action of $\text{Alt}(\Delta_i)$ on the set \mathcal{P} of partitions of Δ_i into ℓ-sets. Applying Lemma 6.3, we obtain that

$$\theta_K(g) < 2/|\Delta_i| < 1/(p+1).$$
Finally suppose that K acts imprimitively on Δ_i, fixing set-wise a subset $S \subseteq \Delta_i$ of size $1 \leq \ell \leq n/2$. Then $\Alt(\Delta_i) \cap \Alt(\Delta_i)/K$ is isomorphic to the action of $\Alt(\Delta_i)$ on $[\Delta_i]^{\ell}$. If $\ell = 1$, then $\theta_K(g) = |\Fix_{\Delta_i}(g)|/|\Delta_i| \leq 1/(p+1)$. Hence we can suppose that $\ell \geq 2$. Applying Lemma 6.2, either
\[
\theta_K(g) < 5/|\Delta_i| \leq 1/(p+1),
\]
or else
\[
\theta_K(g) < \frac{1}{2} |\Fix_{\Delta_i}(g)|/|\Delta_i| \leq 1/(2p+1).
\]

\[\square\]

\textbf{Corollary 7.5.} \(\limsup |\Fix_{\Delta_i}(g)|/|\Delta_i| < 1\) for all \(1 \neq g \in G\).

\textbf{Proof.} Applying Lemma 7.4, it follows that there exists an element $g \in G$ of order 3 such that $\limsup |\Fix_{\Delta_i}(g)|/|\Delta_i| \leq 1/4$. On the other hand, it is easily checked that if $(k_i \mid i \in \mathbb{N})$ is a strictly increasing sequence of natural numbers, then
\[N = \{ g \in G \mid \lim_{i \to \infty} |\Fix_{\Delta_i}(g)|/|\Delta_{k_i}| = 1 \}\]
is a normal subgroup of G. Since G is simple, the result follows. \[\square\]

For the rest of this section, suppose that $\nu \neq \delta_i$, δ_G is an ergodic IRS of G. Applying Creutz-Peterson [2, Proposition 3.3.1], we can suppose that ν is the stabilizer distribution of an ergodic action $G \actson (Z, \mu)$. Let $\chi(g) = \mu(\Fix_Z(g))$ be the corresponding character. For each $z \in Z$ and $i \in \mathbb{N}$, let $\Omega_i(z) = \{ g \cdot z \mid g \in G_i \}$. Then, by Theorem 2.1, for μ-a.e. $z \in Z$, for all $g \in G$, we have that
\[\mu(\Fix_Z(g)) = \lim_{i \to \infty} |\Fix_{\Omega_i(z)}(g)|/|\Omega_i(z)|.\]

Fix such an element $z \in Z$ and let $H = \{ h \in G \mid h \cdot z = z \}$ be the corresponding point stabilizer. Clearly we can suppose that the element $z \in Z$ has been chosen such that $H \notin \{ 1, G \}$ and also such that $\chi(g) > 0$ for all $g \in H$. For each $i \in \mathbb{N}$, let $H_i = H \cap G_i$ and let $n_i = |\Delta_i|$. Clearly $G_i \actson \Omega_i(z)$ is isomorphic to $G_i \actson G_i/H_i$.

\textbf{Lemma 7.6.} There exist only finitely many $i \in \mathbb{N}$ such that the action $H_i \actson \Delta_i$ is primitive.

\textbf{Proof.} Suppose that $I = \{ i \in \mathbb{N} \mid H_i \actson \Delta_i \text{ is primitive} \}$ is infinite. Since $H \neq 1$, there exists an element $g \in H$ of some prime order p. Let $g \in G_{i_0}$ and for each $i \geq i_0$, let g be a product of a_i-cycles when regarded as an element of G_i. Then, by Corollary 7.5, there exists a constant $a > 0$ such that $a_i \geq a n_i$ for all $i \geq i_0$. Let $n_{p,a}$ be the integer given by Lemma 6.1. Then $|\Fix_{\Omega_i(z)}(g)|/|\Omega_i(z)| < 1/n_i$ for all $i \in I$ such that $n_i \geq n_{p,a}$ and it follows that
\[\chi(g) = \lim_{i \to \infty} |\Fix_{\Omega_i(z)}(g)|/|\Omega_i(z)| = 0,
\]
which is a contradiction. \[\square\]

\textbf{Lemma 7.7.} For each integer $d > 1$, there exist only finitely many $i \in \mathbb{N}$ such that H_i acts imprimitively on Δ_i, preserving a maximal system B_i of imprimitivity of blocksize d.

\textbf{Proof.} Suppose that there exists a fixed $d > 1$ and an infinite subset $I \subseteq \mathbb{N}$ such that for all $i \in I$, the subgroup H_i acts imprimitively on Δ_i, preserving a maximal system B_i of imprimitivity of blocksize d. Then H_i is isomorphic to a subgroup
of the wreath product $\text{Sym}(d) \wr \text{Sym}(n/d)$ for each $i \in I$. Applying Stirling’s Approximation, it follows that there exist constants c, k such that for all n,

$$|\text{Sym}(d) \wr \text{Sym}(n/d)| < c k^n n^{n/d}.$$

Claim 7.8. For all but finitely many $i \in I$, the induced action of H_i on B_i contains $\text{Alt}(B_i)$.

Proof of Claim 7.8. Suppose not and let $g \in H$ be an element of some prime order p. Let $g \in G_{i_0}$ and for each $i \geq i_0$, let g be a product of a_i p-cycles when regarded as an element of G_i. Applying Corollary 7.5, there exists a constant $a > 0$ such that $a_i \geq a n_i$ for all $i \geq i_0$. Arguing as in the proof of Lemma 6.1, it follows that there are constants r, s such that

$$|g^G| > r s^{n_i}(n_i^p)^{(p-1)a}. $$

Let $i \in I$ and let $\Gamma_i \leq \text{Sym}(B_i)$ be the group induced by the action of H_i on B_i. Since B_i is a maximal system of imprimitivity, it follows that Γ_i is a primitive subgroup of $\text{Sym}(B_i)$. Hence, by Praeger-Saxl [13], if Γ_i does not contain $\text{Alt}(B_i)$, then $|\Gamma_i| < 4^{n_i/d}$. Since H_i is isomorphic to a subgroup of $\text{Sym}(d) \wr \Gamma_i$, it follows that

$$|H_i| < (d!)^{n_i/d} 4^{n_i/d} = t^{n_i},$$

where $t = (d! 4)^{1/d}$, and so

$$\frac{|g^{G_i} \cap H_i|}{|g^{G_i}|} < \frac{|H_i|}{|g^{G_i}|} < \frac{t^{n_i}}{r s^{n_i}(n_i^p)^{(p-1)a}}.$$

It follows that

$$\chi(g) = \lim_{i \to \infty} |\text{Fix}_{\Omega_i}(g)| / |\Omega_i(z)| = \lim_{i \to \infty} |g^{G_i} \cap H_i| / |g^{G_i}| = 0,$$

which is a contradiction. \hfill \Box

Let $a = 1/6$ and let $n_{5,a}$ be the integer given by Lemma 6.1. Let $i_0 \in I$ be such that $|\Delta_{i_0}| \geq \max\{ n_{5,a}, 24d \}$ and such that the induced action of H_{i_0} on B_{i_0} contains $\text{Alt}(B_{i_0})$. Then there exists an element $g \in H_{i_0}$ of order 5 such that g fixes setwise at most 4 blocks of B_{i_0} and so $|\text{Fix}_{\Delta_{i_0}}(g)| \leq 4 d \leq |\Delta_{i_0}|/6$. Applying Lemma 7.4, it follows that $|\text{Fix}_{\Delta_i}(g)| \leq |\Delta_i|/6$ for all $i \geq i_0$. For each $i \geq i_0$, let g be a product of a_i p-cycles when regarded as an element of G_i. Then it is easily checked that $a_i \geq n_i/6$. Hence, arguing as above, there exist constants r, s such that

$$|g^{G_i}| > r s^{n_i}(n_i^p)^{4/6}.$$

Hence, if $i_0 \leq i \in I$, we have that

$$\frac{|g^{G_i} \cap H_i|}{|g^{G_i}|} < \frac{|H_i|}{|g^{G_i}|} < \frac{c k^n n_i/d}{r s^{n_i}(n_i^p)^{4/6}}.$$

