Homework 3

Due Date: Monday, October 20, 2014

Questions

1. Compute $7^{713} \bmod 4$. Compute $7^{713} \bmod 25$.

Use this to compute the last two digits of 7^{713} (in base 10). Show your work.
2. Find all $n \in \mathbb{Z}$ which satisfy:

$$
\begin{gathered}
n \equiv 2 \quad \bmod 7 . \\
n \cdot 4 \equiv 5 \quad \bmod 9 . \\
n \cdot 7 \equiv 6 \quad \bmod 23 .
\end{gathered}
$$

Show your work.
3. Compute $\phi(425)$. Show your work.
4. There are infinitely many lightbulbs $B_{1}, B_{2}, B_{3}, \ldots$. Each bulb can be either on or off. Initially they are all off.
Every time-step, some of them will get toggled (they change from on to off or from off to on), according to the following rules.

- At the first time-step, all the bulbs $B_{1}, B_{2}, B_{3}, \ldots$ are toggled. (So they are all on after this time step.)
- At the second time-step, the bulbs $B_{2}, B_{4}, B_{6}, \ldots$ are toggled. (So only the odd numbered bulbs are on after this time step.)
- ... (and so on ...)
- In general, at the i th time-step, the bulbs $B_{i}, B_{2 i}, B_{3 i}, \ldots$ are toggled.
- ... (and so on ...)

This process goes on forever.
Which bulbs eventually stay on forever? Prove your answer.
5. Compute a few values, and then guess and prove formulas for:

- $0^{n} \bmod 7$
- $1^{n} \bmod 7$
- $2^{n} \bmod 7$
- $3^{n} \bmod 7$
- $4^{n} \bmod 7$
- $5^{n} \bmod 7$
- $6^{n} \bmod 7$

6. BONUS: How would you choose $n \leq 1000$ so as to minimize $\frac{\phi(n)}{n}$?
