SOLUTIONS—ASSIGNMENT 22

Chapter 8. Problems: p. $424 \# 1$. This is a direct application of Chebyshev's inequality, although we have to be a little careful: the quantity that we have to estimate has a strict inequality where Chebyshev has a weak inequality. Still, it all works out. Set $\mu=20$ and $\sigma^{2}=20$; then

$$
\begin{aligned}
P\{0 \leq X \leq 40\} & =P\{-20 \leq X-20 \leq 20\}=P\{|X-\mu| \leq 20\}=1-P\{|X-\mu|>20\} \\
& \geq 1-P\{|X-\mu| \geq 20\} \geq 1-\frac{\sigma^{2}}{20^{2}}=\frac{19}{20} .
\end{aligned}
$$

p. $424 \# 2$. (a) By Markov's inequality, with X a randomly selected student's test score,

$$
P\{X>85\} \leq P\{X \geq 85\} \leq \frac{E[X]}{85}=\frac{15}{17}
$$

Note that if we assume that the exam scores are integers, then we can do better:

$$
P\{X>85\}=P\{X \geq 86\} \leq \frac{E[X]}{86}=\frac{75}{86}<\frac{15}{17}
$$

(Note also how we can saturate this inequality: if $P\{X=86\}=75 / 86$ and $P\{X=0\}=$ $11 / 86$ then $E[X]=0(11 / 86)+86(75 / 86)=75$ and $P\{X \geq 86\}=75 / 86$.)
(b) $P\{|X-75| \leq 10\}=1-P\{|X-75|>10\} \geq 1-25 / 100=3 / 4$.
(c) Suppose that n students take the test, with scores X_{1}, \ldots, X_{n}, and let \bar{X}_{n} be the class average: $\bar{X}_{n}=\left(\sum_{i=1}^{n} X_{i}\right) / n$. Then $E\left[\bar{X}_{n}\right]=75$ and $\operatorname{Var}\left(\bar{X}_{n}\right)=25 / n$, so

$$
P\left\{\left|\bar{X}_{n}-75\right| \leq 5\right\}=1-P\left\{\left|\bar{X}_{n}-75\right|>5\right\} \geq 1-P\left\{\left|\bar{X}_{n}-75\right| \geq 5\right\} \geq 1-\frac{25 / n}{25}=1-\frac{1}{n}
$$

To make this probability at most .9 we take $n \geq 10$.

Theoretical exercises: p. $426 \# 1$. This is just a rewriting of Chebyshev's inequality:

$$
P\{|X-\mu| \geq k \sigma\} \leq \frac{\sigma^{2}}{(k \sigma)^{2}}=\frac{1}{k^{2}}
$$