Since $4/6 > 1/2 \geq 1/d$, it follows that $\chi(g) = 0$, which is a contradiction. \hfill \Box

Lemma 7.9. There exist only finitely many $i \in \mathbb{N}$ such that the action $H_i \rtimes \Delta_i$ is transitive.
Hence, combining Lemma 7.10 and Corollary 2.3, we obtain that
\[\text{order } p > s. \]

Let \(\theta \) be the normalized permutation characters of the actions \(G_i \setminus H_i \) induced at least \(\text{Alt}(\Omega_i) \) on \(\Omega_i = \Delta_i \setminus \Sigma_i \).

\[\text{Proof.} \]

Suppose not. Then, by Lemma 7.6, for all but finitely many \(i \in \mathbb{N} \), the subgroup \(H_i \) acts imprimitively on \(\Delta_i \) with a maximal system of imprimitivity \(B_i \) of blocksize \(d_i \). Furthermore, by Lemma 7.7, we have that \(d_i \to \infty \) as \(i \to \infty \). Let \(1 \neq h \in H \); say, \(h \in H_1 \). Then, by Corollary 7.5, there exist a constant \(a > 0 \) such that \(|\text{supp}_{\Delta_i}(g)| \geq a|\Delta_j| \) for all \(j \geq i \). But then Lemma 6.5 (in the case when \(r = 0 \)) implies that
\[\chi(g) = \lim_{j \to \infty} \frac{|\{ s \in G_j \mid sgs^{-1} \in H_i \}|}{|G_j|} = 0, \]

which is a contradiction. \(\square \)

Lemma 7.10. There exists a constant \(s \) such that for all but finitely many \(i \in \mathbb{N} \), there exists a unique \(H_i \)-invariant subset \(\Sigma_i \subseteq \Delta_i \) of cardinality \(1 \leq r_i \leq s \) such that \(H_i \) induces at least \(\text{Alt}(\Omega_i) \) on \(\Omega_i = \Delta_i \setminus \Sigma_i \).

\[\text{Proof.} \]

Combining Lemmas 7.6, 7.7 and 7.9, we see that there exists \(i_0 \in \mathbb{N} \) such that \(H_i \) acts imprimitively on \(\Delta_i \) for all \(i \geq i_0 \). For each such \(i \), let
\[r_i = \max\{ |\Sigma| : \Sigma \subseteq \Delta_i \text{ is } H_i \text{-invariant and } |\Sigma| \leq \frac{1}{2}|\Delta_i| \}. \]

Then, applying Lemma 6.6, we see that there exists \(s \) such that \(1 \leq r_i \leq s \) for all \(i \geq i_0 \). Furthermore, choosing \(i_0 \) so that \(|\Delta_{i_0}| \geq 4s \), it follows that for all \(i \geq i_0 \), there exists a unique \(H_i \)-invariant subset \(\Sigma_i \subseteq \Delta_i \) of cardinality \(r_i \) and that \(H_i \) acts transitively on \(\Omega_i = \Delta_i \setminus \Sigma_i \). Let \(H_i \) be the subgroup of \(\text{Sym}(\Omega_i) \) induced by the action of \(H_i \) on \(\Omega_i \). Then, arguing as above, we first see that \(H_i \) must act primitively on \(\Omega_i \) for all but finitely many \(i \geq i_0 \), and then that \(\text{Alt}(\Omega_i) \leq H_i \) for all but finitely many \(i \geq i_0 \). \(\square \)

In particular, it follows that for every prime \(p \), there exists arbitrarily large \(i \in \mathbb{N} \) such that there exists an element \(g \in H_i \) of order \(p \) with \(|\text{Fix}_{\Delta_i}(g)| \leq |\Delta_i|/(p+1) \).

Lemma 7.11. If \(g \in H \) has prime order \(p > s \), then \(\lim \inf |\text{Fix}_{\Delta_i}(g)|/|\Delta_i| \neq 0 \).

\[\text{Proof.} \]

Suppose that \(\lim \inf |\text{Fix}_{\Delta_i}(g)|/|\Delta_i| = 0 \) for some element \(g \in H \) of prime order \(p > s \). Let \(\theta_i, \psi_i \) be the normalized permutation characters of the actions \(G_i \setminus G_i/H_i \) and \(G_i \setminus |\Delta_i| \). Since \(p > s \geq r_i \), it follows that
\[\text{Fix}_{\Delta_i}(g) = [\text{Fix}_{\Delta_i}(g)]^{r_i}. \]

Hence, combining Lemma 7.10 and Corollary 2.3, we obtain that
\[\theta_i(g) \leq \psi_i(g) = \frac{|[\text{Fix}_{\Delta_i}(g)]^{r_i}|}{|[\Delta_i]|^{r_i}} \]
and it follows that \(\chi(g) = \lim_{i \to \infty} \theta_i(g) = 0 \), which is a contradiction. \(\square \)

The following lemma completes the proof of Proposition 7.3.

Lemma 7.12. \(G \) has linear natural orbit growth.

\[\text{Proof.} \]

Let \(p \) be a prime with \(p > s \), let \(a = 1/(p+1) \) and let \(n_{p,a} \) be the integer given by Lemma 6.1. Then there exists \(i_0 \) such that \(|\Delta_{i_0}| \geq \max\{ n_{p,a}, 5(p+1) \} \) and such that \(H_{i_0} \) contains an element \(g \) of order \(p \) such that \(|\text{Fix}_{\Delta_{i_0}}(g)| \leq |\Delta_{i_0}|/(p+1) \). Applying Corollary 7.5, it follows that \(|\text{Fix}_{\Delta_i}(g)| \leq |\Delta_i|/(p+1) \) for all \(i \geq i_0 \). Furthermore, by Lemma 7.11, we can assume that \(|\text{Fix}_{\Delta_i}(g)| \geq 10 \) for all \(i \geq i_0 \).
Suppose that \(\Phi \) is a non-natural orbit of \(G_i = \text{Alt}(\Delta_i) \) on \(\Delta_{i+1} \). Then, applying Corollary 2.3 and Lemmas 6.1, 6.2 and 6.3, it follows that
\[
\frac{|\text{Fix}_\Phi(g)|}{|\Phi|} < \max \left\{ \frac{1}{2|\Delta_i|}, \frac{5}{|\Delta_i|} \right\} = \frac{|\text{Fix}_\Delta(g)|}{2|\Delta_i|};
\]
and it follows that
\[
|\text{Fix}_{\Delta_{i+1}}(g)| \leq s_{i+1} n_i \frac{|\text{Fix}_{\Delta_i}(g)|}{|\Delta_i|} + (n_{i+1} - s_{i+1} n_i) \frac{|\text{Fix}_{\Delta_i}(g)|}{2|\Delta_i|}
\]
\[
= (2n_{i+1} - e_{i+1}) \frac{|\text{Fix}_{\Delta_i}(g)|}{2|\Delta_i|}.
\]
It follows that for all \(i \geq i_0 \),
\[
|\text{Fix}_{\Delta_{i+1}}(g)| \leq (1 - \frac{e_{i+1}}{2n_{i+1}}) |\text{Fix}_{\Delta_i}(g)|/|\Delta_i|.
\]
Since \(\lim \inf \frac{|\text{Fix}_{\Delta_i}(g)|}{|\Delta_i|} \neq 0 \), it follows that the infinite product
\[
\prod_{i=i_0}^{\infty} \left(1 - \frac{e_{i+1}}{2n_{i+1}} \right)
\]
converges to a nonzero real. Hence the same is true of the infinite product
\[
\prod_{i=i_0}^{\infty} \left(1 - \frac{e_{i+1}}{2n_{i+1}} \right)^{-1} = \prod_{i=i_0}^{\infty} \left(1 + \frac{e_{i+1}}{2n_{i+1} - e_{i+1}} \right),
\]
and this implies that
\[
\sum_{i=i_0}^{\infty} \frac{e_{i+1}}{2n_{i+1} - e_{i+1}} < \infty.
\]
Of course, since the infinite product (7.1) converges to a nonzero real, it follows that \(\lim_{i \to \infty} e_{i+1}/n_{i+1} = 0; \) and hence there exists \(i_1 \geq i_0 \) such that for all \(i \geq i_1 \),
\[
2n_{i+1} - e_{i+1} \leq 3(n_{i+1} - e_{i+1}).
\]
It follows that
\[
\sum_{i=i_1}^{\infty} \frac{e_{i+1}}{n_{i+1} - e_{i+1}} = 3 \sum_{i=i_1}^{\infty} \frac{e_{i+1}}{3(n_{i+1} - e_{i+1})} \leq 3 \sum_{i=i_1}^{\infty} \frac{e_{i+1}}{2n_{i+1} - e_{i+1}} < \infty;
\]
and, arguing as above, this implies that the infinite product
\[
\prod_{i=i_1}^{\infty} \left(1 - \frac{e_{i+1}}{n_{i+1}} \right)
\]
converges to a nonzero real. Next notice that if \(i < j \), then
\[
\frac{s_{ij}}{n_j} = \frac{1}{n_i} \cdot \frac{s_{i+1} n_i}{n_{i+1}} \cdot \frac{s_{i+2} n_{i+1}}{n_{i+2}} \cdots \frac{s_j n_{j-1}}{n_j}
\]
and hence
\[
a_{i_1} = \lim_{j \to \infty} \frac{s_{ij}}{n_j} = \frac{1}{n_{i_1}} \prod_{i=i_1}^{\infty} \frac{s_{i+1} n_i}{n_{i+1}}.
\]
Finally, since \(s_{i+1} n_i = n_{i+1} - e_{i+1} \), it follows that
\[
a_{i_1} = \frac{1}{n_{i_1}} \prod_{i=i_1}^{\infty} \frac{s_{i+1} n_i}{n_{i+1}} = \frac{1}{n_{i_1}} \prod_{i=i_1}^{\infty} \left(1 - \frac{e_{i+1}}{n_{i+1}} \right) > 0.
\]
In the remainder of this section, via a slight modification of the above argument, we will prove that if $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth, then the ergodic IRSs of G are \{ δ_1, δ_2 \} \cup \{ ν_r $|$ $r \in \mathbb{N}^+$ \}, where ν_r is the stabilizer distribution of the ergodic action $G \cap (\Delta', m^{\otimes r})$.

