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Abstract. For Σ a compact subset of C symmetric with respect to conjuga-
tion and f : Σ → C a continuous function, we obtain sharp conditions on f
and Σ that insure that f can be approximated uniformly on Σ by polynomials
with nonnegative coefficients. For X a real Banach space, K ⊆ X a closed
but not necessarily normal cone with K −K = X, and A : X → X a bounded
linear operator with A[K] ⊆ K, we use these approximation theorems to in-
vestigate when the spectral radius r(A) of A belongs to its spectrum σ(A). A
special case of our results is that if X is a Hilbert space, A is normal and the
1-dimensional Lebesgue measure of σ(i(A − A∗)) is zero, then r(A) ∈ σ(A).
However, we also give an example of a normal operator A = −U − αI (where
U is unitary and α > 0) for which A[K] ⊆ K and r(A) /∈ σ(A).

Introduction

If X is a real Banach space and K ⊆ X is a closed convex set, then K is a closed
cone (with vertex at zero) if (a) λK := {λx : x ∈ K} ⊆ K for all λ ≥ 0 and (b)
K ∩ (−K) = {0}. If K satisfies only condition (a), then K is called a closed wedge.
A closed cone or wedge K will be called generating if X = K −K, and called total
if X = K −K. A closed cone K induces a partial ordering of X when x ≤ y is
defined to mean y − x ∈ K; K is called normal if there exists a constant M ≥ 0
such that ‖x‖ ≤M‖y‖ for all x, y ∈ X with 0 ≤ x ≤ y.

Suppose now that X is a real Banach space, K ⊆ X is a closed, total cone, and
A : X → X is a positive bounded linear operator, i.e., one for which A[K] ⊆ K.
Let σ(A) denote the spectrum of the complexification AC of A and r(A) denote its
spectral radius. This paper is concerned with the

Principal Question: Under what further conditions on A is it true that r(A) ∈
σ(A)?

It is a classical result of Bonsall [4] and Schaefer [8] that if K is normal and
generating, then r(A) ∈ σ(A). However, Bonsall [4] gave an example of a closed,
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generating cone K in a Hilbert space H and a positive bounded linear map A :
H → H for which r(A) /∈ σ(A).

In an extremely interesting recent paper, Toland [12] was able to show that if
K is a closed, total cone in a real Hilbert space H and A is a bounded self-adjoint
operator on H with A[K] ⊆ K, then r(A) ∈ σ(A) must hold. Bonsall’s counterex-
ample suggests the delicacy of this result. The key step in Toland’s argument is an
approximation theorem which is independently interesting: for a > 1, he shows that
there exists a number d with 1 < d < a such that every continuous f : [−a, 1]→ R
with support in [−a,−d] can be approximated uniformly on [−a, 1] by polynomi-
als with nonnegative coefficients. In this paper, we shall generalize and sharpen
this approximation theorem and use these results on approximation to attack the
principal question.

The plan of this paper is the following. Section 1 below characterizes the duals
of certain real Banach spaces of continuous complex-valued functions. Section 2
treats approximation questions. For Σ a compact subset of C that is invariant
under conjugation and f : Σ → C a continuous function satisfying f(z) = f(z),
we give sharp conditions under which f can be approximated uniformly on Σ by
polynomials with nonnegative coefficients. These conditions imply in particular
that the number d in Toland’s approximation theorem can be replaced by 1. Section
3 applies these approximation results to the principal question. If K is a closed,
total cone in a real Hilbert space H and A is a bounded normal operator on H such
that A[K] ⊆ K and σ(i(A − A∗)) has 1-dimensional Lebesgue measure zero, then
our results imply that r(A) ∈ σ(A). It is classical [4], [8] that if K is a closed, total
cone in a real Banach space X and A ∈ L(X) is a positive operator whose resolvent
function RA(λ) has a pole at some λ1 ∈ C with |λ1| = r(A), then r(A) ∈ σ(A);
a transparent demonstration of this fact, differing radically from previous proofs,
follows from our approximation-theoretic approach.

These positive results might lead one to conjecture that r(A) ∈ σ(A) for every
bounded, normal operator A on a real Hilbert space H , such that A takes a closed
total cone K ⊆ H into itself. In Section 4, however, we show that this hope is
unfounded: for the (unitary) shift operator U on `2(Z) and any (fixed) 0 < α < 1/3,
we construct a closed, total cone K that is mapped into itself by A = − U − αI,
an operator whose spectrum is {λ − α : |λ| = 1} and for which r(A) ∈ σ(A)
therefore fails. However, for partial isometries mapping a closed, total cone into
itself, the results of Section 3 imply that 1 = r(A) ∈ σ(A). Section 5 is essentially
an appendix: in earlier sections of the paper it is necessary to refer to the process
of complexifying real Banach spaces and to some of the details of spectral theory
in that context, and this section presents those details in a convenient form.

Most of our notation is standard: R, C and D denote the real numbers, the
complex numbers and the closed unit disc {λ ∈ C : |λ| ≤ 1} respectively. The open
unit disc is thus D◦. The set of nonnegative real numbers is R+. The unit circle
in the complex plane is T := ∂D. Because the overbar conventionally denotes the
conjugate λ of a complex number λ but denotes the topological closure V of a set
V ⊆ C, we let conj(V ) := {λ : λ ∈ V } denote the set of complex numbers conjugate
to those in a given set V. When we need a name for it, we denote the identity
function on C by z. The (Fréchet-Montel) space of all holomorphic complex-valued
functions on D◦, equipped with the topology of uniform convergence on compacta,
is denoted by O(D◦). If s is a point in a compact Hausdorff space Σ, then εs
denotes the “point mass at s” measure on the Borel sets of Σ.
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1. Functions Symmetric with respect to an Involution

This section is a discursive treatment of some facts about certain real Banach
spaces of complex-valued continuous functions. The results are easy consequences
of the (Riesz) representation theorem for the dual of C(Σ), where Σ is a compact
Hausdorff space. (No particular originality is claimed for this material, but the
authors have found no convenient reference for it.) We give a general construction
that we shall use in only one setting, of the most elementary kind; however, the
generality in which we give it may make it easier to follow.

