FALL 2020

SOLUTIONS—ASSIGNMENT 13

Chapter 5. Problems: p. $229 \# 15$. Here $Z=(X-10) / 6$ is standard normal. So, using linear interpolation to read the Φ table for arguments with three decimal places and recalling that $\Phi(x)=$ $1-\Phi(-x)$, we find
(a) $P\{X>5\}=P\{Z>-5 / 6\}=1-\Phi(-5 / 6)=\Phi(5 / 6)=.7976$;
(b) $P\{4<X<16\}=P\{-1<Z<1\}=\Phi(1)-\Phi(-1)=2 \Phi(1)-1=.6826$;
(c) $P\{X<8\}=P\{Z<-2 / 6\}=\Phi(-1 / 3)=1-\Phi(1 / 3)=.3694$;
(d) $P\{X<20\}=P\{Z<5 / 3\}=\Phi(5 / 3)=.9522$;
(e) $P\{X>16\}=P\{Z>1\}=1-\Phi(1)=.1587$.
p. $229 \# 16$. Define $E=\left\{\right.$ rainfall $\leq 50^{\prime \prime}$ in one year $\}$. Then $P\{E\}=P\{X \leq 50\}$ where X is normal with $\mu=40$ and $\sigma=4$. Set $Z=(X-40) / 4$. Z is standard normal, so $P\{X \leq 50\}=$ $P\{(X-40) / 4 \leq(50-40) / 4\}=P\{Z \leq 2.5\}=\Phi(2.5) \approx .9938$. Assume total rainfall amounts in successive years are mutually independent events. Then $P\left\{10\right.$ years with rainfall $\left.\leq 50^{\prime \prime}\right\}=$ $(.9938)^{10}=.9397$.
p. $229 \# 17$. Hint: What is μ ? What is σ ? (For what value of z does $\Phi(z)=.25$?)
p. $230 \# 23$. (a) The number of 6 's rolled, X, is binomial $(1000,1 / 6)$, so that $\mu=n p=(1000 / 6)$ and $\sigma=\sqrt{n p(1-p)}=\sqrt{5000 / 36}$. Thus $\tilde{Z}=(X-\mu) / \sigma=(X-(1000 / 6)) / \sqrt{5000 / 36}$ is approximately standard normal. Thus

$$
\begin{aligned}
P\{150 \leq X \leq 200\} & =P\{149.5 \leq X \leq 200.5\} \\
& =P\{-1.46 \leq \tilde{Z} \leq 2.87\} \\
& \simeq \Phi(2.87)-[1-\Phi(1.46)]=.9258 .
\end{aligned}
$$

(b) Once we know that 6 has appeared 200 times, the number of times 5 appears, Y, is binomial $(800,1 / 5)$ (this is pretty clear, but you can check it by explicitly computing $P(\{Y=k\} \mid\{X=$ $200\})$), so $\hat{Z}=(Y-160) / 8 \sqrt{2}$ is standard normal, and

$$
\begin{aligned}
P(\{Y<150\} \mid\{X=200\}) & =P\{\hat{Z} \leq(149.5-160) / 8 \sqrt{2}\} \\
& =P\{\hat{Z} \leq-.928\} \simeq 1-\Phi(.928)=.1762 .
\end{aligned}
$$

p. $230 \# 26$. Let X be the number of heads. If the coin is fair, then $\mu=n p=500, \sigma=\sqrt{n p(1-p)}=$ $\sqrt{250}$, and

$$
P\{X \geq 525\}=P\{X \geq 524.5\} \simeq 1-\Phi(24.5 / \sqrt{250})=.0606
$$

If the coin is biased, $\mu=n p=550$ and $\sigma=\sqrt{n p(1-p)}=\sqrt{247.5}$, and

$$
P\{X<525\}=P\{X<524.5\} \simeq \Phi(-25.5 / \sqrt{247.5})=.0526 .
$$

p. $230 \# 27$. Let X be the number of heads. If the coin is fair, then X is binomial with $n=10,000$ and $p=1 / 2$, so that $\mu=n p=5000$ and $\sigma=\sqrt{n p(1-p)}=50$. Thus $Z=(X-5000) / 50$ is approximately standard normal and

$$
P\{X \geq 5800\}=P\{Z \geq 800 / 50=16\} \simeq 1-\Phi(16)
$$

which is so small it is "off the chart." It is thus not at all likely that the coin is fair!
p. $230 \# 32$. (a) $P\{T>2\}=e^{-2 \lambda}=.368$. (b) Since T is memoryless, $P(\{T>10\} \mid\{T>9\})=$ $P\{T>1\}=e^{-1 / 2}=.607$.
p. $230 \# 34$. Let T be the lifetime. Then if T is exponential, with parameter $1 / 20$, we have $P(\{T>30\} \mid\{T>10\})=P\{T>20\}=e^{-1}$. On the other hand, if T is uniform on $[0,40]$, then $P(\{T>30\} \mid\{T>10\})=P\{T>30\} / P\{T>10\}=(1 / 4) /(3 / 4)=1 / 3$.

Chapter 5. Theoretical exercises: p. $232 \# 13$. (b) If X is normal with parameters (μ, σ), then $P\{X \leq \mu\}=1 / 2$ by symmetry (or $P\{X \leq \mu\}=P\{(X-\mu) / \sigma \leq 0\}=\Phi(0)=1 / 2$ since $Z=(X-\mu) / \sigma$ is standard normal), so the median m is μ.
(c) If X is exponentially distributed then the median m must satisfy

$$
\int_{m}^{\infty} \lambda e^{-\lambda x} d x=1 / 2
$$

or $e^{-\lambda m}=1 / 2$, so $m=\ln 2 / \lambda$.
p. $232 \# 15$. Let $Y=c X$. Then $F_{Y}(y)=P\{Y \leq y\}=P\{X \leq y / c\}=F_{X}(y / c)=1-e^{-\lambda y / c}$ for $y \geq 0$ (and is 0 otherwise), since

$$
F_{X}(x)= \begin{cases}0, & \text { if } x<0 \\ 1-e^{-\lambda x}, & \text { if } x \geq 0\end{cases}
$$

Thus Y has density

$$
f_{Y}(y)=F_{Y}^{\prime}(y)= \begin{cases}0, & \text { if } y<0, \\ \frac{\lambda}{c} e^{-\lambda y / c}, & \text { if } y \geq 0\end{cases}
$$

This is the density of an exponential random variable with paramenter λ / c.