For the remainder of this section, suppose that $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth. Note that we are not assuming that $G = \bigcup_{i \in \mathbb{N}} G_i$ is a full limit. Let $\nu \neq \delta_1, \delta_2$ be an ergodic IRS of G. As usual, for each $H \in \mathcal{N}_G$, we will write $H_i = H \cap G_i$.

Lemma 7.13. There exists a constant s such that if $H \in \mathcal{N}_G$ is a ν-generic subgroup, then for all but finitely many $i \in \mathbb{N}$, there exists a unique H_i-invariant subset $\Sigma_i \subseteq \Delta_i$ of cardinality $1 \leq r_i \leq s$ such that H_i induces at least $\text{Alt}(\Omega_i)$ on $\Omega_i = \Delta_i \setminus \Sigma_i$.

Before sketching the proof of Lemma 7.13, we will first complete the proof of Theorem 3.19. Suppose that $H \in \mathcal{N}_G$ is a ν-generic subgroup. Let i_0 be an integer such that for all $i \geq i_0$, there exists a unique H_i-invariant subset $\Sigma_i \subseteq \Delta_i$ of cardinality $1 \leq r_i \leq s$ such that H_i induces at least $\text{Alt}(\Omega_i)$ on $\Omega_i = \Delta_i \setminus \Sigma_i$ and such that $|\text{Alt}(\Omega_i)| \gg s!$. For each $i \geq i_0$, let $\pi_i : H_i \rightarrow \text{Sym}(\Sigma_i)$ be the homomorphism defined by $g \mapsto g \mid \Sigma_i$ and let $K_i = \ker \pi_i$. Since $[H_i : K_i] \leq s!$, it follows that $K_i = \text{Alt}(\Omega_i)$. Also note that since $[H_{i+1} : K_{i+1}] \leq s!$, it follows that $[K_i : K_i \cap K_{i+1}] \leq s!$ and hence $K_i \subseteq K_{i+1}$. Let $K = \bigcup_{i \geq i_0} K_i$. Since K_i is the unique largest factor of the socle of H_i, it follows that the map $H \mapsto K$ is G-equivariant and hence there is an associated ergodic IRS $\tilde{\nu}$ which concentrates on the corresponding subgroups $K \subseteq H$. Applying Theorem 3.23, it follows that there exists $1 \leq r \leq s$ such that $\tilde{\nu}$ is the stabilizer distribution ν_r of $G \cap (\Delta', m^{\otimes r})$, where $G \cap (\Delta, m)$ is the canonical ergodic action. Hence, in order to complete the proof of Theorem 3.19, it is enough to show that $H = K$ for ν-a.e. $H \in \mathcal{N}_G$. To see this, let $H \in \mathcal{N}_G$ be such that the corresponding subgroup K is the stabilizer of the sequence $(x_1, \cdots, x_r) \in \Delta^r$. For each $j \in \mathbb{N}$, let $\Sigma_j = \{ x_\ell \mid \Delta_j \cap 1 \leq \ell \leq r \}$. Then

$$K_j = \text{Alt}(\Delta_j \setminus \Sigma_j) \subseteq H_j \subseteq \text{Sym}(\Delta_j \setminus \Sigma_j) \times \text{Sym}(\Sigma_j),$$

and hence $K \leq H$. By Proposition 3.20, the stabilizer G_ξ is self-normalizing for $m^{\otimes r}$-a.e. $\xi \in \Delta^r$ and this means that $H = K$ for ν-a.e. $H \in \mathcal{N}_G$. This completes the proof of Theorem 3.19.

The proof of Lemma 7.13 is almost identical to that of Lemma 7.10, so we will only sketch the main points. First the following argument shows that Corollary 7.5 also holds when $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth.

Lemma 7.14. For each $\varepsilon > 0$, there exists $i_\varepsilon \in \mathbb{N}$ such that if $i_\varepsilon \leq i < j$ and $g \in G_i$, then $|\text{supp}_{\Delta_j}(g)/|\Delta_j| \geq (1 - \varepsilon) |\text{supp}_{\Delta_i}(g)/|\Delta_i||.$

Proof. If $i < j$ and $g \in G_i$, then

$$|\text{supp}_{\Delta_j}(g)/|\Delta_j| \geq \frac{\text{supp}_{\Delta_i}(g)}{n_j} \geq a_i |\text{supp}_{\Delta}(g)|,$$

Since Lemma 3.15 implies that $\lim_{i \to \infty} (1 - n_i a_i) = 0$, the result follows. \qed

Corollary 7.15. $\lim \sup |\text{Fix}_{\Delta_j}(g)/|\Delta_j| < 1$ for all $1 \neq g \in G$.\]
Using Corollary 7.15, we can now repeat the proofs of Lemmas 7.6, 7.7, 7.9 and 7.10, except for the final paragraph of the proof of Lemma 7.7, where we require that there exists an element \(g \in H \) such that \(\lim \inf |\text{supp}_{\Delta_i}(g)|/|\Delta_i| \geq 5/6 \). To see that such an element exists, first note that the proof of Claim 7.8 goes through in this setting. Thus we can suppose that there exists an integer \(i_0 \) such that the following conditions hold:

(a) \(H_{i_0} \) acts imprimitively on \(\Delta_{i_0} \) preserving a maximal system \(\mathcal{B}_{i_0} \) of imprimitivity of blocksize \(d \).
(b) The induced action of \(H_{i_0} \) on \(\mathcal{B}_{i_0} \) contains \(\text{Alt}(\mathcal{B}_{i_0}) \).
(c) \((n_{i_0} - 4d)/n_{i_0} \geq 99/100\).

Furthermore, by Lemma 7.14, we can suppose that \(i_0 \) has been chosen so that if \(i \geq i_0 \) and \(g \in G_i \), then

\[
|\text{supp}_{\Delta_i}(g)|/|\Delta_i| \geq \frac{99}{100} |\text{supp}_{\Delta_{i_0}}(g)|/|\Delta_{i_0}|.
\]

Let \(g \in H_{i_0} \) be an element of order 5 such that \(g \) fixes setwise at most 4 blocks of \(\mathcal{B}_{i_0} \). Then

\[
|\text{supp}_{\Delta_{i_0}}(g)|/|\Delta_{i_0}| \geq \frac{n_{i_0} - 4d}{n_{i_0}} \geq \frac{99}{100},
\]

and it follows that for all \(i \geq i_0 \),

\[
|\text{supp}_{\Delta_i}(g)|/|\Delta_i| \geq \frac{99}{100} \cdot \frac{|\text{supp}_{\Delta_{i_0}}(g)|}{|\Delta_{i_0}|} \geq \frac{99}{100} \cdot \frac{99}{100} > \frac{5}{6}.
\]

This completes our sketch of the proof of Lemma 7.13.

