SOLUTIONS—ASSIGNMENT 17

Chapter 6. Problems: p. $294 \# 42$. For X chosen at random from $\{1,2,3,4,5\}$ and then Y chosen at random from $\{1, \ldots, X\}$:
(a) $p(x, y)=P\{X=x, Y=y\}=P\{Y=y \mid X=x\} P\{X=x\}=(1 / x)(1 / 5)=1 /(5 x)$ for $1 \leq y \leq x \leq 5$, and is 0 otherwise (x, y integers).
(b) The marginal $\operatorname{pmf} p_{Y}(y)$ for Y is $P\{Y=y\}=\sum_{x=y}^{x=5} \frac{1}{5 x}$. This has values $137 / 300,77 / 300$, $47 / 300,27 / 300,12 / 300$ for $Y=1,2,3,4,5$. The conditional $\operatorname{pmf} p_{X \mid Y}(x \mid y)$ for X given Y is $P\{X=x, Y=y\} / P\{Y=y\}$. Values: $y=1: 60 / 137,30 / 137,20 / 137,15 / 137,12 / 137$ for $x=1,2,3,4,5 . y=2: 30 / 77,20 / 77,15 / 77,12 / 77$ for $x=2,3,4,5 . y=3: 20 / 47,15 / 47,12 / 47$ for $x=3,4,5 . y=4: 15 / 27,12 / 27$ for $x=4,5 . y=5: 1$ for $x=5$.
(c) X and Y are clearly not independent, since the possible values of Y depned upon X. For example, $P\{X=1, Y=2\}=0$ but $P\{X=1\} P\{Y=2\}=(1 / 5)(77 / 300) \neq 0$.
p. $295 \# 44$. а) $p_{X \mid Y}(x \mid 1): 1 / 2,1 / 2 . \quad p_{X \mid Y}(x \mid 2): 1 / 3,2 / 3$. b) No! c) $1 / 2,7 / 8,1 / 8$.
p. $295 \# 46$. The conditional density $f_{Y \mid X}(y \mid x)$ is defined for $x>0$ and is given there by

$$
f_{Y \mid X}(y \mid x)=\frac{c\left(x^{2}-y^{2}\right) e^{-x}}{\int_{-x}^{x} c\left(x^{2}-y^{2}\right) e^{-x} d y}=\frac{\left(x^{2}-y^{2}\right)}{\int_{-x}^{x}\left(x^{2}-y^{2}\right) d y}=\frac{3}{4}\left(\frac{1}{x}-\frac{y^{2}}{x^{3}}\right)
$$

for $-x<y<x$. Note that the answer in the back is the corresponding cdf.

Theoretical exercises: p. $296 \# 9$. Let $Y=\min \left(X_{1}, \ldots, X_{n}\right)$ be the minimum of the random variables $X_{1}, X_{2}, \ldots, X_{n}$. Y is greater than some number y if and only if all X_{i} are greater than y; and for any $i, P\left\{X_{i}>y\right\}=e^{-\lambda y}$. Thus, using the independence of the X_{i},

$$
\begin{aligned}
F_{Y}(y) & =P\{Y \leq y\}=1-P\{Y>y\}=1-P\left\{X_{1}>y, \ldots, X_{n}>y\right\} \\
& =1-P\left\{X_{1}>y\right\} \cdots P\left\{X_{n}>y\right\}=1-\left(e^{-\lambda y}\right)^{n}=1-e^{-n \lambda y} .
\end{aligned}
$$

Y is exponential with parameter $n \lambda$.