Let Σ be a compact Hausdorff space and U : Σ → Σ a continuous involution
(i.e., U ◦ U = idΣ). Let S(Σ, U) = S(Σ) = S denote the set of continuous complex-

valued functions on Σ that satisfy f(U(s)) = f(s) for all s ∈ Σ. S(Σ) is obviously
a closed real subalgebra of C(Σ,C) containing the real constants. Similarly, let
S(Σ, U) = S(Σ) = S be the set of complex-valued regular Borel measures µ on Σ

satisfying µ(A) = µ(U [A]) for all Borel sets A ⊆ Σ. S(Σ) is clearly a real subspace
of the spaceM(Σ,C) of all complex-valued regular Borel measures, and it is closed
in the total-variation norm.

We claim that the pairing

(S,S)→ R,(1.01)

(f, µ)→
∫
f dµ,

identifies S with the real norm dual LR(S,R). First of all, the value of such
an integral is evidently real, since for simple complex-valued Borel functions f =∑
αj χAj and µ ∈ S we have

∫
f dµ =

∑
αj µ(Aj) =

∑
αj µ(U [Aj ]),(1.02) ∫

f ◦ U dµ =
∑

αj µ(U [Aj ]),

so if f ≡ f ◦ U , then the value of the integral is its own complex conjugate (and
thus is real). Approximating functions f ∈ S by simple functions with the same
symmetry property, we see that their integrals against measures in S are also real.

Next, it is obvious that the pairing is R-bilinear. The pairing maps S isometri-
cally into LR(S,R), because if µ ∈ S is given and f ∈ C(Σ,C) is chosen such that
‖f‖∞ ≤ 1 and | ∫ f dµ| ≥ |µ|(Σ) − ε — where without loss of generality we can

have
∫
f dµ = | ∫ f dµ| — we may set g(s) ≡ (1/2)[f(s) + f(U(s))], obtaining a

function g ∈ S with ‖g‖∞ ≤ 1 and∫
g dµ =

1

2
[

∫
f dµ+

∫
(f ◦ U) dµ] =

1

2
[

∫
f dµ+

∫
f dµ]

=

∫
f dµ ≥ |µ|(Σ) − ε .

(1.03)

Finally, the map induced by the pairing is onto. To see this, we begin by ob-
serving that C(Σ,C) can be viewed as a complexification of S(Σ, U) (isomorphic to
the one we construct externally below). Every element f ∈ C(Σ,C) can be written
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in the form f = g + i·h with g, h ∈ S(Σ, U) by writing

f(s) =
f(s) + f(U(s))

2
+ i· f(s)− f(U(s))

2i
.(1.04)

The “components” are uniquely determined by f because if g(s)+ i·h(s) ≡ 0, then

conjugation of the function values gives g(s)− i·h(s) ≡ 0 but composition with U

gives g(U(s)) + i·h(U(s)) ≡ 0, and the latter is equivalent to g(s) + i·h(s) ≡ 0.
Adding and subtracting those relations shows that g(s) ≡ 0 and h(s) ≡ 0 must
hold. If Ψ ∈ S(Σ, U)∗R is given, it is straightforward to verify that

Φ : g + i · h→ Ψ(g) + i·Ψ(h) (g, h ∈ S(Σ, U))(1.05)

(well-)defines a C-linear functional on C(Σ,C), so there is a uniquely determined
regular complex-valued Borel measure µ ∈ M(Σ) for which

Ψ(g) + i·Ψ(h) = Φ(g + i · h) =

∫
(g + i·h) dµ(1.06)

holds for all g, h ∈ S(Σ, U). In particular, therefore,
∫
f dµ ∈ R holds for every f ∈

S(Σ, U). If we define a Borel measure ϕ by putting ϕ(A) = µ(U [A]) for Borel sets

A ⊆ Σ, then approximation by simple functions shows us that
∫
f dϕ =

∫
f ◦ U dµ,

as it did above. It follows that
∫
f dϕ =

∫
f dµ for all f ∈ S(Σ, U) and therefore

for all f ∈ C(Σ), so by the uniqueness part of the Riesz representation theorem we
have µ = ϕ, i.e., µ ∈ S(Σ, U), proving what we wished.

We shall call the functions and measures discussed above U -symmetric functions
and U -symmetric measures respectively. The only case of this construction that
will be of any interest below will be that in which Σ is a subset of the complex
plane that maps onto itself under complex conjugation and U is λ → λ. In this
case we shall simply call the functions and measures symmetric, or more explicitly
conjugate-symmetric, and say that the set Σ is symmetric with respect to R. (Note
that Σ ∩R = ∅ is a possibility.)

2. Uniform Approximation by Polynomials

with Nonnegative Coefficients

The setting for the material of this section is the following. Σ is a non-empty
compact conjugate-symmetric subset of C. The number κ(Σ) is defined by

κ(Σ) :=

{
sup(Σ ∩R+) if Σ ∩R+ 6= ∅;
0 if Σ ∩R+ = ∅.(2.01)

The set Σ will for the most part remain fixed for the remainder of this section, and
κ(Σ) may simply be abbreviated to κ. Define Σκ by Σκ := Σ ∪ {λ : |λ| ≤ κ(Σ)}.
“Symmetry” in the sense of §1 above is conjugate-symmetry.