8. Arbitrary limits of finite alternating groups

In this section, we will first prove that if \(G \) is an \(L(\text{Alt}) \)-group with a nontrivial ergodic IRS, then \(G \) can be expressed as an almost diagonal limit of finite alternating groups. Then we will classify the ergodic IRSs of the almost diagonal groups \(G = \bigcup_{i \in \mathbb{N}} G_i \) with sublinear natural orbit growth such that \(G \not\cong \text{Alt}(\mathbb{N}) \). The ergodic IRSs of \(\text{Alt}(\mathbb{N}) \) will be described in Section 9. Throughout this section, let \(G = \bigcup_{i \in \mathbb{N}} G_i \) be the (not necessarily full) union of the increasing chain of finite alternating groups \(G_i = \text{Alt}(\Delta_i) \) and suppose that \(G \not\cong \text{Alt}(\mathbb{N}) \).

Lemma 8.1. For each \(i \in \mathbb{N} \), the number \(c_{ij} \) of nontrivial \(G_i \)-orbits on \(\Delta_j \) is unbounded as \(j \to \infty \).

Proof. By Hall [5, Theorem 5.1], if there exist \(i, c \in \mathbb{N} \) such that \(G_i \) has at most \(c \) nontrivial orbits on \(\Delta_j \) for all \(j > i \), then \(G \cong \text{Alt}(\mathbb{N}) \), which is a contradiction. \(\square \)

Hence, after passing to a suitable subsequence, we can suppose that each \(G_i \) has at least 2 nontrivial orbits on \(\Delta_{i+1} \). Of course, since \(G_i \) is simple, this implies that if \(1 \neq G'_i \subseteq G_i \), then \(G'_i \) also has at least 2 nontrivial orbits on \(\Delta_{i+1} \). For each \(\ell \in \mathbb{N} \), we define sequences of subsets \(\Delta_{ij}^\ell \subseteq \Delta_j \) and subgroups \(G(\ell)_j = \text{Alt}(\Delta_{ij}^\ell) \) for \(j \geq \ell \) inductively as follows:

- \(\Delta_{ij}^\ell = \Delta_i^\ell \);
- \(\Delta_{ij+1}^\ell = \Delta_{j+1} \setminus \text{Fix}_{\Delta_{j+1}}(G(\ell)_j) \).
Clearly each $G(\ell)$ is strictly contained in $G(\ell)_{j+1}$ and $G(\ell) = \bigcup_{i<j} G(\ell)_j$ is the full limit of the alternating groups $G(\ell)_j = \Alt(\Delta^\ell_j)$. It is also easily checked that if $\ell < m$ and $i < j$, then

$$G_\ell \leq G(\ell)_i \leq G(m)_i < G(m)_j.$$

It follows that if $\ell < m$, then $G(\ell) \leq G(m)$ and that $G = \bigcup_{i \in \mathbb{N}} G(\ell)$. For the rest of this section, suppose that $\nu \neq \delta_1, \delta_G$ is an ergodic IRS of G.

Lemma 8.2. $G(\ell) = \bigcup_{i \leq j} G(\ell)_j$ has linear natural orbit growth for all but finitely many $\ell \in \mathbb{N}$.

Proof. Otherwise, by Proposition 7.3, there exists an infinite subset $I \subseteq \mathbb{N}$ such that for each $\ell \in I$, the only ergodic IRS of $G(\ell)$ are δ_1 and $\delta_G(\ell)$. For each $\ell \in I$, let $f_\ell : \Sub_G \to \Sub_G(\ell)$ be the Borel map defined by $H \mapsto H \cap G(\ell)$. Then the map f_ℓ is $G(\ell)$-equivariant and hence $\nu_G(\ell) = (f_\ell)_* \nu$ is a (not necessarily ergodic) IRS of $G(\ell)$. It follows that for ν-a.e. $H \in \Sub_G$, for all $\ell \in I$, either $H \cap G(\ell) = 1$ or $G(\ell) \leq H$. Since $G = \bigcup_{i \in I} G(\ell)$, this implies that for ν-a.e. $H \in \Sub_G$, either $H = 1$ or $H = G$, which is a contradiction. \qed

Hence we can suppose that $G(\ell) = \bigcup_{i \leq j} G(\ell)_j$ has linear natural orbit growth for all $\ell \in \mathbb{N}$. Let $G(\ell) \searrow (\Delta^\ell_r, m_\ell)$ be the canonical ergodic action and for each $r \in \mathbb{N}^+$, let $\nu(\ell)$, be the stabilizer distribution of $G(\ell) \searrow (\Delta^\ell_r, m_\ell^{\mathbb{N}^+})$. Let $\nu_G(\ell)$ be the (not necessarily ergodic) IRS of $G(\ell)$ arising from the (ℓ)-equivariant map $\Sub_G \to \Sub_G(\ell)$ defined by $H \mapsto H \cap G(\ell)$. Then Theorem 3.19 implies that there exist $\alpha(\ell), \beta(\ell), \gamma(\ell)_r \in [0, 1]$ with $\alpha(\ell) + \beta(\ell) + \sum_{r \in \mathbb{N}^+} \gamma(\ell)_r = 1$ such that

$$(8.1) \quad \nu_G(\ell) = \alpha(\ell) \delta_1 + \beta(\ell) \delta_G(\ell) + \sum_{r \in \mathbb{N}^+} \gamma(\ell)_r \nu(\ell)_r.$$

Let $H \in \Sub_G$ be a ν-generic subgroup and let $t_0 \in \mathbb{N}$ be the least integer such that $1 < H \cap G(t_0) < G(t_0)$. Then equation (8.1) implies that for each $\ell \geq t_0$, there exist $i_\ell \geq \ell$ and $r_\ell \geq 1$ such that for all $j \geq i_\ell$, there exists $\Sigma^\ell_j \in [\Delta^\ell_j]^{r_\ell}$ such that

$$H \cap G(t_j) = H \cap \Alt(\Delta^\ell_j) \leq \Alt(\Delta^\ell_j \setminus \Sigma^\ell_j).$$

and such that Σ^ℓ_k is contained in the union of the natural $G(\ell)_j$-orbits on Δ^ℓ_k for all $k > j$. Define $i_\ell = \ell$ for $0 \leq \ell < t_0$ and let $f_H \in \mathbb{N}^\mathbb{N}$ be the function defined by $f_H(\ell) = i_\ell$. Applying the Borel-Cantelli Lemma, it follows that there exists a function $f \in \mathbb{N}^\mathbb{N}$ such that for ν-a.e. $H \in \Sub_G$, for all but finitely many $\ell \in \mathbb{N}$, we have that $f_H(\ell) \leq f(\ell)$. Let $(\ell \in \mathbb{N})$ be a strictly increasing sequence of integers such that $j_k \geq \max\{f(k) \mid k \leq \ell\}$. For each $\ell \in \mathbb{N}$, let $\Delta^\ell_{j_k}$ and let $G^\ell_{j_k} = \Alt(\Delta^\ell_{j_k})$. Then it is easily checked that if $\ell < k$, then $G^\ell_{j_k} < G^\ell_{j_k}$ and that $G = \bigcup_{\ell \in \mathbb{N}} G^\ell_{j_k}$.

