MATH 642:581-Spring, 2014
Assignment 5—Due April 23 (April 21 version)

A few preliminary remarks.
1. Follow the general instructions for homework given in:
http://www.math.rutgers.edu/~saks/homework-grad.html

2. Please be on the look out for errors. If something seems not to make sense, check with
me before investing a lot of time on the problem. I would appreciate being notified of
any typos (even minor ones).

PROBLEMS

1. (a) Prove that for any graph G, x(G)x(G) > |[V(G)|.
(b) Prove that for any graph G, x(G) + x(G) > 2/|V(G)].

(c) Show that for each perfect square n there is a graph on n vertices for which the
previous two bounds are tight.

(d) Prove that x(G) + x(G) < |V(G)| + 1.

2. A graph is outerplanar if it can be drawn in the plane so that every vertex is in the
boundary of the outer face. A graph is maximal outerplanar if it is outerplanar and
any graph obtained by adding an edge (to the existing vertex set) is not outerplanar.

(a) State and prove a theorem that expresses the number of edges of a maximal
outerplanar graph in terms of the number of vertices.

(b) Prove that K is not outerplanar.
(c) Prove that K> 3 is not outerplanar.

(d) Prove that if G is not outerplanar, then G contains a TKy4 or a TKs3. (Hint
provided below.)

3. The proof that every planar graph is 5 colorable (Theorem 8 in Bollobds; to be covered
in class) can be modified to the following (false) proof that every planar graph is 4
colorable.

As in the proof of the 5 color theorem, let G be a counterexample with the fewest
number of vertices and consider a planar embedding of G. We may assume that G is
maximal planar. Let v be a vertex of degree at most 5 in G and let ¢ be a 4-coloring
of G — v. If the neighbors of v are colored by ¢ with less than 3 colors then ¢ can be
extended to a 4-coloring of G so ¢ uses all four colors on N(v). So deg(v) > 4. If v has
degree 4 then the neignbors of v induce a cycle C with vertices x1,z2,z3, x4 in order
and x; colored by color 7. As in the proof of the 5CT there must be a path consisting
of vertices colored 1 or 3 from x; to z3 and a path consisting of vertices colore 2 or 4
from xo to x4 and these paths lie in the outer face of C' which means they must have
a vertex in common, a contradiction. Suppose v has degree 5, so the neighbors of v
induce a cycle C' with vertices x1, xo, 3, T4, 5 in order. Since all 4 colors appear on
C, we may assume wlog that x; is colored i for 1 < i < 4 and x5 is colored 2.



Then there is a color 1,3 path linking x1 to x3 outside of C' which means there is no color
2,4 path linking z9 to x4. Similarly there is a color 1,4 path linking x; to x4 outside of
C, but then there is no color 2,3 path linking x5 to x3. So recolor the 2,4 component
of z9 by interchanging colors 2 and 4, and recolor the 2,3 component containing xs.
Then we have a new coloring in which x5 is color 4 and z5 is color 3 and color 2 does
not appear on the cycle C'. So we can extend the coloring to a coloring of G by coloring
v by 2.

What is the falacy in this proof? Find a concrete example of a plane graph where the
above “recipe” for coloring it fails.

. (Bollabés, problem 5.36.) Prove that if the graph G has an orientation having no
directed path with more than k vertices, then x(G) < k. (A hint is given in Bollobas.)

. Let G be a triangle free graph.

(a) Prove: x(G) < +/2|V(G)|. (Hint provided below.)

(b) For any graph H and positive integer d if H has a subgraph of minimum degree
at least d then x(H) < max(d,x(H')) where H' is any subgraph of H that is
maximal among subgraphs of H of minimum degree at least d. (Note that if H
itself has minimum degree at least d then this is a triviality.)

(c) Prove: x(G) < [(4|E(G))'/?].

. Consider the following graph coloring game between two players Builder (who builds
a graph) and Colorer (who colors the graph). The graph starts out empty. The game
proceeds in a sequence of n rounds. At round j Builder adds a new vertex v; to the
graph and adds edges from v; to some subset of previous vertices (of his choice). Colorer
then assigns a color to vertex v;, always maintaining that the graph is properly colored.
(Vertices colored in previous rounds may not be recolored.) Let C' be the number of
colors used by Colorer throughout the game and let x be the chromatic number of the
resulting graph. Colorer seeks to minimize his regret which is the ratio C'/x (which is
between 1 and n). The goal of this problem is to show that Builder has a strategy that
forces the regret of Colorer to be at least Q(n/(logan)?). (This is fairly amazing, you
might want to think about this before reading further.)

Here is the strategy of the Builder. Let k be the least integer such that k21 > n.
As the game proceeds, to guide his strategy, Builder constructs a table with k columns
and with rows labeled by the colors used by Colorer so far. (So every time a new color
is used by Colorer, a row is added to the table.) In round j Builder will use the table
to decide which vertices v; should be joined to. After Colorer colors vertex v;, Builder
will place vertex v; into the table. Builder will maintain the following properties for
the table: (A) For each color r that has been used by Colorer, the vertices colored by r
are in distinct locations of row r (B) The set of vertices in each column is independent.

Let T;_1 be the table constructed up to the begining of round j, so there are j — 1
vertices in the table. The support of color r in T;j_; is the set S(r) of columns for which
the entry in row r is filled. Builder proceeds as follows: If there is some nonempty
subset I of columns which is not the support of any color, Builder selects such a subset
I and connects v; to all of the vertices that are NOT in the columns indexed by I.



(a) Show that after Colorer colors vj, it is possible for Builder to place v; in the table
so as to maintain (A) and (B).

(b) Show that for every step j < n, it is possible for Builder to carry out the above
strategy.
(c) Prove that if n is sufficiently large then the regret of Colorer is at least n/(logy(n))?.

Some hints

Problem 2 For the last part, consider a graph that is not outerplanar, and consider a
subgraph with the minimum number of edges that is not outerplanar. Show that (after
removing any isolated vertices) this graph is 2-connected, and planar. Consider a planar
embedding of the graph.

Problem 5 . For part (a) prove by induction on k that if k£ is a positive integer and
|[V(G)| < (k +1)2/2 then x(G) < k. Divide into cases according to the maximum
degree of G. For part (c), use part (b) with part (a) and a careful choice of d.



