FALL 2020

SOLUTIONS—ASSIGNMENT 6

Chapter 3. Problems: p. $107 \# 51$ a. The events are: C : has cancer; H healthy; Y : test says cancer.

$$
P(C \mid Y)=\frac{P(Y \mid C) P(C)}{P(Y \mid C) P(C)+P(Y \mid H) P(H)}=\frac{(.268)(.7)}{(.268)(.7)+(.135)(.3)}
$$

p. $108 \# 60$. Suppose we have N sophomore girls. Then if a student is selected at random, and F denotes freshman, B boy, then $P(F B)=4 /(16+N)$ and $P(F)=P(B)=10 /(16+N)$, so F and B are independent if $4 /(16+N)=[10 /(16+N)]^{2}$, or $N=9$.
p. $108 \# 65$. From the information given, both of Smith's parents have a brown-eyed and a blue-eyed gene. Moreover, because Smith has brown eyes, the reduced sample space, of equally likely outcomes, corresponding to this information is $\{($ brown, blue $),($ blue, brown $),($ brown, brown $)\}$, where the first entry specifies the gene from Smith's mother and the second from his father. It follows that the answer to (a) is $2 / 3$. For (b), condition on whether Smith has 1 or 2 brown genes. Then writing F for the event that Smith's first child has blue eyes, we have $P(F)=$ $P(F \mid 1) P(1)+P(F \mid 2) P(2)=\frac{1}{2} \cdot \frac{2}{3}+0=1 / 3$. (c) Let E_{i} be the event that Smith's i th child has brown eyes. Then $P\left(E_{2} \mid E_{1}\right)=\stackrel{P}{P}\left(E_{1} E_{2}\right) / P\left(E_{1}\right)=\frac{1}{4} \cdot \frac{2}{3}+1 \cdot \frac{1}{3} / \frac{2}{3}=3 / 4$, where $P\left(E_{1} E_{2}\right)$ has been computed by conditioning as in (b), using the fact that $P\left(E_{1} E_{2} \mid 1\right)=\left(\frac{1}{2}\right)^{2}$.
p. $110 \# 76$: (a) The event that all are boys has probability $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$, the event that all are girls has the same probability, and since the two events are mutually exclusive the probability that all are of the same sex is $1 / 16$. (b) The conditions specify 5 independent events of probability $1 / 2$ each, so they specify an event of probability $\left(\frac{1}{2}\right)^{5}=\frac{1}{32}$. (c) Since there are $\binom{5}{3}$ ways to choose in which 3 of the 5 trials the boys occur, the probability is $\binom{5}{3}\left(\frac{1}{2}\right)^{5}=10 \cdot \frac{1}{32}=\frac{5}{16}$. (d) Only the first two tries are important; the probability is $(1 / 2)^{2}=1 / 4$. (e) This is the complement of the event that all are boys, with probability $1-1 / 32=31 / 32$.
p. $110 \# 77$. Hint: Condition on the result of the first two rolls of the pair of dice and solve the equation thereby obtained for the desired probability $P(A)$. The equation is

$$
P(A)=\frac{1}{9}+P(A)\left(1-\frac{1}{9}\right)\left(1-\frac{5}{36}\right),
$$

yielding $P(A)=9 / 19$.
p. $110 \# 82$. Since any roll not yielding a 7 or an even number is irrelevant we may think of the experiment as a sequence of independent trials as follows: one trial consists of rolling until either a 7 (success) or an even number (failure) appears. Now $P(7)=6 / 36=1 / 6$ and $P($ Even $)=18 / 36=$ $1 / 2$, so that by a problem worked in class (see end of Example 4 h) the probability of rolling a 7 before an even number - that is, the probability of success in one of our new trials-is $1 / 4$. Now we are reduced to the problem of points: we want the probability of 2 successes before 6 failures. This is just the probability of at least 2 success in the first 7 trials:

$$
\sum_{k=2}^{7}\binom{7}{k}\left(\frac{1}{4}\right)^{k}\left(\frac{3}{4}\right)^{7-k}=\frac{21 \cdot 3^{5}+35 \cdot 3^{4}+35 \cdot 3^{3}+21 \cdot 3^{2}+7 \cdot 3+1}{4^{7}}
$$