Suppose that $H \in \Sub_G$ is a ν-generic subgroup. Then there exists an integer $t_H \in \mathbb{N}$ such that $i_\ell = f_H(\ell) \leq f(\ell)$ for all $\ell \geq t_H$. Let $\ell \geq t_H$. Then, since

$$j_{\ell+1} \geq \max\{f(\ell), f(\ell + 1)\} \geq \max\{i_\ell, i_{\ell+1}\}$$

and $\Delta^\ell_{j_{\ell+1}} \subseteq \Delta^\ell_{j_{\ell+1}} \subseteq \Delta^\ell_{j_{\ell+1}}$, it follows that there exist subsets $\Sigma^\ell_{j_{\ell+1}} \in [\Delta^\ell_{j_{\ell+1}}]^{r_{\ell+1}}$ and $\Sigma^\ell_{j_{\ell+1}} \in [\Delta^\ell_{j_{\ell+1}}]^{r_{\ell+1}}$ such that

$$\Alt(\Delta^\ell_{j_{\ell+1}} \setminus \Sigma^\ell_{j_{\ell+1}}) = H \cap \Alt(\Delta^\ell_{j_{\ell+1}}) \leq H \cap \Alt(\Delta^\ell_{j_{\ell+1}}) = \Alt(\Delta^\ell_{j_{\ell+1}} \setminus \Sigma^\ell_{j_{\ell+1}}).$$
This implies that $\Sigma_0^\ell = \Sigma^\ell_{j+1} \cup \Delta^\ell_{j+1}$. Since $j_\ell \geq f(\ell) \geq i_\ell$, it follows that Σ_{j+1} is contained in the union of the natural $G(\ell)_{j+1}$-orbits on Δ_{j+1}; and since $\Delta_{j+1} \cap \Delta^2_{j+1} \subseteq \text{Fix}_{A_{j+1}}(G(\ell)_{j+1})$, it follows that Σ_{j+1} is contained in the union of the natural and trivial $G(\ell)_{j+1}$-orbits on Δ^2_{j+1}. In other words, writing $\Sigma^\ell_j = \Sigma^\ell_{j+1}$, we have shown that for all $\ell \geq i_H$,

(i) $H' = H \cap G'_\ell = \text{Alt} (\Delta^\ell_j \setminus \Sigma^\ell_j)$; and

(ii) Σ^ℓ_{j+1} is contained in the union of the natural and trivial G'_ℓ-orbits on Δ_{j+1}.

First suppose that $G = \bigcup_{\ell \in \mathbb{N}} G'_\ell$ has linear natural orbit growth with the associated parameters n'_ℓ, s'_ℓ, etc. Then we can suppose that $a'_\ell = \lim_{k \to \infty} s'_\ell / n'_\ell > 0$ for all $\ell \in \mathbb{N}$; and it follows by Remark 3.17 that $G = \bigcup_{\ell \in \mathbb{N}} G'_\ell$ is an almost diagonal limit.

Hence we can suppose that $G = \bigcup_{\ell \in \mathbb{N}} G'_\ell$ has sublinear natural orbit growth. Let Σ' be the associated space of sequences $(\Sigma'_{\ell})_{\ell \geq 0}$, as defined in Section 4; and let $f : \Sigma' \to \text{Sub}_G$ be the injective G-equivariant map defined by

$$(\Sigma'_{\ell})_{\ell \geq 0} \overset{f}{\mapsto} \bigcup_{\ell \geq 0} \text{Alt}(\Delta^\ell_j \setminus \Sigma^\ell_j).$$

Then ν concentrates on $f(\Sigma')$ and it follows that $\mu = f^{-1}_* \nu$ is a nonatomic G-invariant ergodic probability measure on Σ'. Applying Theorem 5.1, it follows that $G = \bigcup_{\ell \in \mathbb{N}} G'_\ell$ is an almost diagonal limit. This completes the proof that if G is an $L(\text{Alt})$-group with a nontrivial ergodic IRS, then G can be expressed as an almost diagonal limit of finite alternating groups. For use in the next paragraph, also note that by Theorem 5.1, there exists $\gamma \in (0, \infty)$ such that $\nu = \nu^\gamma$.

Finally we will prove that if $G = \bigcup_{\ell \in \mathbb{N}} G_\ell$ is an almost diagonal limit with sublinear natural orbit growth and $G \not\cong \text{Alt} (\mathbb{N})$, then the ergodic IRSs of G are

$$\{\delta_1, \delta_2\} \cup \{\nu^\gamma_\beta \mid \beta \in (0, \infty)\}.$$

Note that the above analysis shows that if $\nu \neq \delta_1, \delta_2$ is an ergodic IRS of G, then there exists

- a strictly increasing sequence of integers $(j_\ell \mid \ell \in \mathbb{N})$, and
- subsets $\Delta_\ell \subseteq \Delta_{j_\ell}$

such that, letting $G'_\ell = \text{Alt}(\Delta_{j_\ell})$, we have that

- $G = \bigcup_{\ell \in \mathbb{N}} G'_\ell$ is an almost diagonal limit, and
- there exists $\gamma \in (0, \infty)$ such that $\nu = \nu^\gamma_\beta$, where Σ' is the associated space of sequences $(\Sigma'_{\ell})_{\ell \geq 0}$.

We must show that there exists $\beta \in (0, \infty)$ such that $\nu^\gamma_\beta = \nu^\gamma_\beta$. Note that $G'_\ell \subseteq G_{j_\ell}$ for each $\ell \in \mathbb{N}$. By Theorem 5.7, after passing to a suitable subsequence of $(j_\ell \mid \ell \in \mathbb{N})$ if necessary, we can suppose that $G_{j_\ell} \subseteq G'_{\ell+1}$ for each $\ell \in \mathbb{N}$. By a second application of Theorem 5.7, we can suppose that $j_\ell = \ell$ for all $\ell \in \mathbb{N}$. (We only make this assumption in order to simplify notation.) Appealing twice more to Theorem 5.7, we now see that it is enough to show that the increasing chain

$$G'_0 \subseteq G_0 \subseteq G'_1 \subseteq G_1 \subseteq \cdots \subseteq G'_\ell \subseteq G_\ell \subseteq \cdots$$

is an almost diagonal limit. Let $\Delta''_2 = \Delta'_2$ and let $\Delta''_{2+1} = \Delta_1$. Let $G''_\ell = \text{Alt}(\Delta''_\ell)$. Let $s''_{2+1} = 1$ and $e''_{2+1} = 0$. Also, since $\text{supp}_{\Delta_{i+1}}(G_i) \subseteq \text{supp}_{\Delta_{i+1}}(G'_{i+1}) = \Delta_{i+1}$, it
follows that \(s''_{2i+2} = s_{i+1} \) and \(e''_{2i+2} = e_{i+1} \). Thus \(\sum_{i=1}^{\infty} e''_i / s''_0 = \sum_{i=1}^{\infty} e_i / s_0 < \infty \). This completes the proof of Theorem 4.15.

9. The Ergodic IRS of \(\text{Alt}(\mathbb{N}) \)

In this section, adapting and slightly correcting Vershik’s analysis of the ergodic IRSs of the group \(\text{Fin}(\mathbb{N}) \) of finitary permutations of the natural numbers, we will state the classification of the ergodic IRSs of the infinite alternating group \(\text{Alt}(\mathbb{N}) \) and we will characterize the ergodic actions \(\text{Alt}(\mathbb{N}) \rtimes (\mathbb{Z}, \mu) \) such that the associated character \(\chi(g) = \mu(\text{Fix}_Z(g)) \) is indecomposable.

Recall that \(\text{Fin}(\mathbb{N}) = \{ g \in \text{Sym}(\mathbb{N}) \mid |\text{supp}(g)| < \infty \} \). Throughout this section, if \(g \in \text{Fin}(\mathbb{N}) \), then \(c_n(g) \) denotes the number of cycles of length \(n > 1 \) in the cyclic decomposition of the permutation \(g \) and \(\text{sgn} : \text{Fin}(\mathbb{N}) \to C = \{ \pm 1 \} \) is the homomorphism defined by

\[
\text{sgn}(g) = \begin{cases} 1, & \text{if } g \in \text{Alt}(\mathbb{N}); \\ -1, & \text{otherwise.} \end{cases}
\]

Vershik’s analysis of the ergodic IRSs of \(\text{Fin}(\mathbb{N}) \) is based upon the following two insights.

(i) If \(H \leq \text{Fin}(\mathbb{N}) \) is a random subgroup, then the corresponding \(H \)-orbit decomposition \(\mathbb{N} = \bigsqcup_{i \in I} B_i \) is a random partition of \(\mathbb{N} \), and these have been classified by Kingman [7].

(ii) The induced action of \(H \) on an infinite orbit \(B_i \) can be determined via an application of Wielandt’s theorem [22, Satz 9.4], which states that \(\text{Alt}(\mathbb{N}) \) and \(\text{Fin}(\mathbb{N}) \) are the only primitive subgroups of \(\text{Fin}(\mathbb{N}) \).