Recall that the Cauchy transform (cf. [3, p. 639]) of a complex-valued Borel
measure µ ∈ M(C) of compact support is defined by

F (λ) =

∫
1

λ− z dµ(z) .(2.02)

This function is defined on C except for a set of λ of two-dimensional Lebesgue
measure zero and is locally integrable, holomorphic off the support of µ, and analytic
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at ∞ with the value zero there. If τ = sup {|λ| : λ ∈ supp(µ)}, then a routine
computation with the geometric series shows that for |λ| > τ ,

F (λ) =

∞∑
n=1

[

∫
zn−1 dµ(z)] · 1

λn
.(2.03)

That series is then the Taylor series of F (λ) at ∞, and we have established the
following simple fact.

Proposition 2.1. If F (λ) is the Cauchy transform of a Borel measure of compact
support in C, then its Taylor series at ∞ is given by

F (λ) =

∞∑
n=1

an
λn
, where an =

∫
zn−1 dµ(z), n = 0, 1, . . . .(2.04)

Most of the results given here follow from the following basic proposition. It is in
turn a consequence of the fundamental theorem of A. Pringsheim, which we state
in its simplest form for the reader’s convenience (cf. [2, pp. 289–290] or [11, §7.21,
pp. 214–215]).

Theorem [Pringsheim]. If all (except perhaps finitely many) of the coefficients of
the power series

∑∞
n=0 cnz

n satsify cn ≥ 0, and if the series has finite radius of
convergence ρ > 0, then z = ρ is a singular point of the analytic function represented
by the power series, and in fact the function element represented by the series cannot
be continued analytically along R+ beyond the point ρ.

Proposition 2.2. Let µ be a symmetric regular Borel measure on Σ that satisfies∫
zn dµ(z) ≥ 0 for n = 0, 1, . . . .(2.05)

Suppose V ⊆ {λ ∈ C : |λ| > κ(Σ)} is an open set with the properties that V ∩Σ has
two-dimensional Lebesgue measure zero and that V \Σ is contained in the unbounded
component of C \ Σκ. Then the support of µ is contained in Σ \ V.
Proof. As we have just seen, the Taylor series at ∞ of F (λ) is given by

F (λ) =

∞∑
n=0

[

∫
zn dµ(z)] · 1

λn+1
.(2.06)

(Note that the functions zn are conjugate-symmetric on every conjugate-symmetric
subset of C.) The coefficients of the power series in 1/λ of (2.06) are nonnegative,
and therefore, by Pringsheim’s theorem applied to the function F (1/λ), the power
series converges in a “disc centered at ∞” {λ : |λ| > ρ} — where one has ρ ≥ 0
(with equality possible), but in any event the function (element) defined by the
power series of (2.06) has a singular point at ρ ∈ R+. The Cauchy transform
F (λ) is holomorphic in C \ Σ, so the power series can have no singular point on
R+ to the right of κ(Σ), and thus ρ ≤ κ. By hypothesis, V \ Σ is a subset of
the unbounded component of C \ Σκ, so by the identity theorem for holomorphic
functions, the function defined by the power series agrees with the Cauchy transform
of µ throughout V \Σ. This is the relative complement in V of the set V ∩Σ, which
we assumed was a null set for 2-dimensional Lebesgue measure; therefore, the sum
of the power series and the Cauchy transform F (λ) define the same distribution
[10, Ch. I, §§2-3; Tome I, pp. 25–26] in V . Since ∂/∂λ applied to the sum of the
power series gives zero throughout V, while [10, Ch. VI, formula (VI,10,20); Tome
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II, p. 71], (1/π) · ∂F/∂λ defines the same distribution as µ, we see that µ defines
the zero distribution in V and thus is the zero measure [10] there, as we set out to
prove.

Remark. An alternative way of stating the hypothesis that V \ Σ is contained in
the unbounded component of C \ Σκ is the following: every point of V \ Σ can be
connected to a “disc with center∞,” in which the power series is known to converge
to the Cauchy transform of µ, by a path that does not pass through Σ or through
κ ·D. Consequently, the effect of the hypothesis is to insure that the function to
which the power series converges in V \ Σ continues the Cauchy transform along
such a path and must therefore equal the Cauchy transform in V \ Σ.

Theorem 2.3. Suppose V ⊆ {λ ∈ C : |λ| > κ(Σ)} is an open set with the proper-
ties that V ∩ Σ has two-dimensional Lebesgue measure zero and that V \ Σ is con-
tained in the unbounded component of C\Σκ. Then in order that a continuous sym-
metric complex-valued function f ∈ S(Σ) be the uniform limit on Σ of polynomials
with nonnegative coefficients, it is necessary and sufficient that f |(Σ\(V ∪conj(V )))
be the uniform limit on Σ \ (V ∪ conj(V )) of polynomials with nonnegative coeffi-
cients.

Proof. In order that f be a uniform limit of such polynomials on all of Σ it is
clearly necessary that it be such a limit on every subset of Σ. Conversely, suppose
a function f ∈ S(Σ) is not in the uniform closure in S(Σ) of the polynomials with
nonnegative coefficients. Because the closure in S(Σ) of the set of polynomials
with nonnegative coefficients is convex, the Hahn-Banach theorem (in its “bipolar”
or “separation” form [9, Ch. II, §9, Thm. 9.2, p. 65]) implies the existence of
a linear functional Ψ ∈ S(Σ)∗ for which Ψ(zn) ≥ 0 holds for n = 0, 1, . . . but
Ψ(f) < 0. By the characterization of S(Σ)∗ given in §1 above, we know that there
is a symmetric regular Borel measure µ for which Ψ(g) =

∫
g dµ for all g ∈ S(Σ). As

the preceding proposition showed, however, the support of a symmetric measure
µ for which

∫
zn dµ ≥ 0 holds for all n = 0, 1, . . . must be contained in Σ \ V.

