SOLUTIONS—ASSIGNMENT 5

Chapter 3. Problems: p. $103 \# 1$. Let E be "at least one 6 ", F be "different numbers". There are 36 outcomes, 6 in which the two dice are the same and hence 30 in which they are different, so $P(F)=30 / 36=5 / 6$. There are 10 outcomes with different numbers in which one is a 6 , so $P(E F)=10 / 36=5 / 18$, and $P(E \mid F)=(5 / 18) /(5 / 6)=1 / 3$. (This follows even more directly from the fact that the reduced sample space contains 30 equally likely outcomes, 10 of these having one ' 6 '.)
p. $103 \# 7$. The oldest boy (if there is one) of a royal family becomes king, so we know that the family has at least one boy. If G and B are the events that the family has a girl and has a boy, respectively, then

$$
P(G \mid B)=P(G B) / P(B)=(1 / 2) /(3 / 4)=2 / 3 .
$$

Even more directly, notice that the reduced sample space is $\{(b, b),(b, g),(g, b)\}$.
p. $103 \# 8$. The question just asks for the probability that the second child is a girl, which is $1 / 2$. In terms of the formula for conditional probability, with G_{1} the event that the first child is a girl, etc.,

$$
P\left(G_{1} G_{2} \mid G_{1}\right)=P\left(G_{1} G_{2}\right) / P\left(G_{1}\right)=(1 / 4) /(1 / 2)=1 / 2
$$

p. $103 \# 9$. Let A, B, and C be the event of choosing a white ball from the corresponding urn; $T=A B C^{c} \cup A B^{c} C \cup A^{c} B C$, the event that exactly two white balls are chosen. Then

$$
\begin{aligned}
P(A \mid T) & =\frac{P(A T)}{P(T)}=\frac{P\left(A B C^{c}\right)+P\left(A B^{c} C\right)}{P(T)} \\
& =\left[\frac{2}{6} \cdot \frac{8}{12} \cdot \frac{3}{4}+\frac{2}{6} \cdot \frac{4}{12} \cdot \frac{1}{4}\right] /\left[\frac{2}{6} \cdot \frac{8}{12} \cdot \frac{3}{4}+\frac{2}{6} \cdot \frac{4}{12} \cdot \frac{1}{4}+\frac{4}{6} \cdot \frac{8}{12} \cdot \frac{1}{4}\right]
\end{aligned}
$$

p. $103 \# 10$. The probability that the $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ cards are spades is $\frac{13}{52} \cdot \frac{12}{51} \cdot \frac{11}{50}$, while the probability that the $1^{\text {st }}$ is not a spade but the next two are is $\frac{39}{52} \cdot \frac{13}{51} \cdot \frac{12}{50}$. Hence

$$
\begin{aligned}
P\left(2^{\text {nd }} \text { and } 3^{\text {rd }} \text { are spades }\right) & =\frac{13 \cdot 12 \cdot 11+39 \cdot 13 \cdot 12}{52 \cdot 51 \cdot 50}=\frac{50 \cdot 13 \cdot 12}{52 \cdot 51 \cdot 50} \text { and } \\
P\left(1^{\text {st }} \text { is a spade } \mid 2^{\text {nd }} \text { and } 3^{\text {rd }} \text { are spades }\right) & =\frac{P\left(1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }} \text { are spades }\right)}{P\left(2^{\text {nd }} \text { and } 3^{\text {rd }} \text { are spades }\right)} \\
& =\frac{13 \cdot 12 \cdot 11}{52 \cdot 51 \cdot 50} / \frac{50 \cdot 13 \cdot 12}{52 \cdot 51 \cdot 50}=\frac{11}{50}=0.22 .
\end{aligned}
$$

Much easier: Use the reduced sample space for the first card given that the second and third cards are spades. There are $52-2=50$ possible (equally likely) cards, $13-2=11$ of which are spades. Hence the conditional probability is $11 / 50$.
p. $105 \# 28 . C$: "color blind," M : "male," F : "female." Then if males and females are equally represented in the population, $P(M)=P(F)=1 / 2$, so

$$
P(M \mid C)=\frac{P(C \mid M) P(M)}{P(C \mid M) P(M)+P(C \mid F) P(F)}=\frac{(1 / 20)(1 / 2)}{(1 / 20)(1 / 2)+(1 / 400)(1 / 2)}=\frac{20}{21}=.952 .
$$

For the second part, take $P(M)=2 / 3, P(F)=1 / 3$ in this formula.
p. $105 \# 32$. F : "first box," S : "second box," B :"black marble," W : "white marble." Then $P(B)=$ $P(B \mid F) P(F)+P(B \mid S) P(S)=(1 / 2)(1 / 2)+(2 / 3)(1 / 2)=7 / 12 ; P(F \mid W)=P(W \mid F) P(F) / P(W)=$ $(1 / 2)(1 / 2) /(5 / 12)=3 / 5$.
p. $106 \# 37$. Let M be the event that the present was hidden by mom, D by dad. Let U be the event that the present was hidden upstairs, L downstairs. Then

$$
\begin{aligned}
P(U) & =P(U \mid M) P(M)+P(U \mid D) P(D) \\
& =(.7)(.6)+(.5)(.4) \\
& =.62
\end{aligned}
$$

and

$$
\begin{aligned}
P(D \mid L) & =\frac{P(L \mid D) P(D)}{P(L)} \\
& =\frac{(.5)(.4)}{1-.62}=\frac{.20}{.38}=\frac{10}{19} .
\end{aligned}
$$

p. $106 \# 45$. The events are: T : two-headed coin; F : fair coin; B : biased coin; H : heads. Then

$$
\begin{aligned}
P(T \mid H) & =\frac{P(H \mid T) P(T)}{P(H \mid T) P(T)+P(H \mid F) P(F)+P(H \mid B) P(B)} \\
& =\frac{1 \cdot(1 / 3)}{1 \cdot(1 / 3)+(1 / 2)(1 / 3)+(3 / 4)(1 / 3)} .
\end{aligned}
$$

