Homework 4

Rutgers University
Swastik Kopparty

Due Date: Monday, November 17, 2014

Questions

1. Suppose p is a prime and $p \equiv 4 k+3$. Let $a \in \mathbb{Z}_{p}$. We will see a simple way to compute the square root of a in \mathbb{Z}_{p}.
Observe that $(p+1) / 4$ is an integer. Let $b=a^{(p+1) / 4} \bmod p$.
Prove that $b^{2} \equiv a \bmod p$.
Thus compute the square root of $8 \bmod 23$.
2. Let p and q be distinct odd primes. Let $n=p \cdot q$.

Let $a \in \mathbb{Z}_{n}$. Show that a is a perfect square $\bmod n$ if and only if $a \bmod p$ is a perfect square $\bmod p$, and $a \bmod q$ is a perfect square $\bmod q$.
Thus compute the number of perfect squares in \mathbb{Z}_{n}.
3. Prove that $10^{n} \equiv 1 \bmod 3$ for each $n \geq 0$.

Use this to prove the correctness of the divisibility-by- 3 test: a number m is divisible by 3 if and only if the sum of its digits (in the standard base-10 representation) is divisible by 3 .
Hint: Suppose the digits of m are $m_{k} m_{k-1} \cdots m_{1} m_{0}$.
4. Compute the set of perfect cubes in each of: $\mathbb{Z}_{5}, \mathbb{Z}_{7}, \mathbb{Z}_{11}, \mathbb{Z}_{13}, \mathbb{Z}_{17}, \mathbb{Z}_{19}, \mathbb{Z}_{23}$. (Don't show your work, just list the cubes).
Observe something about these sets, and make a conjecture.
5. BONUS: Show that the product of any 4 consecutive integers is divisible by 24 .