Because µ is symmetric, Σ ∩ conj(V ) must also be µ-null, and thus µ is supported
in Σ \ (V ∪ conj(V )). Thus µ ∈ S(Σ \ (V ∪ conj(V ))) defines a linear functional on
S(Σ \ (V ∪ conj(V ))) that separates f |(Σ \ (V ∪ conj(V ))) from the monomials, and
thus from the polynomials with nonnegative coefficients considered as functions on
Σ\ (V ∪ conj(V )). But then f |(Σ\ (V ∪ conj(V ))) cannot be a uniform limit of such
polynomials on Σ \ (V ∪ conj(V )).

Corollary 2.4. If Σ and V satisfy the hypotheses of the proposition, then any
symmetric function f for which f |(Σ \ V ) = 0 has the property that both it and
its negative can be approximated uniformly on Σ by polynomials with nonnegative
coefficients.

In [12, Theorem 14], J. F. Toland gave an essentially constructive proof of the
following proposition: If [−a, 1] ⊆ R is a closed real interval, with a > 1 (so that the
interval extends to the left of −1), then there exists a number d with 1 ≤ d < a such
that any continuous real-valued function f on [−a, 1] that vanishes on [−d, 1] can
be approximated uniformly on [−a, 1] by polynomials with nonnegative coefficients
(and −f can also be so approximated). In a personal conversation with one of
the authors (R. D. N.), Toland raised the question of whether the corresponding
statement would be true if d were simply taken to be 1. The affirmative answer is
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a consequence of the corollary just given; one need only observe that when Σ ⊆ R,
then (i) a function on Σ is symmetric if and only if it is real-valued, and (ii) Σ
itself cannot have disconnected complement in C. Unfortunately, the proof we have
given is totally nonconstructive.

Application 2.5. Let [−a, 1] ⊆ R be a closed real interval, with a > 1 (so the
interval extends to the left of −1). Then any continuous real-valued function f
on [−a, 1] that vanishes on [−1, 1] can be uniformly approximated on [−a, 1] by
polynomials with nonnegative coefficients, and so can −f.

Indeed, we need only take Σ = [−a, 1]; then κ = 1 and we may take V = C \D.
Proposition 2.2 is easily seen to admit the following slight extension.

Corollary 2.6. Let µ be a symmetric regular Borel measure on Σ with the property
that there exists a constant M ≥ 0 for which∫

zn dµ(z) ≥ −M ·κn for n = 0, 1, . . . .(2.07)

Suppose V ⊆ {λ ∈ C : |λ| > κ(Σ)} is an open set with the properties that V ∩Σ has
two-dimensional Lebesgue measure zero and that V \Σ is contained in the unbounded
component of C \ Σκ. Then the support of µ is contained in Σ \ V.
Proof. If κ = 0 /∈ Σ the statement reduces to Proposition 2.2. Otherwise, the
hypothesis on µ implies that∫

zn d(µ+M · εκ) ≥ 0 for n = 0, 1, . . .(2.08)

and therefore, by virtue of that proposition, that the support of µ+M · εκ is con-
tained in Σ \V. Since the support of that measure differs from that of µ by at most
{κ}, which is contained in Σ \ V in any event, the corollary follows.

This corollary leads to an instructive example. Let µ be normalized 1-dimensional
Lebesgue measure on the unit circle T. It is routine to verify that its Cauchy trans-
form is given by

1

2π

∫ π

−π

dθ

λ− eiθ =

{
1/λ if |λ| > 1,

0 if |λ| < 1,
(2.09)

in C \ T. Thus the Cauchy transform of this measure has a discontinuity at each
point of the unit circle. If µα denotes the translate of this same measure to the
circle of unit radius and center −α (note the sign!), where 0 < α < 1, then near ∞
the Cauchy transform of the translated measure is given by

1

2π

∫ π

−π

dθ

λ− (−α+ eiθ)
=

1

2π

∫ π

−π

dθ

(λ+ α)− eiθ =
1

λ+ α
=

∞∑
n=1

(−1)n−1αn−1

λn

(2.10)

(valid at least for |λ| > 1 + α), and since the power series centered at ∞ of the
Cauchy transform has the integrals {∫ zn−1 dµα : n = 1, 2, . . .} as its coefficients,
these are bounded below by −1. On the other hand, if we multiply µα by χD◦ —
i.e., consider only that part of µα lying inside the open unit disc — then the fact
that |zn| ≤ 1 in D gives us the (obvious) estimates∫

zn d(χD◦ · µα) ≤ 1, n = 0, 1, . . . .(2.11)
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It follows that the measure ν := χ(C\D◦) · µα + 2· ε1, whose support is exactly the

set Σ = {1} ∪ {λ : |λ + α| = 1 and |λ| ≥ 1}, satisfies
∫
zn dν ≥ 0 for all n ≥ 0

— yet its support is not contained in the disc of radius κ(Σ) = 1. What goes
wrong, of course, is that if |λ0 + α| = 1 and |λ0| > 1, there does not exist an open
neighborhood V of λ0 with V ⊆ {λ : |λ| > 1}, such that V \ Σ is contained in the
unbounded component of C\Σ1, even though C\Σ and C\D are connected. The
discontinuities of the Cauchy transform of µα at the circle {λ : |λ+α| = 1} make it
impossible to remove the singularities of the Cauchy transform of ν on that circle.

This example furnishes us with a situation in which both the measure-theoretic
lemma 2.2 and the approximation theorem 2.3 would fail if the topological hy-
pothesis on Σ were replaced by one of the weaker requirements that V \ Σ be a
subset of the unbounded component of the set C \ Σ or of C \ κ ·D (rather than
of C \ Σκ). The measure ν is already a counterexample for the measure-theoretic
lemma. For the approximation theorem, consider the function f(z) = 1 − |z|2 on
Σ. It is zero on the unit circle, but strictly negative on the rest of Σ. Therefore,∫
f(z) dν(z) < 0, but

∫
zn dν(z) ≥ 0 for n = 0, 1, . . . . The measure ν is thus

(an explicit example of) a measure separating f(z) from the polynomials in z with
nonnegative coefficients, so it prevents f(z) from being approximated uniformly
on Σ by those polynomials (note that f(z) is itself a polynomial function in x, y,
although it is not holomorphic).

