SOLUTIONS—ASSIGNMENT 23

Chapter 8. Problems: p. 424 #3. Let $Y = \overline{X}_n = (\sum_{i=1}^n X_i)/n$ be the class average. Then Y has standard deviation $5/\sqrt{n}$, so an application of the central limit theorem implies

$$P\{|Y - 75| \le 5\} = P\left\{-\frac{5}{5/\sqrt{n}} \le \frac{Y - 75}{5/\sqrt{n}} \le \frac{5}{5/\sqrt{n}}\right\} \simeq 2\Phi(\sqrt{n}) - 1$$

Requiring that this probability have value at least .9 leads to $\Phi(\sqrt{n}) \ge .95$, $\sqrt{n} \ge 1.65$, and n = 3. Of course, the entire exercise is not worth much: the central limit theorem is unlikely to yield a good approximation with n = 3.

p. 424 #4. (a) $E[X_i] = 1$, so $E\left[\sum_{i=1}^{20} X_i\right] = 20 \cdot 1 = 20$ and $P\{\sum X_i > 15\} = P\{\sum X_i \ge 16\} \le 20/16 = 5/4$, a useless bound, since we know that any probability is at most 1. (b) $E[X_i] = 1$ and $Var(X_i) = 1$, so if $X = \sum_{i=1}^{20} X_i$ then E[X] = 20 and Var(X) = 20. Thus

$$P\{X > 15\} = P\{(X - 20)/\sqrt{20} > -5/\sqrt{20}\} \simeq \Phi(5/\sqrt{20}) = .8686.$$

(The exact value is .8435. If the continuity correction (i.e., first writing the quantity to be estimated as $P\{X \ge 15.5\}$) had been used above to get a better approximation, we would have obtained .8438.)

p. 425 #5. Let X_i be the error introduced in rounding the *i*th number; since X_i is uniform on [-.5, .5], $E[X_i] = 0$, $\operatorname{Var}(X_i) = \sigma^2 = 1/12$. If $X = \sum_{i=1}^{50} X_i$, then we want to estimate $P\{|X| \ge 3\}$. Now by the central limit theorem $X/\sqrt{\operatorname{Var}(X)} = X/\sqrt{n\sigma}$ is approximately standard normal, and

$$P\{|X| \ge 3\} = P\left\{ \left| \frac{X}{\sqrt{\operatorname{Var}(X)}} \right| \ge \frac{3}{\sqrt{50/12}} \right\} \simeq 2(1 - \Phi(1.47)) = .1416$$

Theoretical exercises: p. 427 #8. For t an integer we know by Example 3b on page 261 that a gamma random variable Y_t with parameters (t, λ) is the sum of t independent exponential random variables X_i , each with parameter λ . Thus by the central limit theorem, Y_t is approximately normal; more specifically,

$$\tilde{Z}_t = \frac{Y_t - tE[X_i]}{\sqrt{t \operatorname{Var}(X_i)}} = \frac{\lambda Y_t - t}{\sqrt{t}}$$

is approximately standard normal. (For noninteger t this argument does not apply, but it seems reasonable to assume that for large t the distribution of \tilde{Z}_t does not vary too much as t varies between successive integers, which would imply that \tilde{Z}_t is approximately standard normal for all large t. The assumption can, in fact, be more or less proven using Proposition 3.1 on page 261.)