SOLUTIONS—ASSIGNMENT 21

Chapter 7. Problems: p. $385 \# 80$. From Table 7.1 we see that X is Poisson with parameter 2 and Y is binomial with parameters $(10,3 / 4)$. Thus from independence:
(a)

$$
\begin{aligned}
P\{X+Y=2\} & =P\{X=0, Y=2\}+P\{X=1, Y=1\}+P\{X=2, Y=0\} \\
& =P\{X=0\} P\{Y=2\}+P\{X=1\} P\{Y=1\}+P\{X=2\} P\{Y=0\} \\
& =\frac{e^{-2}}{4^{10}}\left[1 \cdot\binom{10}{2} 3^{2}+\frac{2}{1} \cdot\binom{10}{1} 3+\frac{4}{2} \cdot\binom{10}{0}\right]=\frac{467}{4^{10}} e^{-2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
P\{X Y=0\} & =P(\{X=0\} \cup\{Y=0\})=P\{X=0\}+P\{Y=0\}-P\{X=Y=0\} \\
& =e^{-2}+\frac{1}{4^{10}}-\frac{e^{-2}}{4^{10}}
\end{aligned}
$$

(c)

$$
E[X Y]=E[X] E[Y]=2 \cdot\left[10 \cdot \frac{3}{4}\right]=15
$$

Theoretical exercises: p. $389 \# 46$. If X is uniform on $[a, b]$, then

$$
\begin{equation*}
M_{X}(t)=E\left[e^{t X}\right]=\frac{1}{b-a} \int_{a}^{b} e^{t x} d x=\left.\frac{1}{b-a} \frac{e^{t x}}{t}\right|_{a} ^{b}=\frac{e^{b t}-e^{a t}}{t(b-a)} \tag{*}
\end{equation*}
$$

Note that $M_{X}(0)$ is not defined by $(*)$, but that $M_{X}(0)=E[1]=1$ directly from the definition of M_{X}, and also that l'Hospital's rule shows that $\lim _{t \rightarrow 0} M_{X}(t)=1$.

Now we want to compute $M_{X}^{\prime}(0)$. Because $(*)$ does not make sense at $t=0$ we cannot differentiate $(*)$ and then set $t=0$ (in fact, one gets the right answer by differentiating $(*)$ and then taking the $t \rightarrow 0$ limit using l'Hospital's rule, but technically this requires justification). We can, however, compute M_{X}^{\prime} from the definition of derivative:

$$
E[X]=M_{X}^{\prime}(0)=\lim _{t \rightarrow 0} \frac{M_{X}(t)-M_{X}(0)}{t}=\lim _{t \rightarrow 0} \frac{e^{b t}-e^{a t}-t(b-a)}{t^{2}(b-a)}=\frac{a+b}{2}
$$

where we have used l'Hospital's rule. Of course, this is a familiar answer. We can compute $\left.E\left[X^{2}\right]=M_{X}^{\prime \prime}(0)=\lim _{t \rightarrow 0}\left[M_{X}^{\prime}(t)-M_{X}^{\prime}(0)\right] / t\right]=\left(b^{2}+a b+a^{2}\right) / 3$ similarly.
p. $390 \# 51$.

$$
\Psi^{\prime \prime}(t)=\frac{d^{2}}{d t^{2}} \log M(t)=\frac{d}{d t} \frac{M^{\prime}(t)}{M(t)}=\frac{M^{\prime \prime}(t) M(t)-M^{\prime}(t) M^{\prime}(t)}{M(t)^{2}}
$$

Setting $t=0$ and using $M(0)=1, M^{\prime}(0)=E[X]$, and $M^{\prime \prime}(0)=E\left[X^{2}\right]$ gives $\Psi^{\prime \prime}(0)=$ $E\left[X^{2}\right]-E[X]^{2}=\operatorname{Var}(X)$.
p. $390 \# 52$. . Let $X=\sum_{i=1}^{n} X_{i}$. From Table 7.2, $M_{X_{i}}(t)=\lambda /(\lambda-t)$ for all $t<\lambda$. Since the X_{i} are independent,

$$
M_{X}(t)=M_{X_{1}+\cdots+X_{n}}(t)=M_{X_{1}}(t) \cdots M_{X_{n}}(t)=\left(\frac{\lambda}{\lambda-t}\right)^{n} .
$$

According to Table 7.2 this is just the moment generating function of a random variable which has a gamma distribution with parameters (n, λ); since the moment generating function determines the distribution, X must have this same distribution.