With minor modifications, the same ideas apply to the ergodic IRSs of \(\text{Alt}(\mathbb{N}) \), which can be classified as follows. Suppose that \(\alpha = (\alpha_i)_{i \in \mathbb{N}} \in [0,1]^{\mathbb{N}} \) is a sequence such that:

- \(\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_i \geq \cdots \geq 0 \); and
- \(\sum_{i=0}^{\infty} \alpha_i = 1. \)

Then we can define a probability measure \(p_\alpha \) on \(\mathbb{N} \) by \(p_\alpha(\{ i \}) = \alpha_i \). Let \(\mu_\alpha \) be the corresponding product probability measure on \(\mathbb{N}^\mathbb{N} \). Then \(\text{Alt}(\mathbb{N}) \) acts ergodically on \((\mathbb{N}^\mathbb{N}, \mu_\alpha) \) via the shift action \((\gamma, \xi)(n) = \xi(\gamma^{-1}(n)) \). For each \(\xi \in \mathbb{N}^\mathbb{N} \) and \(i \in \mathbb{N} \), let \(B^\xi_i = \{ n \in \mathbb{N} \mid \xi(n) = i \} \). Then for \(\mu_\alpha \)-a.e. \(\xi \in \mathbb{N}^\mathbb{N} \), the following statements are equivalent for all \(i \in \mathbb{N} \).

(a) \(\alpha_i > 0. \)
(b) \(B^\xi_i \neq \emptyset. \)
(c) \(B^\xi_i \) is infinite.
(d) \(\lim_{n \to \infty} |B^\xi_i \cap \{0,1,\ldots,n-1\}|/n = \alpha_i. \)

In this case, we say that \(\xi \) is \(\mu_\alpha \)-generic.

First suppose that \(\alpha_0 \neq 1 \), so that \(I = \{ i \in \mathbb{N}^+ \mid \alpha_i > 0 \} \neq \emptyset \). Let \(S_\alpha = \bigoplus_{i \in I} C_i \), where each \(C_i = \{ \pm 1 \} \) is cyclic of order 2, and let \(E_\alpha \leq S_\alpha \) be the subgroup consisting of the elements \((\varepsilon_i)_{i \in I} \) such that \(\{ i \in I \mid \varepsilon_i = -1 \} \) is even. Then for each subgroup \(A \leq E_\alpha \), we can define a corresponding \(\text{Alt}(\mathbb{N}) \)-equivariant Borel map

\[
f^A_\alpha : \mathbb{N}^\mathbb{N} \to \text{Sub}_{\text{Alt}(\mathbb{N})} \\
\xi \mapsto H_\xi
\]
as follows. If \(\xi \) is \(\mu_\alpha \)-generic, then \(H_\xi = s_\xi^{-1}(A) \), where \(s_\xi \) is the homomorphism

\[
s_\xi : \bigoplus_{i \in I} \text{Fin}(B_i^\xi) \to \bigoplus_{i \in I} C_i \quad (\pi_i) \mapsto (\text{sgn}(\pi_i)).
\]

Otherwise, if \(\xi \) is not \(\mu_\alpha \)-generic, then we let \(H_\xi = 1 \). Let \(\nu_\alpha^A = (f_\alpha^A)_*\mu_\alpha \) be the corresponding ergodic IRS of \(\text{Alt}(N) \). Finally, if \(\alpha_0 = 1 \), then we define \(E_0 = \emptyset \) and \(\nu_\alpha^{E_0} = \delta_1 \).

Theorem 9.1. If \(\nu \) is an ergodic IRS of \(\text{Alt}(N) \), then there exists \(\alpha, A \) as above such that \(\nu = \nu_\alpha^A \).

There exist examples of sequences \(\alpha \) and distinct subgroups \(A, A' \leq E_\alpha \) such that \(\nu_\alpha^A = \nu_\alpha^{A'} \). However, since for \(\mu_\alpha \)-a.e. \(\xi \in N^N \),

\[
\lim_{n \to \infty} |B_\xi^\xi \cap \{0, 1, \ldots, n - 1\}|/n = \alpha_i,
\]

it follows that if \(\alpha \neq \alpha' \) and \(A, A' \) are subgroups of \(E_\alpha, E_{\alpha'} \), then \(\nu_\alpha^A \neq \nu_\alpha^{A'} \). The remainder of this section is devoted to the proof of the following result.

Theorem 9.2. If \(\text{Alt}(N) \acts (Z, \mu) \) is an ergodic action and \(\nu \) is the corresponding stabilizer distribution, then the following are equivalent.

(i) The associated character \(\chi(g) = \mu(\text{Fix}_G(g)) \) is indecomposable.

(ii) There exists \(\alpha \) such that \(\nu = \nu_\alpha^{E_\alpha} \).

The proof of Theorem 9.2 makes use of the following results of Thoma [17].

Theorem 9.3. (Thoma [17, Satz 6]) The indecomposable characters of \(\text{Alt}(N) \) are precisely the restrictions \(\chi \mid \text{Alt}(N) \) of the indecomposable characters \(\chi \) of \(\text{Fin}(N) \).

Theorem 9.4. (Thoma [17, Satz 1]) If \(\chi \) is a character of \(\text{Fin}(N) \), then \(\chi \) is indecomposable if and only if there exists a sequence \((s_n \mid n \geq 2) \) of real numbers with each \(|s_n| \leq 1 \) such that \(\chi(g) = \prod_{n \geq 2} s_n^{s_n(g)} \).

Lemma 9.5. If \(\text{Alt}(N) \acts (Z, \mu) \) is an ergodic action and there exists \(\alpha \) such that the corresponding stabilizer distribution is \(\nu_\alpha^{E_\alpha} \), then the associated character \(\chi(g) = \mu(\text{Fix}_G(g)) \) is indecomposable.

Proof. If \(\alpha_0 = 1 \), then \(\nu_\alpha^{E_\alpha} = \delta_1 \) and the associated character \(\chi_{\text{reg}} \) is indecomposable. Hence we can suppose that \(\alpha_0 \neq 1 \) and so \(I \neq \emptyset \).

With the above notation, \(\text{Fin}(N) \) acts ergodically on \((N^N, \mu_\alpha) \) and we can define a \(\text{Fin}(N) \)-equivariant Borel map

\[
\varphi_\alpha : N^N \to \text{Sub}_{\text{Fin}(N)} \quad \xi \mapsto \bigoplus_{i \in I} \text{Fin}(B_i^\xi).
\]

Let \(\nu_\alpha^+ = (\varphi_\alpha)_*\mu_\alpha \) be the corresponding ergodic IRS of \(\text{Fin}(N) \) and let \(\chi_\alpha^+ \) be the character of \(\text{Fin}(N) \) defined by

\[
\chi_\alpha^+(g) = \mu_\alpha(\{ \xi \in N^N \mid g \in \bigoplus_{i \in I} \text{Fin}(B_i^\xi) \}) .
\]
Then it is easily checked that
\[\chi^+(g) = \prod_{n > 1} (\sum_{i \in I} \alpha_i^n)^{c_n(g)}. \]

Hence, by Theorem 9.4, it follows that \(\chi^+ \) is an indecomposable character of \(\text{Fin}(\mathbb{N}) \).

Notice that if \(g \in \text{Alt}(\mathbb{N}) \), then
\[\chi(g) = \mu(\text{Fix}_Z(g)) = \nu_{\alpha}^{E_\alpha}(\{ H \in \text{Sub}_{\text{Ar}}(\mathbb{N}) \mid g \in H \}) = \mu_{\alpha}(\{ \xi \in \alpha^\mathbb{N} \mid g \in \text{Alt}(\mathbb{N}) \cap \bigoplus_{i \in I} \text{Fin}(B_i^\xi) \}) = \chi^+(g). \]

Applying Theorem 9.3, it follows that \(\chi \) is an indecomposable character of \(\text{Alt}(\mathbb{N}) \).

