Assignment 5-Due April 23 (April 21 version)

A few preliminary remarks.

1. Follow the general instructions for homework given in:
http://www.math.rutgers.edu/~saks/homework-grad.html
2. Please be on the look out for errors. If something seems not to make sense, check with me before investing a lot of time on the problem. I would appreciate being notified of any typos (even minor ones).

PROBLEMS

1. (a) Prove that for any graph $G, \chi(G) \chi(\bar{G}) \geq|V(G)|$.
(b) Prove that for any graph $G, \chi(G)+\chi(\bar{G}) \geq 2 \sqrt{|V(G)|}$.
(c) Show that for each perfect square n there is a graph on n vertices for which the previous two bounds are tight.
(d) Prove that $\chi(G)+\chi(\bar{G}) \leq|V(G)|+1$.
2. A graph is outerplanar if it can be drawn in the plane so that every vertex is in the boundary of the outer face. A graph is maximal outerplanar if it is outerplanar and any graph obtained by adding an edge (to the existing vertex set) is not outerplanar.
(a) State and prove a theorem that expresses the number of edges of a maximal outerplanar graph in terms of the number of vertices.
(b) Prove that K_{4} is not outerplanar.
(c) Prove that $K_{2,3}$ is not outerplanar.
(d) Prove that if G is not outerplanar, then G contains a $T K_{4}$ or a $T K_{2,3}$. (Hint provided below.)
3. The proof that every planar graph is 5 colorable (Theorem 8 in Bollobás; to be covered in class) can be modified to the following (false) proof that every planar graph is 4 colorable.

As in the proof of the 5 color theorem, let G be a counterexample with the fewest number of vertices and consider a planar embedding of G. We may assume that G is maximal planar. Let v be a vertex of degree at most 5 in G and let c be a 4 -coloring of $G-v$. If the neighbors of v are colored by c with less than 3 colors then c can be extended to a 4 -coloring of G so c uses all four colors on $N(v)$. So $\operatorname{deg}(v) \geq 4$. If v has degree 4 then the neignbors of v induce a cycle C with vertices $x_{1}, x_{2}, x_{3}, x_{4}$ in order and x_{i} colored by color i. As in the proof of the 5CT there must be a path consisting of vertices colored 1 or 3 from x_{1} to x_{3} and a path consisting of vertices colore 2 or 4 from x_{2} to x_{4} and these paths lie in the outer face of C which means they must have a vertex in common, a contradiction. Suppose v has degree 5 , so the neighbors of v induce a cycle C with vertices $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ in order. Since all 4 colors appear on C, we may assume wlog that x_{i} is colored i for $1 \leq i \leq 4$ and x_{5} is colored 2 .

Then there is a color 1,3 path linking x_{1} to x_{3} outside of C which means there is no color 2,4 path linking x_{2} to x_{4}. Similarly there is a color 1,4 path linking x_{1} to x_{4} outside of C, but then there is no color 2,3 path linking x_{5} to x_{3}. So recolor the 2,4 component of x_{2} by interchanging colors 2 and 4 , and recolor the 2,3 component containing x_{5}. Then we have a new coloring in which x_{2} is color 4 and x_{5} is color 3 and color 2 does not appear on the cycle C. So we can extend the coloring to a coloring of G by coloring v by 2 .

What is the falacy in this proof? Find a concrete example of a plane graph where the above "recipe" for coloring it fails.
4. (Bollabás, problem 5.36.) Prove that if the graph G has an orientation having no directed path with more than k vertices, then $\chi(G) \leq k$. (A hint is given in Bollobás.)
5. Let G be a triangle free graph.
(a) Prove: $\chi(G) \leq \sqrt{2|V(G)|}$. (Hint provided below.)
(b) For any graph H and positive integer d if H has a subgraph of minimum degree at least d then $\chi(H) \leq \max \left(d, \chi\left(H^{\prime}\right)\right)$ where H^{\prime} is any subgraph of H that is maximal among subgraphs of H of minimum degree at least d. (Note that if H itself has minimum degree at least d then this is a triviality.)
(c) Prove: $\chi(G) \leq\left\lceil(4|E(G)|)^{1 / 3}\right\rceil$.
6. Consider the following graph coloring game between two players Builder (who builds a graph) and Colorer (who colors the graph). The graph starts out empty. The game proceeds in a sequence of n rounds. At round j Builder adds a new vertex v_{j} to the graph and adds edges from v_{j} to some subset of previous vertices (of his choice). Colorer then assigns a color to vertex v_{j}, always maintaining that the graph is properly colored. (Vertices colored in previous rounds may not be recolored.) Let C be the number of colors used by Colorer throughout the game and let χ be the chromatic number of the resulting graph. Colorer seeks to minimize his regret which is the ratio C / χ (which is between 1 and n). The goal of this problem is to show that Builder has a strategy that forces the regret of Colorer to be at least $\Omega\left(n /\left(\log _{2} n\right)^{2}\right)$. (This is fairly amazing, you might want to think about this before reading further.)
Here is the strategy of the Builder. Let k be the least integer such that $k 2^{k-1} \geq n$. As the game proceeds, to guide his strategy, Builder constructs a table with k columns and with rows labeled by the colors used by Colorer so far. (So every time a new color is used by Colorer, a row is added to the table.) In round j Builder will use the table to decide which vertices v_{j} should be joined to. After Colorer colors vertex v_{j}, Builder will place vertex v_{j} into the table. Builder will maintain the following properties for the table: (A) For each color r that has been used by Colorer, the vertices colored by r are in distinct locations of row r (B) The set of vertices in each column is independent. Let T_{j-1} be the table constructed up to the begining of round j, so there are $j-1$ vertices in the table. The support of color r in T_{j-1} is the set $S(r)$ of columns for which the entry in row r is filled. Builder proceeds as follows: If there is some nonempty subset I of columns which is not the support of any color, Builder selects such a subset I and connects v_{j} to all of the vertices that are NOT in the columns indexed by I.
(a) Show that after Colorer colors v_{j}, it is possible for Builder to place v_{j} in the table so as to maintain (A) and (B).
(b) Show that for every step $j \leq n$, it is possible for Builder to carry out the above strategy.
(c) Prove that if n is sufficiently large then the regret of Colorer is at least $n /\left(\log _{2}(n)\right)^{2}$.

Some hints

Problem 2 For the last part, consider a graph that is not outerplanar, and consider a subgraph with the minimum number of edges that is not outerplanar. Show that (after removing any isolated vertices) this graph is 2 -connected, and planar. Consider a planar embedding of the graph.

Problem 5. For part (a) prove by induction on k that if k is a positive integer and $|V(G)|<(k+1)^{2} / 2$ then $\chi(G) \leq k$. Divide into cases according to the maximum degree of G. For part (c), use part (b) with part (a) and a careful choice of d.