While our principal applications of Theorem 2.3 to spectral-radius questions will
be of the form suggested by Cor. 2.4 and App. 2.5 above, there are cases of the
full theorem that may be of interest. The most simple of these is the following.

Proposition 2.7. Suppose that κ = 0, that the two-dimensional Lebesgue measure
of Σ is zero and that Σ has connected complement. Then when 0 ∈ Σ the uni-
form closure in S(Σ) of the polynomials with nonnegative coefficients consists of
all functions f ∈ S(Σ) with f(0) ≥ 0, and when 0 /∈ Σ the uniform closure of the
polynomials with nonnegative coefficients is all of S(Σ).

Proof. Both of these cases are cases of Theorem 2.3 with V = C \ {0}, though in
the case where 0 /∈ Σ one is in the “vacuous case” of the theorem (the existence of
the measure µ is untenable, because its support would be empty).

The first case of Prop. 2.7 puts the ingenious example of Bonsall [4, ex. (iii), p.
57 ff.] into a more general context. That example considers the (nonclosed proper)
cone V + of polynomial functions of the form f(t) = α0−α1t+ · · ·+(−1)nαnt

n (all
αj ≥ 0) in CR[0, 1], showing inter alia that this cone is far from normal and that its
closure consists of all the continuous real functions on [0, 1] that are nonnegative
at zero. Prop. 2.7 tells us that the uniform closure in CR[−1, 0] of the polynomials
with nonnegative coefficients consists of all the continuous real functions on that
interval that are nonnegative at zero; the mapping t → −t of [−1, 0] to [0, 1] then

produces the characterization of V + given in [4]. (The authors are indebted to the
referee for this observation.)

The next most simple case of Theorem 2.3 is that in which the part of Σ that
lies outside the disc of radius κ has two-dimensional Lebesgue measure zero and
does not form “holes” with κ ·D. For simplicity, let us take κ = 1 and assume that
Σ ∩D◦ is dense in Σ ∩D.

Proposition 2.8. Suppose that κ = 1, that Σ ∩ D◦ is dense in Σ ∩ D, that the
two-dimensional Lebesgue measure of Σ \D is zero and that Σ ∪D has connected



APPROXIMATION BY POLYNOMIALS 2375

complement in the Riemann sphere. Then the uniform closure of the polynomials
with nonnegative coefficients in S(Σ) consists of all functions f ∈ S(Σ) for which
f |(Σ∩D) equals the restriction to Σ∩D of a power series

∑
ajz

j with each aj ≥ 0
and

∑
aj <∞.

Proof. Theorem 2.3 clearly applies with V = C \ D, so proving the proposition
reduces to showing that f |(Σ∩D) is a uniform limit on Σ∩D of polynomials with
nonnegative coefficients if and only if it is the restriction of the function defined
by such a power series. It is clear that the restriction of such a power series is
a uniform limit of polynomials with nonnegative coefficients on the whole disc D.
On the other hand, if {pn(z)} is a sequence of such polynomials that converges
uniformly on Σ ∩ D, then (since each polynomial attains its maximum absolute
value at z = 1) the {pn(z)} are uniformly bounded on D. They therefore form a
normal family in O(D◦), and {pn(z)} thus contains a subsequence {pnk(z)} that
converges uniformly on compacta in D◦ to a function g(z) that is holomorphic in
D◦ and consequently has a power series representation g(z) =

∑
ajz

j valid in D◦.
Since the power-series coefficients are continuous linear functionals on O(D◦) and
the coefficients of the {pnk} were nonnegative, each aj ≥ 0 (and thus g is symmetric
on D◦). The continuity of the power-series-coefficient functionals also implies that∑N

j=0 aj ≤ lim supk→∞ pnk(1) for each fixed N , and thus that
∑∞

j=0 aj ≤ f(1). We

may thus think of g as having been (continuously) extended to all of D, with its
values g(z) defined by the same power series. Since g(z) = limk→∞ pnk(z) = f(z)
holds at each z ∈ (Σ ∩D◦) and that set is dense in Σ ∩D, we have f |(Σ ∩D) =
g|(Σ ∩D), as desired.

One cannot assert in general that the power series
∑∞

j=0 ajz
j of Proposition

2.8 is uniquely determined by the function f ∈ S(Σ), since there exist (nonzero)
holomorphic functions on D that have absolutely convergent Taylor series with
real coefficients but also have infinitely many zeros. To give a simple example, the
function

ϕ(z) :=

{
exp [(z + 1)/(z − 1)] if z 6= 1,

0 if z = 1,
(2.12)

is bounded on D, holomorphic on C except for its essential singularity at 1, and
takes the value e−1 at the points (1 + i/nπ)−1, n ∈ Z \ {0}. Consequently, if we
put

ψ(z) := (z − 1)5 · (ϕ(z)− e−1),(2.13)

then ψ′′(z) extends continuously to D (again with value zero at z = 1), and therefore
ψ(z) has an absolutely convergent Taylor series (with real coefficients) ψ(z) =∑∞

j=0 bjz
j. If we now take Σ = {(1 + i/nπ)−1 : 0 6= n ∈ Z} ∪ {1}, then the distinct

power series

ψ+(z) :=

∞∑
j=0

b+j z
j and ψ−(z) :=

∞∑
j=0

b−j z
j(2.14)

(neither of which is identically zero, because ψ(1) = 0) represent the same function
in S(Σ).