Proof of Theorem 9.2. Let \(\text{Alt}(\mathbb{N}) \cap (\mathbb{Z}, \mu) \) be an ergodic action and suppose that associated character \(\chi(g) = \mu(\text{Fix}_G(g)) \) is indecomposable. Let \(\nu \) be the corresponding stabilizer distribution. If \(\nu = \delta_1 \), then \(\nu = \nu_{\alpha}^{E_\alpha} \), where \(\alpha_0 = 1 \) and \(E_\alpha = \emptyset \). Hence we can suppose that \(\nu \neq \delta_1 \). Applying Theorem 9.1, there exist \(\alpha, A \) as above with \(I \neq \emptyset \) such that \(\nu = \nu_{\alpha}^{A} \) and hence
\[\chi(g) = \mu_{\alpha}(\{ \xi \in \alpha^\mathbb{N} \mid g \in H_\xi \}). \]

If \(|I| = 1 \), then \(E_\alpha = \emptyset \) is the trivial group and so \(A = E_\alpha \). Thus we can suppose that \(|I| \geq 2 \). For each element \(a = (\varepsilon_i)_{i \in I} \in A \), let \(\sigma(a) = \{ i \in I \mid \varepsilon_i = -1 \} \).

If \(A \neq 0 \), let \(m_A \) be the least integer \(m \) such that there is an element \(0 \neq a \in I \) such that \(|\sigma(a)| = m \). If \(A = 0 \), then let \(m_A = 0 \). Let \(g = (12)(34) \) and \(h = (12)(34)(56)(78) \). Then Theorem 9.4 implies that \(\chi(h) = \chi(g)^2 \).

Case 1: Suppose that \(m_A > 2 \). Then it is easily seen that \(\chi(g) = \sum_{i \in I} \alpha_i^4 \) and that \(\chi(h) \geq \sum_{i \in I} \alpha_i^8 + (\frac{2}{2}) \sum_{\{i,j\} \in [I]} \alpha_i^4 \alpha_j^4 \). On the other hand, we have that
\[\chi(g)^2 = \sum_{i \in I} \alpha_i^8 + 2 \sum_{\{i,j\} \in [I]} \alpha_i^4 \alpha_j^4 \] and so \(\chi(h) > \chi(g)^2 \), which is a contradiction.

Case 2: Suppose that \(m_A \in \{0,2\} \). Let \(\Gamma = (I, E) \) be the graph with vertex set \(I \) and edge set \(E \) such that \(\{j,k\} \in E \) if and only if there exists \(a \in A \) with \(\sigma(a) = \{j,k\} \). Then it is enough to show that \(E = [I]^2 \).

In this case, it is clear that \(\chi(g) = \sum_{i \in I} \alpha_i^4 + 2 \sum_{\{i,j\} \in E} \alpha_i^2 \alpha_j^2 \) and so
\[\chi(g)^2 = \sum_{i \in I} \alpha_i^8 + 2 \sum_{\{i,j\} \in E} \alpha_i^4 \alpha_j^4 + 4 \sum_{i \in I} \alpha_i^4 \sum_{\{i,j\} \in E} \alpha_j^2 \alpha_k^2 + 4 \sum_{\{i,j\} \in E} \alpha_i^2 \alpha_j^2 \alpha_k^2 \alpha_l^2. \]

After rearranging the terms, we obtain that
\[\chi(g)^2 = \sum_{i \in I} \alpha_i^8 + 6 \sum_{\{i,j\} \in E} \alpha_i^4 \alpha_j^4 + 4 \sum_{\{i,j\} \in E} \alpha_i^4 \alpha_j^2 \sum_{\{i,j\} \in E} \alpha_k^2 + 4 \sum_{\{i,j\} \in E} \alpha_i^4 \alpha_j^2 \alpha_k^2 \]
\[+ 8 \sum_{\{i,j\} \in E} \alpha_i^2 \alpha_j^2 \alpha_k^2 + 8 \sum_{\{i,j\} \in E} \alpha_i^2 \alpha_j^2 \alpha_k^2 \alpha_l^2. \]
On the other hand, we have that
\[
\chi(h) = \sum_{i \in I} \alpha_i^5 + 6 \sum_{\{i,j\} \in [I]^2} \alpha_i^2 \alpha_j^4 + 4 \sum_{\{i,j\} \in E} \alpha_i^6 \alpha_j^2 + 12 \sum_{i \notin \{j,k,\ell\} \in T} \alpha_i^4 \alpha_j^3 \alpha_k^2 + 24 \sum_{\{i,j,k,\ell\} \in T} \alpha_i^2 \alpha_j^2 \alpha_k^2 \alpha_\ell^2,
\]
where \(T \) is the set of \(\{i,j,k,\ell\} \in [I]^4 \) such that there exists \(a \in A \) with \(\sigma(a) = \{i,j,k,\ell\} \). Note that if \(\{i,j\}, \{k,\ell\} \in E \) are disjoint edges, then \(\{i,j,k,\ell\} \in T \).

Also, each \(\sigma(E) \) is a URS of \(\sigma \). As expected, these singleton URSs will be called trivial URSs.

Since \(\chi(h) = \chi(g)^2 \), the inequalities (9.1) and (9.2) must both beequalities and it follows that \(E = [I]^2 \), as desired.

10. Uniformly recurrent subgroups

In [4], Glasner-Weiss introduced the notion of a uniformly recurrent subgroup as a topological analog of the notion of an invariant random group. In this final section, we will use the classification of the ergodic IRSs of the \(L(\text{Alt}) \)-groups to deduce the classification of their uniformly recurrent subgroups.

Suppose that \(G \) is a countably infinite group. Then \(G \) acts as a group of homeomorphisms of \(\text{Sub}_G \) via the conjugation action, \(H \mapsto gHg^{-1} \). A subset \(X \subseteq \text{Sub}_G \) is said to be a uniformly recurrent subgroup or IRS if \(X \) is a minimal \(G \)-invariant closed subset of \(\text{Sub}_G \). For example, if \(N \leq G \) is a normal subgroup, then the singleton set \(\{N\} \) is an IRS of \(G \). As expected, these singleton IRSs will be called trivial. Examples of nontrivial IRSs arise as the stabilizer IRSs of minimal actions. (It is an open question whether every IRS of any countable group \(G \) can be realized as the stabilizer IRS of a suitably chosen minimal \(G \)-action.) The definition of the stabilizer IRS of an arbitrary minimal action is a little subtle. (See Glasner-Weiss [4, Section 1].) However, the stabilizer IRSs which arise in our setting are easily described as follows.

Definition 10.1. The \(L(\text{Alt}) \)-group \(G = \bigcup_{i \in \mathbb{N}} G_i \) is said to be the strictly diagonal limit of the finite alternating groups \(G_i = \text{Alt}(\Delta_i) \) if \(e_{i+1} = f_{i+1} = 0 \) for all \(i \in \mathbb{N} \).

In other words, \(G = \bigcup_{i \in \mathbb{N}} G_i \) is a strictly diagonal limit if for each \(i \in \mathbb{N} \), every \(G_i \)-orbit on \(\Delta_{i+1} \) is natural. In this case, \(s_{i+1} = |\Delta_{i+1}|/|\Delta_i| \) is the number of natural \(G_i \)-orbits on \(\Delta_{i+1} \); and letting \(s_0 = |\Delta_0| \), we can suppose that each
\[
\Delta_i = s_0 \times s_1 \times \cdots \times s_i
\]
and that the embedding \(G_i \hookrightarrow G_{i+1} \) is defined by
\[
g \cdot (\ell_0, \ldots, \ell_i, \ell_{i+1}) = (g \cdot (\ell_0, \ldots, \ell_i), \ell_{i+1}).
\]
Equip $\Delta = \prod_{i \geq 0} s_i$ with the usual product topology. Then G acts as a group of homeomorphisms of the compact space Δ via

$$g \cdot (\ell_0, \ldots, \ell_i, \ell_{i+1}, \ell_{i+2}, \cdots) = (g \cdot (\ell_0, \ldots, \ell_i), \ell_{i+1}, \ell_{i+2}, \cdots), \quad g \in G,$$

and it is clear that every G-orbit is dense in Δ. Thus $G \acts \Delta$ is a minimal G-action.

Let $f : \Delta \to \Sub_G$ be the G-equivariant map defined by

$$x \mapsto G_x = \{ g \in G \mid g(x) = x \}$$

and let $X_\Delta = f(\Delta)$. Then f is a continuous injection and it follows that X_Δ is a URS of G. As expected, X_Δ is called the stabilizer URS of the minimal action $G \acts \Delta$.

Remark 10.2. Of course, we can also define X_Δ directly as the set of subgroups $H \in \Sub_G$ such that for every $i \geq 0$, there exists a point $x_i \in \Delta_i$ such that $H \cap G_i = \Alt(\Delta_i \setminus \{ x_i \})$.

