SOLUTIONS—ASSIGNMENT 7

Chapter 3. Problems: p. $111 \# 84$. This is gambler's ruin with $n=30, i=15$ and $p=0.55$, so the probability of winning is $\frac{1-(0.45 / 0.55)^{15}}{1-(0.45 / 0.55)^{30}}=\frac{1}{1+(9 / 11)^{15}} \approx 0.953026559$.
p. $111 \# 85$. (a) Let S_{k} denote the event of two heads on turn $k, F_{k}=S_{k}^{c}$. After $F_{1} F_{2}$ we are back where we started, so

$$
\begin{aligned}
P(A) & =P\left(A \mid S_{1}\right) P\left(S_{1}\right)+P\left(A \mid F_{1} S_{2}\right) P\left(F_{1} S_{2}\right)+P\left(A \mid F_{1} F_{2}\right) P\left(F_{1} F_{2}\right) \\
& =P_{1}^{2}+0+P(A)\left(1-P_{1}^{2}\right)\left(1-P_{2}^{2}\right)
\end{aligned}
$$

solving this for $P(A)$ gives the answer in the text. (c) is similar.
(b) Let $Q_{n m}$ be the probability that A wins if he needs n heads, B needs m heads, and A has the coin; let $R_{n m}$ denote the corresponding probabilities when B has the coin. Conditioning on the result of the first flip gives

$$
Q_{n m}=P_{1} Q_{n-1, m}+\left(1-P_{1}\right) R_{n m}, \quad R_{n m}=P_{2} R_{n, m-1}+\left(1-P_{2}\right) Q_{n m}
$$

so

$$
Q_{n m}=\frac{P_{1} Q_{n-1, m}+\left(1-P_{1}\right) P_{2} R_{n, m-1}}{P_{1}+P_{2}-P_{1} P_{2}}, \quad R_{n m}=\frac{P_{2} R_{n, m-1}+\left(1-P_{2}\right) P_{1} Q_{n-1, m}}{P_{1}+P_{2}-P_{1} P_{2}}
$$

Then starting from $Q_{n 0}=R_{n 0}=0, Q_{0 m}=R_{0 m}=1$ we may compute everything: setting $D=P_{1}+$ $P_{2}-P_{1} P_{2}$ for convenience we have $Q_{11}=P_{1} / D, R_{11}=P_{1}\left(1-P_{2}\right) / D, Q_{12}=P_{1}\left[D+P_{2}(1-D)\right] / D^{2}$, $R_{21}=\left(1-P_{2}\right) P_{1}^{2} / D^{2}$, and $Q_{22}=P_{1}^{2}\left[D+2 P_{2}(1-D)\right] / D^{3} . Q_{22}$ is the answer to (b), continuing we could find Q_{33}, the answer to (d).
p. 111 \#87. (a) Condition on the relevant events for the first 3 withdrawals. Since the probability that a white ball is obtained on a given withdrawal is $4 / 12=1 / 3$, we obtain for the probability p_{1} that player A wins the equation $p_{1}=(1 / 3)+(2 / 3)^{3} p_{1}$, and more generally for the probability p_{i} that player i wins the equation $p_{i}=(1 / 3)(2 / 3)^{i-1}+(2 / 3)^{3} p_{i}$, with solution $p_{i}=9(2 / 3)^{i-1} / 19$. So if A is the event that A wins, etc., we have $P(A)=9 / 19, P(B)=6 / 19, P(C)=4 / 19$.
(b) Let W denote drawing a white ball, O denote drawing a ball of some other color. A wins if the draw is W or $O O O W$ or $O O O O O O W$, so

$$
P(A)=\frac{4}{12}+\frac{8 \cdot 7 \cdot 6 \cdot 4}{12 \cdot 11 \cdot 10 \cdot 9}+\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 4}{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}=\frac{7}{15} .
$$

$P(B)$ and $P(C)$ are calculated in the same way.
Chapter 4. Problems: p. $175 \# 1$. Using unordered samples, we have these possiblitites:

Outcome	Value of X	Probability
WW	-2	$\binom{8}{2} /\binom{14}{2}$
WB	1	$(8)(4) /\binom{14}{2}$
WO	-1	$(8)(2) /\binom{14}{2}$
BB	4	$\binom{4}{2} /\binom{14}{2}$
BO	2	$(4)(2) /\binom{14}{2}$
OO	0	$\binom{2}{2} /\binom{14}{2}$

p. 175 \#4.