The characterization of the uniform closure of the polynomials with nonnegative
coefficients in CR(Σ ∩D) as the functions given by power series with nonnegative
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coefficients whose sum is finite is, of course, only a slight generalization of the
theorem of S. Bernstěın (see [13, Ch. IV]) that characterizes absolutely monotone
functions.

Probably the most interesting case of Proposition 2.8 is that in which Σ =
[−a, 1] ⊆ R for some a > 1 (so S(Σ) is simply CR[−a, 1] and S(Σ) =MR[−a, 1]). In
this case various alternative choices can replace the monomials {zn : n = 0, 1, . . . } :
if for each n = 0, 1, . . . we are given a polynomial Pn(x) of degree n with positive
leading coefficient, and if the {Pk(x) : k = 0, 1, . . .} have the property that for
each n = 0, 1, . . . there are nonnegative coefficients {αn,k : k = 0, . . . , n} with
xn =

∑n
k=0 αn,kPk(x) — i.e., the wedge in CR[−a, 1] generated by the {Pk(x) :

k = 0, 1, . . . } contains the wedge generated by the monomials — then the functions
that can be uniformly approximated by polynomials with nonnegative coefficients
can also be approximated by linear combinations

∑n
k=0 αkPk(x) with nonnegative

coefficients. The usual Bernoulli polynomials defined by

tetx

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
, or etx =

et − 1

t

∞∑
n=0

Bn(x)
tn

n!
(2.15a)

are an example, since the second formula shows that each xn is a linear combination
of B0(x), . . . , Bn(x) with positive coefficients. Similarly the Bernoulli polynomials
adjusted to fit [−1, 1], i.e., {2n · Bn((x+ 1)/2) : n = 0, 1, . . . }, are generated by

t

sinh t
etx =

2tet(x+1)

e2t − 1
=

∞∑
n=0

Bn(
x+ 1

2
)
(2t)n

n!
;(2.15b)

since this relation is equivalent to
∞∑
n=0

xn
tn

n!
=

sinh t

t
·
∞∑
n=0

2n · Bn(
x+ 1

2
)
tn

n!
,(2.15c)

and the power-series coefficients of sinh t are nonnegative, the {2n ·Bn((x+ 1)/2)}
have this property. The extension to other suitable Appell polynomials is obvious.
Another class of examples is furnished by the orthogonal polynomials belonging to
a symmetric weight on [−1, 1]. It is well known (see, e.g., [1, p. 44], with a different
notational convention) that such (monic) polynomials satisfy a recurrence relation
of the form

Pn(x) = x · Pn−1(x) − λnPn−2(x),(2.16)

where λn > 0 for n ≥ 1, with P0(x) ≡ 1 and P1(x) ≡ x. It follows from such
a recurrence that the wedge generated by the {Pn(x) : n = 0, 1, . . . } in CR[−a, 1]
contains the monomials: the presence of 1 and x is assured, and if for k ≥ 1

xk = βk,0 + βk,1x+

k∑
n=2

βk,nPn(x),(2.17a)

then

xk+1 = βk,0x+
k∑

n=1

βk,nx · Pn(x)(2.17b)

= βk,0P1(x) +
k∑

n=1

βk,n[Pn+1(x) + λn+1Pn−1(x)] .(2.17c)
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For some choices of {Pn(x)}, e.g., Gegenbauer polynomials, it is possible to compute
these coefficients explicitly; see [5, §7.1]. In all cases, a version of Theorem 2.3 is
available for approximations by linear combinations with nonnegative coefficients
of polynomials of these kinds.

Proposition 2.9. Let {Pn(x) : n = 0, 1, . . .} be monic polynomials with degPn =
n, and suppose the closed wedge they generate in CR[−a, 1] contains all the mono-
mials {xn : n = 0, 1, . . . }. Let a > 1. Then in order that f ∈ CR[−a, 1] be the

uniform limit on [−a, 1] of polynomials of the form
∑N

n=0 αnPn(x) with coefficients
αn ≥ 0, it is necessary and sufficient that f |[−1, 1] be the uniform limit on [−1, 1]
of such polynomials.

Proof. The necessity of the condition is clear. For sufficiency, suppose f ∈ CR[−a, 1]
satisfied the condition but were not in the closed wedge in CR[−a, 1] generated
by such polynomials. Then the Hahn-Banach theorem would (again) furnish a
measure µ ∈ MR[−a, 1] with

∫
f dµ < 0 but

∫
g dµ ≥ 0 for every g ∈ CR[−a, 1]

belonging to that closed wedge, which would entail
∫
xn dµ ≥ 0 for n = 0, 1, . . . .

Applying Proposition 2.2 (with V = C \D), we would see that supp(µ) ⊆ [−1, 1],
so µ ∈ MR[−1, 1] would separate f |[−1, 1] from the wedge in CR[−1, 1] generated
by the {Pn(x)}, contrary to hypothesis.

In certain cases it is possible to give a strong characterization of the closed
wedges in CR[−1, 1] generated by a family of orthogonal polynomials. The wedges
generated by Čebyšev polynomials, or more generally by Gegenbauer polynomials,
are particularly easy to characterize. Recall that these are the polynomials with
generating functions

1− rx
1− 2rx + r2

=

∞∑
n=0

Tn(x) rn and
1

(1 − 2rx+ r2)λ
=

∞∑
n=0

Cλ
n(x) rn(2.18)

respectively.

Proposition 2.10. Let {Pn(x) : n = 0, 1, . . . } be the Čebyšev polynomials {Tn(x)}
or the Gegenbauer polynomials {Cλ

n(x)}, λ > 0. In order that a function f ∈
CR[−1, 1] be a uniform limit on [−1, 1] of polynomials p(x) =

∑n
k=0 αkPk(x) with all

αk ≥ 0, it is necessary and sufficient that f have the form f(x) =
∑∞

k=0 αkPk(x),
where

∑∞
k=0 αkPk(1) < ∞ with all αk ≥ 0; the series converges uniformly and

absolutely on [−1, 1].

