SOLUTIONS—ASSIGNMENT 18

Chapter 7. Problems: p. $378 \# 4$.(a) $E(X Y)=\int_{0}^{1} \int_{0}^{y} x y y^{-1} d x d y=\int_{0}^{1} \int_{0}^{y} x d x d y=$ $\frac{1}{2} \int_{0}^{1} y^{2} d y=1 / 6$. (b) $E(X)=\int_{0}^{1} \int_{0}^{y} x y^{-1} d x d y=1 / 4$. (c) $E(Y)=\int_{0}^{1} \int_{0}^{y} y y^{-1} d x d y=1 / 2$. p. $379 \# 14$. Let X be the number of stages needed. Then $X=\sum_{i=1}^{m} X_{i}$, where X_{i} is geometric with parameter $1-p$. (Why?) The answer given follows immediately.
p. $379 \# 19$. (a) Let Y be the total number of catches until the first type 1 catch; Y is geometric with parameter $p=P_{1}$, the success probability on each trial. Thus $E[Y]=$ $1 / P_{1}$. If X is the number of catches before the first type 1 catch, then $X=Y-1$ and $E[X]=E[Y-1]=E[Y]-1=\left(1-P_{1}\right) / P_{1}$.
(b). Let Z be the number of types caught before the first type 1 catch. Then $Z=\sum_{j=2}^{r} Z_{j}$, where for each type $j \neq 1, Z_{j}$ is a Bernoulli random variable with $Z_{j}=1$ if an insect of type j is caught before the first type 1 catch, and $Z_{j}=0$ otherwise. Since Z_{j} is Bernoulli, $E\left[Z_{j}\right]=P\left\{Z_{j}=1\right\}$, and $P\left\{Z_{j}=1\right\}=P_{j} /\left(P_{1}+P_{j}\right)$ (this formula is an old friend-see Example 4h in Chapter 3). Thus

$$
E[Z]=\sum_{j=2}^{r} E\left[Z_{j}\right]=\sum_{j=2}^{r} \frac{P_{j}}{P_{1}+P_{j}} .
$$

p. $380 \# 21$. Assume as usual that there are 365 days in the year, all equally likely as birthdays. Then the number of people Z_{i} having birthdays on a given day i is binomial (100, 1/365).
(a) For each day i, let $X_{i}=1$ if exactly three people have birthdays on day i and let $X_{i}=0$ otherwise; then

$$
E\left[\sum_{i=1}^{365} X_{i}\right]=\sum_{i=1}^{365} P\left\{X_{i}=1\right\}=\sum_{i=1}^{365} P\left\{Z_{i}=3\right\}=365\binom{100}{3}\left(\frac{1}{365}\right)^{3}\left(\frac{364}{365}\right)^{97}=.9301
$$

(b) This is similar: let $Y_{i}=1$ if at least one birthday occurs on day $i, Y_{i}=0$ otherwise. Then

$$
E\left[\sum_{i=1}^{365} Y_{i}\right]=\sum_{i=1}^{365} P\left\{Y_{i}=1\right\}=\sum_{i=1}^{365} P\left\{Z_{i}>0\right\}=365\left[1-\left(\frac{364}{365}\right)^{100}\right]=87.58
$$

p. $380 \# 23$. Following the hint, we need only compute $E\left[X_{i}\right]=P\left\{X_{i}=1\right\}$ and $E\left[Y_{i}\right]=$ $P\left\{Y_{i}=1\right\}$.

Now in selecting n balls from an urn containing N balls, the probability that any particular ball is selected is n / N. (Why is this obvious?) Thus the probability that a particular ball is moved from urn 1 to urn 2 is $2 / 11$, and the probability that a particular ball which is in urn 2 at the beginning of the second stage is selected for the trio is $3 / 20$. Thus $P\left\{Y_{i}=1\right\}=3 / 20$ and $P\left\{X_{i}=1\right\}=(2 / 11)(3 / 20)=3 / 110$. Finally, $E\left[\sum X_{i}+\sum Y_{i}\right]=$ $5(3 / 110)+8(3 / 20)=147 / 110$.
p. $381 \# 34$. a) Let X be the number of wives seated next to their husbands. We can write X as a sum of Bernoulli random variables in various ways; some are more convenient than others for the computation of variance (34b). We take $X=\sum_{i=1}^{20} X_{i}$, where $X_{i}=1$ if there is a married couple seated at place i and the next place, that is, at i and $i+1$ for $i=1, \ldots, 19$, and at i and 1 if $i=20$ (for convenience, we write i and $i+1$ in this case also, taking $20+1=1$).

Now there are $\binom{20}{2}$ ways to choose two people to sit at two specified chairs, and $\binom{10}{1}$ ways to choose a married couple, so $E\left[X_{i}\right]=P\left\{X_{i}=1\right\}=\binom{10}{1} /\binom{20}{2}=1 / 19$. (Why is this obvious?) Thus $E[X]=20(1 / 19)=20 / 19$.

Theoretical exercises: p. $385 \# 1$. Let $f(a)=E\left[(X-a)^{2}\right]$. We want to show that $f(a)$ has a strict minimum at $a=E[X]$, that is, that $f(a) \geq f(E[X])$ for all a, with equality holding only for $a=E[X]$. It helps to write

$$
\begin{equation*}
f(a)=E\left[(X-a)^{2}\right]=E\left[X^{2}-2 a X-a^{2}\right]=E\left[X^{2}\right]-2 a E[X]+a^{2} . \tag{*}
\end{equation*}
$$

Method 1: Just compute, from (*),
$f(a)-f(E[X])=\left(E\left[X^{2}\right]-2 a E[X]+a^{2}\right)-\left(E\left[X^{2}\right]-2 E[X]^{2}+E[X]^{2}\right)=(a-E[X])^{2} \geq 0$
and note that equality holds-that is, $(a-E[X])^{2}=0$ - only if $a=E[X]$.
Method 2: From $(*), f(a)$ is just a quadratic polynomial with $f^{\prime}(a)=2(a-E[X])$ and $f^{\prime \prime}(a)=2$. Since $f^{\prime \prime}$ is strictly positive, f has an absolute minimum where $f^{\prime}=0$ - that is, at $a=E[X]$.