Theoretical exercises: p. $113 \# 6$. If we accept the fact that the independence of E_{1}, \ldots, E_{n} implies also the independence of $E_{1}^{c}, \ldots, E_{n}^{c}$ then the result is immediate, by DeMorgan's laws:

$$
P\left(\bigcup E_{k}\right)=P\left(\left(\bigcap E_{k}^{c}\right)^{c}\right)=1-P\left(\bigcap E_{k}^{c}\right)=1-\prod P\left(E_{k}^{c}\right)=1-\prod\left(1-P\left(E_{k}\right)\right)
$$

We may prove the independence of the complements (actually something a bit stronger) as follows. Suppose that $k_{1}, \ldots, k_{r}, j_{1}, \ldots, j_{s}$ are distinct indices between 1 and n; we prove that

$$
\begin{equation*}
P\left(E_{k_{1}} \cap \cdots \cap E_{k_{r}} \cap E_{j_{1}}^{c} \cap \cdots \cap E_{j_{s}}^{c}\right)=P\left(E_{k_{1}}\right) \cdots P\left(E_{k_{r}}\right) P\left(E_{j_{1}}^{c}\right) \cdots P\left(E_{j_{s}}^{c}\right) \tag{*}
\end{equation*}
$$

The proof is by induction on s; for $s=0,(*)$ is just the independence of the E_{k}. We assume that $(*)$ holds for s and check it for $s+1$. Now

$$
\begin{aligned}
E_{k_{1}} \cap \cdots \cap E_{k_{r}} \cap E_{j_{1}}^{c} \cap \cdots \cap E_{j_{s}}^{c}=\left[E_{k_{1}} \cap \cdots \cap E_{k_{r}} \cap E_{j_{1}}^{c} \cap \cdots \cap E_{j_{s}}^{c} \cap E_{j_{s+1}}\right] \\
\cup\left[E_{k_{1}} \cap \cdots \cap E_{k_{r}} \cap E_{j_{1}}^{c} \cap \cdots \cap E_{j_{s}}^{c} \cap E_{j_{s+1}}^{c}\right]
\end{aligned}
$$

and the right hand side is a disjoint union, so the probability of the left hand side is exactly the sum of the probabilities of the two terms on the right. Thus the induction assumption implies

$$
\begin{aligned}
P\left(E_{k_{1}} \cap \cdots \cap E_{k_{r}} \cap E_{j_{1}}^{c} \cap \cdots \cap\right. & \left.E_{j_{s}}^{c} \cap E_{j_{s+1}}^{c}\right) \\
= & P\left(E_{k_{1}}\right) \cdots P\left(E_{k_{r}}\right) P\left(E_{j_{1}}^{c}\right) \cdots P\left(E_{j_{s}}^{c}\right) \\
& \quad-P\left(E_{k_{1}}\right) \cdots P\left(E_{k_{r}}\right) P\left(E_{j_{1}}^{c}\right) \cdots P\left(E_{j_{s}}^{c}\right) P\left(E_{j_{s+1}}\right) \\
= & P\left(E_{k_{1}}\right) \cdots P\left(E_{k_{r}}\right) P\left(E_{j_{1}}^{c}\right) \cdots P\left(E_{j_{s}}^{c}\right)\left[1-P\left(E_{j_{s+1}}\right)\right],
\end{aligned}
$$

which is exactly what we wanted to show.
p. $114 \# 14$. The problem is just gamblers ruin with an infinitely rich opponent, i.e., with $N=\infty$, and the answer given is just the $N \rightarrow \infty$ limit of formula (4.5) for the gambler's ruin problem. The moral is clear: the casino wins in the end.
Self-test: p. $117 \# 21$. Let E be the event that A gets more heads than B, and let R, S, and T be the events respectively that after n flips by each A has more heads, B has more heads, and they are tied. Conditioning yields

$$
P(E)=P(E \mid R) P(R)+P(E \mid S) P(S)+P(E \mid T) P(T)
$$

Now $P(E \mid R)=1$, since if A is has more heads after n flips by each he must finish with more heads; similarly, $P(E \mid S)=0$ and $P(E \mid T)=1 / 2$. On the other hand, $P(S)=P(R)$ because the situation is symmetric between A and B when both have flipped n coins, and from $P(R)+P(S)+P(T)=1$ we have $P(T)=1-2 P(R)$. Thus $P(E)=P(R)+(1-2 P(R))(1 / 2)=1 / 2$.