Proof. For either of these {Pn(x)} one may replace x by cos θ in the generating
function, factorize (1 − 2r cos θ + r2)−λ = (1 − reiθ)−λ(1 − re−iθ)−λ, expand
the two factors in binomial series and multiply the series to display Pn(cos θ)
as a linear combination

∑n
k=0 γk,n cos kθ in which all coefficients are nonnega-

tive. (Indeed, the Čebyšev polynomials are [more fundamentally] characterized
by the identity Tn(cos θ) ≡ cos nθ.) It follows that these {Pn(x)} attain their
(positive) absolute maxima on [−1, 1] at x = 1. Consequently, if f does have
the form f(x) =

∑∞
k=0 αkPk(x), where

∑n
k=0 αkPk(1) < ∞ with all αk ≥ 0,

then the series converges uniformly and absolutely on [−1, 1] to an element of
CR[−1, 1] which clearly belongs to the uniformly closed wedge generated by the
{Pn(x) : n = 0, 1, . . . } . Conversely, if there exists a sequence of polynomials
{pk(x)} converging uniformly on [−1, 1] to f ∈ CR[−1, 1], with each having the

form pk(x) =
∑deg pk

n=0 βk,nPn(x) with all βk,n ≥ 0, then the Fourier coefficients of
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the {pk(x)} with respect to the system {Pn(x)} converge to those of f . If the coeffi-
cients of f are denoted by {αn : n = 0, 1, . . .}, we thus have αn ≥ 0 for each n. For

each fixed N the relation
∑N

n=0 αnPn(1) ≤ lim supk→∞ pk(1) holds, and therefore∑∞
n=0 αnPn(1) <∞; since this series converges uniformly but also converges to f in

L2
w[−1, 1] for the appropriate weight function w(x), we have f(x) =

∑∞
n=0 αnPn(x),

with the series converging absolutely and uniformly on [−1, 1].

3. Sufficient Conditions for the Spectral Radius

to Belong to the Spectrum

This section is devoted to application of the approximation-theoretic results of
§2 to the question: If X is a real Banach space, K ⊆ X is a closed cone which may
not be normal or generating but for which X = K −K (i.e., a total cone), and
A : X → X is a linear operator for which A[K] ⊆ K, must the spectral radius r(A)
belong to σ(A)? We extend the results of [12] to a significant extent, and give a
new proof of the theorem ([4], [9, App. §2, Thm. 2.4, pp. 264–265]) that if the
resolvent of such an operator has a pole on the “spectral circle” {λ : |λ| = r(A)},
then r(A) ∈ σ(A).

In what follows, references to X and K will be assumed to fit into the pattern
just described, except that when the space is a Hilbert space we shall call it H . The
crucial property of a total cone K in all cases is that if B ∈ L(X) is an operator for
which B[K] = {0}, then B = 0. It is straightforward to verify that if T : H → H
commutes with T ∗ onH, then TC is a normal operator on the complex Hilbert space
HC, and that if V is a partial isometry (V ∗V = I) on H , then its complexification
is a partial isometry on HC which is unitary if and only if V V ∗ = I on the real
Hilbert space H .

Although we employ App. 2.5 as a convenience in proving the following propo-
sition, it could as well have been established using the approximation theorem of
Toland [12, Theorem 14]. The proof requires a spectral mapping theorem for the
Ck operational calculi of S. Kantorovitz; while this theorem could be deduced from
[6, Lemma 2.2], we give a short self-contained proof as our Lemma 3.2. As an
example of an application of the proposition, we observe that its hypotheses are
satisfied when A is an operator of the form B +N on a Hilbert space, where B is
self-adjoint, N is nilpotent, and BN = NB.

Proposition 3.1. Let A ∈ LR(X) have the property that, for some integer k,
‖ cos(tA)‖ = O(|t|k) and ‖ sin(tA)‖ = O(|t|k) as |t| → ∞. Then σ(A) ⊆ R, and if
A[K] ⊆ K then r(A) ∈ σ(A).

Proof. The growth condition on cos(tA) and sin(tA) is equivalent to the growth
condition ‖ exp(itAC)‖ = O(|t|k) on AC, so by [6, Theorem 2.14 and Lemma 2.11]
we know that σ(A) ⊆ R and that AC admits a Ck+2 operational calculus, i.e.,

there is a continuous homomorphism f → f(A) of Ck+2
0 (R) into L(XC) given

by f(A) =
∫
f̂(t) exp(itA) dt (where f̂(t) = (1/2π)

∫
f(x) exp(−itx) dx, the usual

Fourier transform of f [up to normalization]) which is supported by σ(A) and
satisfies a boundedness condition of the form

‖f(A)‖ ≤ Const. · (b− a)
· [max{|f(x)| : a ≤ x ≤ b}+ max{|f (k+2)(x)| : a ≤ x ≤ b}](3.01)

for each interval [a, b] containing σ(A) in its interior, and which extends to a contin-
uous homomorphism of Ck+2(R)→ L(XC) satisfying 1(A) = 1 and z(A) = A (and
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also the norm-estimate condition (3.01)). By straightforward verification that the
relations between the complex Fourier transform and the real cosine and sine Fourier
transforms carry over to the complexified-operator situation, one shows that if f is a
real-valued Ck+2-function of compact support and g(t) = (1/2π)

∫
f(x) cos(xt) dx

and h(t) = (1/2π)
∫
f(x) sin(xt) dx are its cosine and sine Fourier transforms re-

spectively, then∫ ∞

−∞
f̂(t)eitAC dt =

∫ ∞

−∞
g(t) cos(tAC) dt+

∫ ∞

−∞
h(t) sin(tAC) dt(3.02)

which is a real operator, namely, the complexification of∫
g(t) cos(tA) dt+

∫
h(t) sin(tA) dt ∈ LR(X).

