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SOLUTIONS—ASSIGNMENT 6

Chapter 3. Problems: p. 107 #51a. The events are: C: has cancer; H healthy; Y : test says cancer.

P (C|Y ) =
P (Y |C)P (C)

P (Y |C)P (C) + P (Y |H)P (H)
=

(.268)(.7)

(.268)(.7) + (.135)(.3)
.

p. 108 #60. Suppose we have N sophomore girls. Then if a student is selected at random, and F
denotes freshman, B boy, then P (FB) = 4/(16 + N) and P (F ) = P (B) = 10/(16 + N), so F and

B are independent if 4/(16 + N) =
[
10/(16 + N)

]2
, or N = 9.

p. 108 #65. From the information given, both of Smith’s parents have a brown-eyed and a blue-eyed
gene. Moreover, because Smith has brown eyes, the reduced sample space, of equally likely out-
comes, corresponding to this information is {(brown, blue), (blue, brown), (brown, brown)}, where
the first entry specifies the gene from Smith’s mother and the second from his father. It fol-
lows that the answer to (a) is 2/3. For (b), condition on whether Smith has 1 or 2 brown
genes. Then writing F for the event that Smith’s first child has blue eyes, we have P (F ) =
P (F | 1 )P (1) + P (F | 2 )P (2) = 1

2 ·
2
3 + 0 = 1/3. (c) Let Ei be the event that Smith’s ith child has

brown eyes. Then P (E2|E1) = P (E1E2)/P (E1) = 1
4 ·

2
3 + 1 · 13/

2
3 = 3/4, where P (E1E2) has been

computed by conditioning as in (b), using the fact that P (E1E2 | 1 ) = ( 1
2 )

2
.

p. 110 #76: (a) The event that all are boys has probability (
1

2
)5 =

1

32
, the event that all are girls

has the same probability, and since the two events are mutually exclusive the probability that all
are of the same sex is 1/16. (b) The conditions specify 5 independent events of probability 1/2

each, so they specify an event of probability (
1

2
)5 =

1

32
. (c) Since there are

(
5
3

)
ways to choose in

which 3 of the 5 trials the boys occur, the probability is

(
5

3

)
(
1

2
)5 = 10 · 1

32
=

5

16
. (d) Only the

first two tries are important; the probability is (1/2)2 = 1/4. (e) This is the complement of the
event that all are boys, with probability 1− 1/32 = 31/32.

p. 110 #77. Hint: Condition on the result of the first two rolls of the pair of dice and solve the
equation thereby obtained for the desired probability P (A). The equation is

P (A) =
1

9
+ P (A)(1− 1

9
)(1− 5

36
),

yielding P (A) = 9/19.

p. 110 #82. Since any roll not yielding a 7 or an even number is irrelevant we may think of the
experiment as a sequence of independent trials as follows: one trial consists of rolling until either a
7 (success) or an even number (failure) appears. Now P (7) = 6/36 = 1/6 and P (Even) = 18/36 =
1/2, so that by a problem worked in class (see end of Example 4h) the probability of rolling a 7
before an even number—that is, the probability of success in one of our new trials—is 1/4. Now
we are reduced to the problem of points: we want the probability of 2 successes before 6 failures.
This is just the probability of at least 2 success in the first 7 trials:

7∑
k=2

(
7

k

)(
1

4

)k (
3

4

)7−k

=
21 · 35 + 35 · 34 + 35 · 33 + 21 · 32 + 7 · 3 + 1

47
.

Theoretical exercises: p. 113 #6. If we accept the fact that the independence of E1, . . . , En implies
also the independence of Ec

1, . . . , E
c
n then the result is immediate, by DeMorgan’s laws:

P
(⋃

Ek

)
= P

((⋂
Ec

k

)c)
= 1− P

(⋂
Ec

k

)
= 1−

∏
P (Ec

k) = 1−
∏

(1− P (Ek)).
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We may prove the independence of the complements (actually something a bit stronger) as follows.
Suppose that k1, . . . , kr, j1, . . . , js are distinct indices between 1 and n; we prove that

P (Ek1 ∩ · · · ∩ Ekr ∩ Ec
j1 ∩ · · · ∩ Ec

js) = P (Ek1) · · ·P (Ekr )P (Ec
j1) · · ·P (Ec

js). (∗)

The proof is by induction on s; for s = 0, (∗) is just the independence of the Ek. We assume that
(∗) holds for s and check it for s + 1. Now

Ek1 ∩ · · · ∩ Ekr ∩ Ec
j1 ∩ · · · ∩ Ec

js = [Ek1 ∩ · · · ∩ Ekr ∩ Ec
j1 ∩ · · · ∩ Ec

js ∩ Ejs+1 ]

∪ [Ek1
∩ · · · ∩ Ekr

∩ Ec
j1 ∩ · · · ∩ Ec

js ∩ Ec
js+1

],

and the right hand side is a disjoint union, so the probability of the left hand side is exactly the
sum of the probabilities of the two terms on the right. Thus the induction assumption implies

P (Ek1 ∩ · · · ∩ Ekr ∩ Ec
j1 ∩ · · · ∩ Ec

js ∩ Ec
js+1

)

= P (Ek1
) · · ·P (Ekr

)P (Ec
j1) · · ·P (Ec

js)

− P (Ek1) · · ·P (Ekr )P (Ec
j1) · · ·P (Ec

js)P (Ejs+1)

= P (Ek1
) · · ·P (Ekr

)P (Ec
j1) · · ·P (Ec

js)[1− P (Ejs+1
)],

which is exactly what we wanted to show.

p. 114 #14. The problem is just gamblers ruin with an infinitely rich opponent, i.e., with N =∞,
and the answer given is just the N →∞ limit of formula (4.5) for the gambler’s ruin problem. The
moral is clear: the casino wins in the end.

Self-test: p. 117 #21. Let E be the event that A gets more heads than B, and let R, S, and T be
the events respectively that after n flips by each A has more heads, B has more heads, and they
are tied. Conditioning yields

P (E) = P (E|R)P (R) + P (E|S)P (S) + P (E|T )P (T ).

Now P (E|R) = 1, since if A is has more heads after n flips by each he must finish with more heads;
similarly, P (E|S) = 0 and P (E|T ) = 1/2. On the other hand, P (S) = P (R) because the situation
is symmetric between A and B when both have flipped n coins, and from P (R) +P (S) +P (T ) = 1
we have P (T ) = 1− 2P (R). Thus P (E) = P (R) + (1− 2P (R))(1/2) = 1/2.