$$
\begin{aligned}
& P(X=1)=\frac{5 \cdot 9!}{10!}=\frac{5}{10}=\frac{1}{2} \\
& P(X=2)=\frac{5 \cdot 5 \cdot 8!}{10!}=\frac{25}{90}=\frac{5}{18} \\
& P(X=3)=\frac{5 \cdot 4 \cdot 5 \cdot 7!}{10!}=\frac{100}{10 \cdot 9 \cdot 8}=\frac{5}{36} \\
& P(X=4)=\frac{5 \cdot 4 \cdot 3 \cdot 5 \cdot 6!}{10!}=\frac{300}{10 \cdot 9 \cdot 8 \cdot 7}=\frac{5}{84} \\
& P(X=5)=\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 5 \cdot 5!}{10!}=\frac{600}{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}=\frac{5}{252} \\
& P(X=6)=\frac{5!\cdot 5!}{10!}=\frac{1}{252} .
\end{aligned}
$$

$P(X=k)=0$ for $k=7,8,9,10$. In more detail, there are 10! possible rankings of all examinees. If the top woman's rank is i then certainly $i \leq 6$, i.e., $P\{X=i\}=0$ for $i \geq 7$. To get $X=i$ we must choose men for the first $i-1$ places, in one of (5)(4) $\cdots(5-i+2)$ ways, then a woman in one of 5 ways, then the rest of the $10-i$ examinees; thus

$$
P\{X=i\}=\frac{(5)(4) \cdots(5-i+2)(5)(10-i)!}{10!}=\frac{(5)(4) \cdots(5-i+2)(5)}{(10)(9) \cdots(10-i+1)}
$$

(For $i=1$, the product (5)(4) $\cdots(5-i+2)$ should be understood as 1 .)
Perhaps more simply, think of choosing the rankings as sampling without replacement. Then $X=1$ amounts to choosing a girl the first time, which has probability $5 / 10 . X=2$ amounts to choosing a boy and then a girl, so that the probability for this is $\frac{5}{10} \cdot \frac{5}{9}$ and similarly for the rest. Note also that $P(X=6)=\frac{1}{\binom{10}{5}}$. Why?
p. $175 \# 5$. Possible values of X are n (all heads), $n-2$ ($n-1$ heads, 1 tail), $n-4(n-2$ heads, 2 tails), $\ldots,-n+2,-n$ (all tails).
p. $175 \# 6$. The sample space S is all strings of length 3 with letters H and $T . P\{X=3\}=$ $P\{H H H\}=(1 / 2)^{3}=P\{X=-3\}, P\{X=1\}=P\{2 H \& 1 T\}=\binom{3}{2}(1 / 2)^{3}=P\{X=-1\}$.
p. $175 \# 7$. (a) $\{1,2,3,4,5,6\} \quad$ (b) same. (c) $\{2,3,4, \ldots, 11,12\}$
(d) $\{-5,-4,-3,-2,-1,0,1,2,3,4,5\}$
p. $175 \# 8$.
(a) $\frac{1}{36}, \frac{4-1}{36}, \frac{9-4}{36}, \frac{16-9}{36}, \frac{25-16}{36}, \frac{36-25}{36}$
(b) $\frac{11}{36}, \frac{9}{36}, \frac{7}{36}, \frac{5}{36}, \frac{3}{36}, \frac{1}{36}$
(c) $\frac{1}{36}, \frac{2}{36}, \frac{3}{36}, \frac{4}{36}, \frac{5}{36}, \frac{6}{36}, \frac{5}{36}, \frac{4}{36}, \frac{3}{36}, \frac{2}{36}, \frac{1}{36}$.
(d) $\frac{1}{36}, \frac{2}{36}, \frac{3}{36}, \frac{4}{36}, \frac{5}{36}, \frac{6}{36}, \frac{5}{36}, \frac{4}{36}, \frac{3}{36}, \frac{2}{36}, \frac{1}{36}$.

The various parts are pretty much the same; let's work out (b). Let X be the minimum appearing. $X=6$ if we roll $6-6$; probability $1 / 36$. $X=5$ if we roll $5-5,5-6$, or $6-5$; probability $3 / 36 . X=4$ if we roll $4-4,4-5,4-6,5-4$, or $6-4$; probability $5 / 36$. Similarly, there are 7 ways to get $X=3,9$ to get $X=2$, and 11 to get $X=1$, for probabilities $7 / 36,1 / 4$, and $11 / 36$, respectively.
p. $176 \# 14$. Hint: Let Y_{i} be the number assigned to player i. Note that $\{X=0\}=\left\{Y_{1}<Y_{2}\right\}$, $\{X=1\}=\left\{Y_{3}>Y_{1}>Y_{2}\right\},\{X=2\}=\left\{Y_{4}>Y_{1}>\max \left(Y_{2}, Y_{3}\right)\right\}, \ldots$, and $\{X=4\}=\left\{Y_{1}>\right.$ $\left.\max \left(Y_{2}, Y_{3}, Y_{4}, Y_{5}\right)\right\}$.

