FALL 2020

SOLUTIONS—ASSIGNMENT 12

Chapter 4. Problems: p. 228 \#1. (a) $1=\int_{-1}^{1} c\left(1-x^{2}\right) d x=4 c / 3$, so $c=3 / 4$.
(b) $F(x)=P\{X \leq x\}=\left\{\begin{array}{ll}0, & \text { if } x<-1, \\ \int_{-1}^{x} f(x) d x=\frac{3 x}{4}-\frac{x^{3}}{4}+\frac{1}{2}, & \text { if }-1 \leq x \leq 1, \\ 1, & \text { if } x>1\end{array}\right.$.
p. $228 \# 2$. First we find C :

$$
1=\int_{0}^{\infty} f(x) d x=C \int_{0}^{\infty} x e^{-x / 2} d x=4 C
$$

so $C=1 / 4$. Then

$$
P\{X \geq 5\}=\frac{1}{4} \int_{5}^{\infty} x e^{-x / 2} d x=\frac{7}{2} e^{-5 / 2}
$$

p. $228 \# 4$. (a) $P\{X \geq 20\}=10 \int_{20}^{\infty} \frac{d x}{x^{2}}=10\left[-\frac{1}{x}\right]_{20}^{\infty}=\frac{1}{2}$.
(b) $F(x)=P\{X \leq x\}= \begin{cases}0, & \text { if } x<10, \\ 10 \int_{10}^{x} x^{-2} d x=1-\frac{10}{x}, & \text { if } x \geq 10 .\end{cases}$
(c) Assume that the devices fail or succeed independently. The probability that any given device functions for at least 15 hours is $10 \int_{15}^{\infty} \frac{d x}{x^{2}}=\frac{2}{3}$. The number Y of the six devices which function for at least 15 hours is thus binomial $(6,2 / 3)$, so

$$
P\{Y \geq 3\}=\sum_{k=3}^{6}\binom{6}{k}\left(\frac{2}{3}\right)^{k}\left(\frac{1}{3}\right)^{6-k}=.900 .
$$

p. $228 \# 5$. Let c denote the capacity of the tank and X the volume of sales in a week, both measured in thousands of gallons. Then (assuming that $0 \leq c \leq 1), P\{X>c\}=5 \int_{c}^{1}(1-x)^{4} d x=-(1-$ $x)\left.^{5}\right|_{c} ^{1}=(1-c)^{5}$, so that $P($ supply exhausted $)=P\{X>c\}=0.01$ when $c=1-(0.01)^{1 / 5}=.6019$. If the station owner builds a 602 gallon tank rather than a 1000 gallon tank he will run out of gas about once every two years.
p. $229 \# 6$. (a) $E[X]=\int_{0}^{\infty} x f(x) d x=\frac{1}{4} \int_{0}^{\infty} x^{2} e^{-x / 2} d x=4$.
(b) $E[X]=c \int_{-1}^{1} x\left(1-x^{2}\right) d x=0$ for any c, since the integrand is an odd function. (Here $c=\frac{3}{4}$ from $1=\int_{-1}^{1} c\left(1-x^{2}\right) d x$, but we don't need this).
(c) $E[X]=\int_{5}^{\infty} x\left(5 / x^{2}\right) d x=\left.5 \log x\right|_{5} ^{\infty}=\infty$.
p. $229 \# 8 . E[X]=\int_{0}^{\infty} x \cdot x e^{-x} d x=\int_{0}^{\infty} x^{2} e^{-x} d x=\left[-x^{2} e^{-x}-2 x e^{-x}-2 e^{-x}\right]_{0}^{\infty}=2$
p. $229 \# 10$. The passenger goes to destination A if he/she arrives after the train to B departs and before the train to A arrives. In 7:00-8:00 there are 4 time intervals in which this will happen: 7:05-7:15, 7:20-7:30, 7:35-7:45, and 7:50-8:00. These intervals make up 40/60 of the one-hour period, so if passenger arrival times are uniformly distributed, then P \{passenger goes to $A\}=2 / 3$. The same analysis applies to the period 7:10-8:10.
p. $229 \# 11$. Let X be the distance of the chosen point from the left end of the segment. "Chosen at random" just means that X is uniformly distributed on $[0, L]$. The segments have length X and $L-X$, so the problem asks for the probability that $X /(L-X)<1 / 4$, i.e., $X<L / 5$, or that $(L-X) / X<1 / 4$, i.e., $X>4 L / 5$. Each event has probability $1 / 5$, so the probability we want is 2/5.
p. $229 \# 13$. Let X be the number of minutes after 10:00 that the bus arrives; X is uniformly distributed on $[0,30]$. Then
(a) $P\{X>10\}=P\{10<X<30\}=20 / 30=2 / 3$;
(b) $P(\{X>25\} \mid\{X>15\})=P\{X>25\} / P\{X>15\}=(5 / 30) /(15 / 30)=1 / 3$.
p. 229 \#14. By Proposition 2.1, $E\left[X^{n}\right]=\int x^{n} f_{X}(x) d x=\int_{0}^{1} x^{n} d x=1 /(n+1)$. To use the definition we need to compute the density for X^{n}. Now $F_{X^{n}}(y)=P\left\{X^{n} \leq y\right\}=P\left\{X \leq y^{1 / n}\right\}=$ $y^{1 / n}$, so $f_{Y}(y)=F_{Y}^{\prime}(y)=(1 / n) y^{(1 / n)-1}$. Finally,

$$
E[Y]=\int_{0}^{1} y f_{Y}(y) d y=\int_{0}^{1} y \frac{y^{(1 / n)-1}}{n} d y=\frac{1}{n} \int_{0}^{1} y^{1 / n} d y=\frac{1}{n} \frac{n}{n+1}=\frac{1}{n+1} .
$$

Chapter 5. Theoretical exercises: p. $232 \# 13$. The median m of a continuous random variable X is characterized by the relations $P\{X<m\}=P\{X>m\}=1 / 2$. (Note that since X is continuous, $P\{X=m\}=0$, so we can also say that $P\{X \leq m\}=P\{X \geq m\}=1 / 2$.)
(a) Clearly if X is uniform on $[a, b]$ then it has probability $1 / 2$ of lying in the interval $[a,(a+b) / 2]$ and of lying in $[(a+b) / 2, b]$. The median is the midpoint of the interval: $(a+b) / 2$.
For Problem 4: now the median z satisfies

$$
\frac{1}{2}=P\{X>z\}=10 \int_{z}^{\infty} \frac{d x}{x^{2}}=\frac{10}{z}
$$

so $z=20$; this is just part (a) of problem 4.

