Homework 5

Due Date: Monday, December 1, 2014

Questions

1. Consider the sequence A_{n} defined as follows:

- $A_{0}=0, A_{1}=3$.
- $A_{n}=7 A_{n-1}-10 A_{n-2}$, for each $n \geq 2$.

Use generating functions to find a formula for A_{n}.
2. Let a, n be natural numbers. Suppose $a^{n}-1$ is a prime.

- Show that $a=2$.
- Show that n must be prime.

3. The goal of this problem is to give a new proof of Fermat's little theorem.

- Suppose p is prime, and that k is an integer with $1<k<p$.

Prove that $\binom{p}{k}$ is divisible by p.

- Suppose p is prime. Prove, by induction on n, that

$$
n^{p} \equiv n \quad \bmod p .
$$

You will need the previous part of this problem.

- Deduce that if n is relatively prime to p, then

$$
n^{p-1} \equiv 1 \quad \bmod p .
$$

4. Let $n=p \cdot q$, where p and q are distinct primes. Show that n does not divide $\binom{n}{p}$.
5. Show that 3 is the only natural number p such that $p, p+2$ and $p+4$ are all prime.
6. Show that there are infinitely many natural numbers n such that $n, n+1, n+2, \ldots, n+1000$ are all composite.
7. BONUS: Show that if $n \equiv 3 \bmod 4$, then there must exists some prime p dividing n such that $p \equiv 3 \bmod 4$.
Use this to show the infinitude of primes $\equiv 3 \bmod 4$ as follows. Suppose there were only finitely many such primes p_{1}, \ldots, p_{t}. Then consider the number $4 \cdot p_{1} \cdot p_{2} \cdot \ldots \cdot p_{t}+3$.
