
MATH 642:581–Spring, 2014
Assignment 5–Due April 23 (April 21 version)

A few preliminary remarks.

1. Follow the general instructions for homework given in:

http://www.math.rutgers.edu/∼saks/homework-grad.html

2. Please be on the look out for errors. If something seems not to make sense, check with
me before investing a lot of time on the problem. I would appreciate being notified of
any typos (even minor ones).

PROBLEMS

1. (a) Prove that for any graph G, χ(G)χ(Ḡ) ≥ |V (G)|.
(b) Prove that for any graph G, χ(G) + χ(Ḡ) ≥ 2

√
|V (G)|.

(c) Show that for each perfect square n there is a graph on n vertices for which the
previous two bounds are tight.

(d) Prove that χ(G) + χ(Ḡ) ≤ |V (G)|+ 1.

2. A graph is outerplanar if it can be drawn in the plane so that every vertex is in the
boundary of the outer face. A graph is maximal outerplanar if it is outerplanar and
any graph obtained by adding an edge (to the existing vertex set) is not outerplanar.

(a) State and prove a theorem that expresses the number of edges of a maximal
outerplanar graph in terms of the number of vertices.

(b) Prove that K4 is not outerplanar.

(c) Prove that K2,3 is not outerplanar.

(d) Prove that if G is not outerplanar, then G contains a TK4 or a TK2,3. (Hint
provided below.)

3. The proof that every planar graph is 5 colorable (Theorem 8 in Bollobás; to be covered
in class) can be modified to the following (false) proof that every planar graph is 4
colorable.

As in the proof of the 5 color theorem, let G be a counterexample with the fewest
number of vertices and consider a planar embedding of G. We may assume that G is
maximal planar. Let v be a vertex of degree at most 5 in G and let c be a 4-coloring
of G − v. If the neighbors of v are colored by c with less than 3 colors then c can be
extended to a 4-coloring of G so c uses all four colors on N(v). So deg(v) ≥ 4. If v has
degree 4 then the neignbors of v induce a cycle C with vertices x1, x2, x3, x4 in order
and xi colored by color i. As in the proof of the 5CT there must be a path consisting
of vertices colored 1 or 3 from x1 to x3 and a path consisting of vertices colore 2 or 4
from x2 to x4 and these paths lie in the outer face of C which means they must have
a vertex in common, a contradiction. Suppose v has degree 5, so the neighbors of v
induce a cycle C with vertices x1, x2, x3, x4, x5 in order. Since all 4 colors appear on
C, we may assume wlog that xi is colored i for 1 ≤ i ≤ 4 and x5 is colored 2.
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Then there is a color 1,3 path linking x1 to x3 outside of C which means there is no color
2,4 path linking x2 to x4. Similarly there is a color 1,4 path linking x1 to x4 outside of
C, but then there is no color 2, 3 path linking x5 to x3. So recolor the 2, 4 component
of x2 by interchanging colors 2 and 4, and recolor the 2,3 component containing x5.
Then we have a new coloring in which x2 is color 4 and x5 is color 3 and color 2 does
not appear on the cycle C. So we can extend the coloring to a coloring of G by coloring
v by 2.

What is the falacy in this proof? Find a concrete example of a plane graph where the
above “recipe” for coloring it fails.

4. (Bollabás, problem 5.36.) Prove that if the graph G has an orientation having no
directed path with more than k vertices, then χ(G) ≤ k. (A hint is given in Bollobás.)

5. Let G be a triangle free graph.

(a) Prove: χ(G) ≤
√

2|V (G)|. (Hint provided below.)

(b) For any graph H and positive integer d if H has a subgraph of minimum degree
at least d then χ(H) ≤ max(d, χ(H ′)) where H ′ is any subgraph of H that is
maximal among subgraphs of H of minimum degree at least d. (Note that if H
itself has minimum degree at least d then this is a triviality.)

(c) Prove: χ(G) ≤ d(4|E(G)|)1/3e.

6. Consider the following graph coloring game between two players Builder (who builds
a graph) and Colorer (who colors the graph). The graph starts out empty. The game
proceeds in a sequence of n rounds. At round j Builder adds a new vertex vj to the
graph and adds edges from vj to some subset of previous vertices (of his choice). Colorer
then assigns a color to vertex vj , always maintaining that the graph is properly colored.
(Vertices colored in previous rounds may not be recolored.) Let C be the number of
colors used by Colorer throughout the game and let χ be the chromatic number of the
resulting graph. Colorer seeks to minimize his regret which is the ratio C/χ (which is
between 1 and n). The goal of this problem is to show that Builder has a strategy that
forces the regret of Colorer to be at least Ω(n/(log2n)2). (This is fairly amazing, you
might want to think about this before reading further.)

Here is the strategy of the Builder. Let k be the least integer such that k2k−1 ≥ n.
As the game proceeds, to guide his strategy, Builder constructs a table with k columns
and with rows labeled by the colors used by Colorer so far. (So every time a new color
is used by Colorer, a row is added to the table.) In round j Builder will use the table
to decide which vertices vj should be joined to. After Colorer colors vertex vj , Builder
will place vertex vj into the table. Builder will maintain the following properties for
the table: (A) For each color r that has been used by Colorer, the vertices colored by r
are in distinct locations of row r (B) The set of vertices in each column is independent.

Let Tj−1 be the table constructed up to the begining of round j, so there are j − 1
vertices in the table. The support of color r in Tj−1 is the set S(r) of columns for which
the entry in row r is filled. Builder proceeds as follows: If there is some nonempty
subset I of columns which is not the support of any color, Builder selects such a subset
I and connects vj to all of the vertices that are NOT in the columns indexed by I.
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(a) Show that after Colorer colors vj , it is possible for Builder to place vj in the table
so as to maintain (A) and (B).

(b) Show that for every step j ≤ n, it is possible for Builder to carry out the above
strategy.

(c) Prove that if n is sufficiently large then the regret of Colorer is at least n/(log2(n))2.

Some hints

Problem 2 For the last part, consider a graph that is not outerplanar, and consider a
subgraph with the minimum number of edges that is not outerplanar. Show that (after
removing any isolated vertices) this graph is 2-connected, and planar. Consider a planar
embedding of the graph.

Problem 5 . For part (a) prove by induction on k that if k is a positive integer and
|V (G)| < (k + 1)2/2 then χ(G) ≤ k. Divide into cases according to the maximum
degree of G. For part (c), use part (b) with part (a) and a careful choice of d.
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