SOLUTIONS—ASSIGNMENT 23

Chapter 8. Problems: p. $424 \# 3$. Let $Y=\bar{X}_{n}=\left(\sum_{i=1}^{n} X_{i}\right) / n$ be the class average. Then Y has standard deviation $5 / \sqrt{n}$, so an application of the central limit theorem implies

$$
P\{|Y-75| \leq 5\}=P\left\{-\frac{5}{5 / \sqrt{n}} \leq \frac{Y-75}{5 / \sqrt{n}} \leq \frac{5}{5 / \sqrt{n}}\right\} \simeq 2 \Phi(\sqrt{n})-1
$$

Requiring that this probability have value at least .9 leads to $\Phi(\sqrt{n}) \geq .95, \sqrt{n} \geq 1.65$, and $n=3$. Of course, the entire exercise is not worth much: the central limit theorem is unlikely to yield a good approximation with $n=3$.
p. $424 \# 4$. (a) $E\left[X_{i}\right]=1$, so $E\left[\sum_{i=1}^{20} X_{i}\right]=20 \cdot 1=20$ and $P\left\{\sum X_{i}>15\right\}=P\left\{\sum X_{i} \geq\right.$ $16\} \leq 20 / 16=5 / 4$, a useless bound, since we know that any probability is at most 1 .
(b) $E\left[X_{i}\right]=1$ and $\operatorname{Var}\left(X_{i}\right)=1$, so if $X=\sum_{i=1}^{20} X_{i}$ then $E[X]=20$ and $\operatorname{Var}(X)=20$. Thus

$$
P\{X>15\}=P\{(X-20) / \sqrt{20}>-5 / \sqrt{20}\} \simeq \Phi(5 / \sqrt{20})=.8686
$$

(The exact value is .8435 . If the continuity correction (i.e., first writing the quantity to be estimated as $P\{X \geq 15.5\}$) had been used above to get a better approximation, we would have obtained .8438.)
p. $425 \# 5$. Let X_{i} be the error introduced in rounding the $i^{\text {th }}$ number; since X_{i} is uniform on $[-.5, .5], E\left[X_{i}\right]=0, \operatorname{Var}\left(X_{i}\right)=\sigma^{2}=1 / 12$. If $X=\sum_{i=1}^{50} X_{i}$, then we want to estimate $P\{|X| \geq 3\}$. Now by the central limit theorem $X / \sqrt{\operatorname{Var}(X)}=X / \sqrt{n} \sigma$ is approximately standard normal, and

$$
P\{|X| \geq 3\}=P\left\{\left|\frac{X}{\sqrt{\operatorname{Var}(X)}}\right| \geq \frac{3}{\sqrt{50 / 12}}\right\} \simeq 2(1-\Phi(1.47))=.1416
$$

Theoretical exercises: p. $427 \# 8$. For t an integer we know by Example 3b on page 261 that a gamma random variable Y_{t} with parameters (t, λ) is the sum of t independent exponential random variables X_{i}, each with parameter λ. Thus by the central limit theorem, Y_{t} is approximately normal; more specifically,

$$
\tilde{Z}_{t}=\frac{Y_{t}-t E\left[X_{i}\right]}{\sqrt{t \operatorname{Var}\left(X_{i}\right)}}=\frac{\lambda Y_{t}-t}{\sqrt{t}}
$$

is approximately standard normal. (For noninteger t this argument does not apply, but it seems reasonable to assume that for large t the distribution of \tilde{Z}_{t} does not vary too much as t varies between successive integers, which would imply that \tilde{Z}_{t} is approximately standard normal for all large t. The assumption can, in fact, be more or less proven using Proposition 3.1 on page 261.)

