FALL 2020

SOLUTIONS—ASSIGNMENT 10

Chapter 4. Problems: p. $178 \# 41$. The number X of correct answers is a binomial random variable with parameters $(5,1 / 3)$, since the probability of a correct guess on any question is $1 / 3$. Thus

$$
P\{X \geq 4\}=\binom{5}{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)+\binom{5}{5}\left(\frac{1}{3}\right)^{5}=\frac{11}{243} .
$$

p. $178 \# 42$. The number X of correct guesses is a binomial random variable with parameters $n=10, p=1 / 2$. Thus the probability that the man makes at least 7 correct guesses is

$$
P\{X \geq 7\}=\left[\binom{10}{7}+\binom{10}{8}+\binom{10}{9}+\binom{10}{10}\right]\left(\frac{1}{2}\right)^{10}=\frac{176}{1024}=\frac{11}{64}=.172 .
$$

p. $179 \# 44$. We want to transmit a digit d, where d is 0 or 1 , and to get the message across we transmit $d d d d d$. The receiver decodes our message as a d if a majority of the digits received are d-in other words, if not more than 2 of the 5 transmitted digits are corrupted. If we assume that each digit is independently received correctly or incorrectly, then the number X of digits received incorrectly is a binomial RV with parameters ($5, .2$). Thus the probability that the message will be wrongly decoded is:

$$
\left.P\{X \geq 3\}=\binom{5}{3}(.2)^{3}(.8)^{2}+\binom{5}{4}(.2)^{4}(.8)+\binom{5}{5}(.2)^{5}\right)=.058
$$

p. $179 \# 45$. Let X be the number of components which function. Then if R is the event "rain,"

$$
\begin{aligned}
P\{X \geq k\} & =P(\{X \geq k\} \mid R) P(R)+P\left(\{X \geq k\} \mid R^{c}\right) P\left(R^{c}\right) \\
& =\alpha \sum_{j \geq k}\binom{n}{j} p_{1}^{j}\left(1-p_{1}\right)^{n-j}+(1-\alpha) \sum_{j \geq k}\binom{n}{j} p_{2}^{j}\left(1-p_{2}\right)^{n-j} .
\end{aligned}
$$

p. $179 \# 46$. This is a lot like the previous problem. Let E is the event that the student is "on" and let X be the number of examiners who pass her. If there are n examiners then she passes if $X>n / 2$, and

$$
\begin{aligned}
P\{X>n / 2\} & =P(\{X>n / 2\} \mid E) P(E)+P\left(\{X>n / 2\} \mid E^{c}\right) P\left(E^{c}\right) \\
& =(1 / 3) \sum_{j>n / 2}\binom{n}{j}(.8)^{j}(.2)^{n-j}+(2 / 3) \sum_{j>n / 2}\binom{n}{j}(.4)^{j}(.6)^{n-j} .
\end{aligned}
$$

For $n=3$ this yields $P\{X \geq 2\}=.533$, and for $n=5$ this yields $P\{X \geq 3\}=.526$. The student should request 3 examiners.
p. 181 \#74. This problem involves Bernoulli trials, with parameter $p=\frac{12}{38}$ of success on one trial. One easily sees that

$$
\begin{aligned}
P\{\text { lose first } 5 \text { trials }\} & =(1-p)^{5}=.150 ; \\
P\{\text { first win on fourth bet }\} & =\left(\frac{26}{38}\right)^{3}\left(\frac{12}{38}\right)=.101 . \quad(3 \text { losses, then a win })
\end{aligned}
$$

Note also that the question concerns a geometric RV X of parameter $p=\frac{6}{19}$. (a) asks for $P(X>5)$ and (b) for $P(X=4)$, and these are given by the appropriate formulas for the geometric RV.
p. $181 \# 75$. $P\{$ stronger team wins in i games $\}=P\{X=i\}$ where X, the number of games until the fourth win, is a negative binomial RV with parameters $p=.6, r=4$. So for $i \geq 4$ we have $P\{X=i\}=\binom{i-1}{3}(.6)^{4}(.4)^{i-4}$. Numerical values:

$$
\begin{array}{ccccc}
i: & 4 & 5 & 6 & 7 \\
P\{X=i\}: & .1296 & .2074 & .2074 & .1659
\end{array}
$$

Thus the probability that the stronger team wins is the sum of these probabilities, 0.710208. Similarly, in a best-of-three series the probability that the stronger team wins is $\left.(.6)^{2}+2(.6)^{2}(.4)\right)=$.648. Notice that we are dealing in this problem with the problem of the points with $r=m$, i.e., where the players need the same number of points (games) to win.
p. $181 \# 78$. Let Y be the number of trials needed for 10 successes (heads) with a fair coin, so that Y is negative binomial with parameters $(10,1 / 2)$. Since all but 10 of these Y trials are failures (tails), we have that the number of tails $X=Y-10$. Thus

$$
P\{X=k\}=P\{Y-10=k\}=P\{Y=k+10\}=\binom{k+9}{9}\left(\frac{1}{2}\right)^{k+10}, \quad k=0,1,2, \ldots
$$

Chapter 4. Theoretical exercises: p. $183 \# 15(\mathrm{~b})$. Let Y be the number of boys. If we know the total number n of children then Y is binomial, parameters $(n, .5)$, and $P\{Y=k\}=\binom{n}{k} 2^{-n}$ if $n \geq k$. Thus we condition on the value of X (the number of children in the family):

$$
\begin{aligned}
P\{Y=k\} & =\sum_{n \geq k} P(\{Y=k\} \mid\{X=n\}) P\{X=n\} \\
& =\sum_{n \geq k}\binom{n}{k} 2^{-n} P\{X=n\} \\
& =\sum_{n \geq k}\binom{n}{k} 2^{-n} \alpha p^{n}, \quad \text { if } k \geq 1 .
\end{aligned}
$$

It is possible to obtain a closed form for this summation using the formula (8.3) obtained by consideration of the negative binomial distribution. For simplicity (to avoid the special formula for $P\{X=0\}$) we work out only the case $k \geq 1$. Then if we set $q=1-p / 2$, so that $(1-q) / q=p /(2-p)$, and use the summation variable $m=n+1$,

$$
\begin{aligned}
P\{Y=k\} & =\alpha \sum_{m \geq k+1}\binom{m-1}{(k+1)-1}\left(\frac{p}{2}\right)^{m-1} \\
& =\alpha \frac{2}{p} \sum_{m \geq k+1}\binom{m-1}{(k+1)-1}(1-q)^{m} \\
& =\frac{2 \alpha}{p}\left(\frac{1-q}{q}\right)^{k+1} \sum_{m \geq k+1}\binom{m-1}{(k+1)-1} q^{k+1}(1-q)^{m-(k+1)} \\
& =\frac{2 \alpha p^{k}}{(2-p)^{k+1}},
\end{aligned}
$$

since the sum in the next to last equation has value 1, by (8.3).