If $G = \bigsqcup_{i \in \mathbb{N}} G_i$ is the strictly diagonal limit of the finite alternating groups $G_i = \Alt(\Delta_i)$, then we will refer to $G \acts \Delta$ as the canonical minimal action.

Theorem 10.3. If G is an $L(\Alt)$-group and $X \subseteq \Sub_G$ is a nontrivial URS, then G can be expressed as a strictly diagonal limit of finite alternating groups and X is the stabilizer URS of the corresponding canonical minimal action $G \acts \Delta$.

The proof of Theorem 10.3 makes use of an observation that is potentially useful in the setting of arbitrary countable amenable groups; namely, that if G is a countable amenable group and $X \subseteq \Sub_G$ is a URS, then X can be expressed as a nontrivial ergodic IRS of G which concentrates on X. Consequently, measure-theoretic techniques (such as the Pointwise Ergodic Theorem for countable amenable groups [9]) can be employed in the study of the URSs of countable amenable groups.

The remainder of this section will be devoted to the proof of Theorem 10.3. So suppose that G is an $L(\Alt)$-group and that $X \subseteq \Sub_G$ is a nontrivial URS. Then there exists an ergodic IRS ν of G which concentrates on X. Since $1, G \notin X$, it follows that ν is a nontrivial ergodic IRS. Hence, by Theorem 3.7, we can express G as an almost diagonal limit $\bigcup_{i \in \mathbb{N}} G_i$ of finite alternating groups $G_i = \Alt(\Delta_i)$.

Lemma 10.4. $G \not\cong \Alt(\mathbb{N})$.

Proof. Suppose that $G = \Alt(\mathbb{N})$. Applying Theorem 9.1, since $\nu \neq \delta_1$, it follows that for ν-a.e. $H \in \Sub_{\Alt(\mathbb{N})}$, there exists an infinite subset $B \subseteq \mathbb{N}$ such that $\Alt(B) \leq H$. Hence there exists such a subgroup $H \in X$. But it is now clear that $\Alt(\mathbb{N})$ is in the closure of $\{ g H g^{-1} \mid g \in \Alt(\mathbb{N}) \}$, which is a contradiction. \hfill \square

Applying Theorems 3.19 and 4.15, it follows that there exists a subgroup $H \in X$ such that for all but finitely many i, there exists a nonempty subset $\Sigma_i \subseteq \Delta_i$ such that $H \cap G_i = \Alt(\Delta_i \setminus \Sigma_i)$ and such that:

(a) if $G = \bigsqcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth, then there exists an integer $r \geq 1$ such that $|\Sigma_i| = r$ for all but finitely many i;
(b) if $G = \bigsqcup_{i \in \mathbb{N}} G_i$ has sublinear natural orbit growth, then $\lim_{i \to \infty} |\Sigma_i| = \infty$ and $\lim_{i \to \infty} |\Sigma_i|/n_i = 0$.

After deleting a finite initial segment from the sequence $(G_i \mid i \in \mathbb{N})$, we can suppose that such a subset $\Sigma_i \subseteq \Delta_i$ exists for all $i \geq 0$.

Lemma 10.5. There exists an integer n_0 such that for all $i \geq n_0$, the embedding $G_i \hookrightarrow G_{i+1}$ is diagonal.

Proof. Suppose not. Then, by Praeger-Zalesskii [14, Theorem 1.7], for all $i \geq 0$, there exists $j > i$ such that G_i has a regular orbit Φ on Δ_j. Let $g \in G_j$ be an element such that $g(\Sigma_j) \cap \Phi \neq \emptyset$. Then $gHg^{-1} \in X$ and $gHg^{-1} \cap G_j = \text{Alt}(\Delta_j \setminus g(\Sigma_j))$; and this implies that $gHg^{-1} \cap G_i = 1$. Since $i \geq 0$ was arbitrary, it follows that there exists $j \in X$, which is a contradiction. \hfill \Box

Hence, after deleting a finite initial segment from the sequence $(G_i \mid i \in \mathbb{N})$, we can suppose that $G = \bigcup_{i \in \mathbb{N}} G_i$ is a diagonal limit.

Lemma 10.6. There exists an integer n_1 such that for all $i \geq n_1$, the embedding $G_i \hookrightarrow G_{i+1}$ is strictly diagonal.

Proof. Suppose not. Let $i \geq 0$. Then for each $j > i$, the group G_j has s_{ij} natural orbits on Δ_j and fixes the remaining $n_j - s_{ij}n_i$ points. Let $\Phi_{ij} \subseteq \Delta_j$ be the union of the s_{ij} natural G_i-orbits.

Claim 10.7. For each $i \geq 0$, there exists $j > i$ such that $|\Phi_{ij}| \leq |\Delta_j \setminus \Sigma_j|$.

Assuming that Claim 10.7 holds, let $g \in G_j$ be such that $\Phi_{ij} \subseteq g(\Delta_j \setminus \Sigma_j)$. Then $gHg^{-1} \in X$ and $gHg^{-1} \cap G_j = \text{Alt}(\Delta_j \setminus \Sigma_j)$; and this implies that $gHg^{-1} \cap G_i = G_i$. Since $i \geq 0$ was arbitrary, it follows that $G \in X$, which is a contradiction.

Thus it only remains to prove Claim 10.7. First suppose that $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth. Then there exists an integer $r \geq 1$ such that $|\Sigma_j| = r$ for all $j \geq 0$. Also, assuming Lemma 10.6 does not hold, it follows that for each $i \geq 0$, there exists $j > i$ such that G_i fixes at least r points on Δ_j and thus $|\Phi_{ij}| \leq |\Delta_j \setminus \Sigma_j|$. Next suppose that $G = \bigcup_{i \in \mathbb{N}} G_i$ has sublinear natural orbit growth. Then we have that

$$\lim_{j \to \infty} |\Phi_{ij}| = \lim_{j \to \infty} n_is_{ij} = 0;$$

and also that $\lim_{j \to \infty} |\Sigma_j|/n_j = 0$. The result follows easily. \hfill \Box

Thus, after deleting a finite initial segment from the sequence $(G_i \mid i \in \mathbb{N})$, we can suppose that $G = \bigcup_{i \in \mathbb{N}} G_i$ is the strictly diagonal limit of the finite alternating groups $G_i = \text{Alt}(\Delta_i)$. Let $G \curvearrowright \Delta$ be the corresponding canonical minimal action and let m be the unique G-invariant ergodic probability measure on Δ. Then, by Theorem 3.19, there exists an integer $r \geq 1$ such that ν is the stabilizer distribution ν_r of the ergodic action $G \curvearrowright (\Delta^r, m^{\otimes r})$. Suppose that $r > 1$, so that H is the pointwise stabilizer of r elements $x_1, \ldots, x_r \in \Delta$. For each $1 \leq \ell \leq r$, let

$$x_{\ell} = (x_{\ell}(0), x_{\ell}(1), \ldots, x_{\ell}(i), \ldots);$$

and for each $1 \leq \ell \leq r$ and $i \geq 0$, let $x^{i}_{\ell} = (x_{\ell}(0), x_{\ell}(1), \ldots, x_{\ell}(i)) \in \Delta_i$ be the corresponding restriction. Then $\Sigma_i = \{x_{1}^{i}, \ldots, x_{r}^{i}\}$. Fix some $i \geq 0$. Then if $j > i$ is sufficiently large, there exist distinct elements $y_1, \ldots, y_r \in \Delta_j$, all of which restrict to the same element $z \in \Delta_j$. Let $g \in G_j$ be such that $g(x_{\ell}^r) = y_{\ell}^r$ for all $1 \leq \ell \leq r$. Then $gHg^{-1} \in X$ and $gHg^{-1} \cap G_i = \text{Alt}(\Delta_i \setminus \{z\})$. Since $i \geq 0$ was arbitrary, it follows that X also contains the stabilizer $\text{URS} X_{\Delta}$ of $G \curvearrowright \Delta$, which contradicts the minimality of X. Thus $r = 1$ and $X = X_{\Delta}$ is the stabilizer URS of $G \curvearrowright \Delta$. This completes the proof of Theorem 10.3.
References

Mathematics Department, Rutgers University, 110 Frelinghuysen Road, Piscataway, New Jersey 08854-8019
E-mail address: simon.rhys.thomas@gmail.com

Mathematics Department, Texas A&M University, College Station, Texas 77843-3368
E-mail address: rtuckerd@gmail.com