SOLUTIONS—ASSIGNMENT 19

Chapter 7. Problems: p. $381 \# 33$. a) $E\left[X^{2}\right]=\operatorname{Var}(X)+E[X]^{2}=6$, so $E\left[(2+X)^{2}\right]=$ $E\left[4+4 X+X^{2}\right]=4+4+6=14$.
b) A constant random variable is independent of any other and has variance zero, so $\operatorname{Var}(4+3 X)=\operatorname{Var}(4)+\operatorname{Var}(3 X)=9 \operatorname{Var}(X)=45$.
p. $381 \# 34$. b) Let X be the number of wives seated next to their husbands. We can write X as a sum of Bernoulli random variables in various ways; some are more convenient than others for the computation of variance. We take $X=\sum_{i=1}^{20} X_{i}$, where $X_{i}=1$ if there is a married couple seated at place i and the next place, that is, at i and $i+1$ for $i=1, \ldots, 19$, and at i and 1 if $i=20$ (for convenience, we write i and $i+1$ in this case also, taking $20+1=1$) .

Now $\operatorname{Var}(X)=\sum_{i=1}^{20} \operatorname{Var}\left(X_{i}\right)+2 \sum_{1 \leq i<j \leq 20} \operatorname{Cov}\left(X_{i}, X_{j}\right)$. Since X_{i} is Bernoulli, we have $\operatorname{Var}\left(X_{i}\right)=(1 / 19)[1-(1 / 19)]=18 / 361$. To compute $\operatorname{Cov}\left(X_{i}, X_{j}\right)=E\left[X_{i} X_{j}\right]-E\left[X_{i}\right] E\left[X_{j}\right]$ we note that $X_{i} X_{j}$ is Bernoulli, taking value 1 if both places i and $i+1$ and places j and $j+1$ are occupied by married couples. If i and j are adjacent (this covers 20 choices of i and j) this is impossible, so $E\left[X_{i} X_{j}\right]=0$; otherwise $\left(\binom{20}{2}-20=170\right.$ choices) there are $(20)(19)(18)(17)$ ways to seat people at these four seats, of which $(20)(18)$ yield two couples in the right places, so $E\left[X_{i} X_{j}\right]=1 /(19 \cdot 17)=1 / 323$. Thus

$$
\begin{aligned}
\operatorname{Var}(X) & =\sum_{i=1}^{20} \operatorname{Var}\left(X_{i}\right)+2\left(\sum_{1 \leq i<j \leq 20} E\left[X_{i} X_{j}\right]-\sum_{1 \leq i<j \leq 20} E\left[X_{i}\right] E\left[X_{j}\right]\right) \\
& =20 \frac{18}{361}+2\left(20 \cdot 0+170 \frac{1}{323}-190\left(\frac{1}{19}\right)^{2}\right)=\frac{360}{361}
\end{aligned}
$$

p. $381 \# 36$. Write $X=\sum_{i=1}^{n} X_{i}$ and $Y=\sum_{i=1}^{n} Y_{i}$, where X_{i} (respectively Y_{i}) is a Bernoulli random variable with $X_{i}=1$ if a 1 occurs (respectively $Y_{i}=1$ if a 2 occurs) on the $i^{\text {th }}$ roll, and $X_{i}=0$ (respectively $Y_{i}=0$) otherwise. Clearly $E\left[X_{i}\right]=E\left[Y_{i}\right]=1 / 6$. Now $X_{i} Y_{i}$ is always 0 , so $\operatorname{Cov}\left(X_{i}, Y_{i}\right)=E\left[X_{i} Y_{i}\right]-E\left[X_{i}\right] E\left[Y_{i}\right]=-1 / 36$, but if $i \neq j$ then X_{i} and Y_{j} are independent, and $\operatorname{Cov}\left(X_{i}, Y_{j}\right)=0$. Thus

$$
\operatorname{Cov}(X, Y)=\sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}\left(X_{i}, Y_{j}\right)=\sum_{i=1}^{n} \operatorname{Cov}\left(X_{i}, Y_{i}\right)=-\frac{n}{36} .
$$

p. $381 \# 40$.

$$
\begin{gathered}
E[X]=\iint x f(x, y) d x d y=2 \int_{0}^{\infty} \int_{0}^{x} e^{-2 x} d y d x=2 \int_{0}^{\infty} x e^{-2 x} d x=\frac{1}{2} \\
E[Y]=\iint y f(x, y) d x d y=2 \int_{0}^{\infty} \int_{0}^{x} y \frac{e^{-2 x}}{x} d y d x=2 \int_{0}^{\infty} \frac{x^{2}}{2} \frac{e^{-2 x}}{x} d x=\frac{1}{4} \\
E[X Y]=\iint x y f(x, y) d x d y=2 \int_{0}^{\infty} \int_{0}^{x} y e^{-2 x} d y d x=2 \int_{0}^{\infty} \frac{x^{2}}{2} e^{-2 x} d x=\frac{1}{4} .
\end{gathered}
$$

So $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]=1 / 8$.
p. $381 \# 44$. a) Think of placing the pairs in some distinguishable order. If X is the number of mixed-sex pairs then $X=\sum_{i=1}^{10} X_{i}$, where X_{i} is Bernoulli with $X_{i}=1$ if and only if the $i^{\text {th }}$ pair is mixed-sex. Clearly

$$
P\left\{X_{i}=1\right\}=\frac{100}{\binom{20}{2}}=\frac{10}{19},
$$

(why is this obvious?) and

$$
P\left\{X_{i} X_{j}=1\right\}=\frac{100 \cdot 81}{\binom{20}{2}\binom{18}{2}}=\frac{90}{323}, \text { if } i \neq j
$$

Thus $E[X]=\sum_{1}^{10} E\left[X_{i}\right]=100 / 19$. For $i \neq j, \operatorname{Cov}\left(X_{i}, X_{j}\right)=90 / 323-(10 / 19)^{2}=$ 10/6137, and

$$
\operatorname{Var}(X)=\sum_{1}^{10} \operatorname{Var}\left(X_{i}\right)+2 \sum_{1 \leq i<j \leq 10} \operatorname{Cov}\left(X_{i}, X_{j}\right)=10 \frac{10}{19} \frac{9}{19}+90 \frac{10}{6137}=\frac{16200}{6137}
$$

b) The analysis is almost the same, but now we let $X_{i}=1$ if the $i^{\text {th }}$ pair is a married couple. Now

$$
P\left\{X_{i}=1\right\}=\frac{10}{\binom{20}{2}}=\frac{1}{19}, \quad P\left\{X_{i} X_{j}=1\right\}=\frac{10 \cdot 9}{\binom{20}{2}\binom{18}{2}}=\frac{1}{323}, \text { if } i \neq j
$$

So $E[X]=10 / 19, \operatorname{Cov}\left(X_{i}, X_{j}\right)=2 / 6137$ for $i \neq j$, and

$$
\operatorname{Var}(X)=10 \frac{1}{19} \frac{18}{19}+90 \frac{2}{6137}=\frac{3240}{6137}
$$