Suppose now that A satisfies the hypotheses of the proposition, in particular
that A[K] ⊆ K, but that r(A) /∈ σ(A). Without loss of generality, multiplying A by
a suitable positive constant if necessary, we can assume that σ(A) ⊆ [−d, 1), where
d = r(A) > 1. Let 0 ≤ f ∈ C∞

0 (R) be a function with f(−d) > 0, f [[−1, 1]] = {0},
and support contained in [−2d, 1]. Let {ϕn(x)} be a sequence of polynomials with
nonnegative coefficients converging uniformly to f (k+2) on [−2d, 1]; such a sequence
exists in virtue of App. 2.5 above. If L denotes the “integration-from-zero” operator
on C∞(R), so [Lg](x) =

∫ x
0 g(t) dt, then, since f and all its derivatives vanish at

zero, a simple uniform-convergence argument shows that the sequence {pn(x) :=
[Lk+2ϕn](x)} — whose elements are polynomials with nonnegative coefficients —
converges to f uniformly on a neighborhood of σ(A) ⊆ R, and that the same is
true of all derivatives of order ≤ (k + 2). It follows from the norm estimate (3.01)
that the sequence {pn(A)} converges to f(A) in the norm topology of LR(X).
Since pn(A)[K] ⊆ K for each n, and K is closed, we have f(A)[K] ⊆ K; but since
exactly the same approximation procedure could have been applied to −f, we have
f(A)[K] ⊆ −K and therefore f(A)[K] = {0}, whence f(A) = 0 because K is
proper and X = K −K. Because 0 < f(−d) ∈ σ(f(A)) by the spectral mapping
theorem (Lemma 3.2 below), this is a contradiction; the proposition is therefore
established.

Lemma 3.2. If A ∈ LR(X) satisfies the hypothesis of polynomial growth of cos(tA)
and sin(tA) of Prop. 3.1 above (and thus admits a Ck+2(R) operational calculus),
then for any f ∈ Ck+2(R) the relation σ(f(A)) = f [σ(A)] holds.

Proof. It follows from the characterization of the support and the estimate (3.01), or
from [6], Lemma 2.5], that σ(f(A)) ⊆ f [σ(A)]. To see the reverse inclusion, let A ⊆
LC(XC) be the norm-closure of the polynomials in AC; A is a commutative Banach
algebra containing I and is the same as the norm-closure of the rational functions
of A with poles off σ(A). [This is true by a familiar argument: if Φ ∈ [LC(XC)]∗

annihilates all polynomials in A then the resolvent series shows that it annihilates
(λI−A)−1 for large |λ|, but since C\σ(A) is connected, Φ annihilates all (λI−A)−1

for λ ∈ ρ(A); since Φ was arbitrary, all the operators {(λI − A)−1 : λ ∈ ρ(A)}
therefore belong to A, which is an algebra.] In particular, spectra of elements of A
relative to A are therefore equal to their spectra relative to LC(XC). It is evident
from the definition of f(A) for f ∈ Ck+2(R), or from (3.02) above, that f(A) ∈ A.
For any f ∈ Ck+2(R) we can find a sequence {pn} of polynomials converging to f
in the topology of that space, i.e., uniformly on compacta in R together with their
derivatives up to order (k+ 2). The norm inequality (3.01) shows that the {pn(A)}



2380 ROGER D. NUSSBAUM AND BERTRAM WALSH

then converge to f(A), so their Gelfand transforms (denoted by ̂) on the maximal

ideal space Â of A converge uniformly to f̂(A). If λ ∈ σ(A) then there is a point

ξ ∈ Â with λ = Â(ξ), but then f̂(A)(ξ) = limn→∞ p̂n(A)(ξ) = limn→∞ pn(Â(ξ)) =

limn→∞ pn(λ) = f(λ), so f(λ) ∈ σ(f(A)) = f̂(A)[Â]. Thus the spectral mapping
theorem holds for such an operational calculus, i.e., σ(f(A)) = f [σ(A)].

A sufficient condition of a different type, involving the structure of the spectrum,
holds for normal operators on a real Hilbert space H ordered by a closed cone K
for which H = K −K.

Proposition 3.3. Let T be a normal operator on a real Hilbert space ordered by
a closed, proper, total cone K for which T [K] ⊆ K. Suppose that the spectrum
of the imaginary part of TC has one-dimensional Lebesgue measure zero. Then
r(T ) ∈ σ(T ).

Proof. Let TC = A + iB be the decomposition of TC into its real and imaginary
parts. Let α = min σ(A) and a = max σ(A), and set Σ∗ := [α, a] × σ(B) (as
a subset of C considered as R2); then Σ∗ has two-dimensional Lebesgue measure
zero. Since A and B commute, the Gelfand theory of commutative Banach algebras
shows that σ(TC) ⊆ σ(A) + i · σ(B), and of course the latter set is a subset of Σ∗.
Let Σ := σ(TC), which as the spectrum of a complexified operator is symmetric. If
κ = sup(Σ ∩R+) and V = {λ ∈ C : |λ| > κ}, then V satisfies the hypotheses of
Theorem 2.3. Indeed, the dense open set V \ Σ∗ is connected — it contains with
each of its points the horizontal line whose ordinate is the ordinate of the point —
and a fortiori V \Σ is connected; the same argument, using “half horizontal lines”
where necessary, shows that V \ Σκ (which is dense in C \ Σκ) is connected. If it
were true that κ < r(TC), then we could find f ∈ S(Σ), e.g., f(λ) := dist(λ, κ ·D),
which vanished identically on κ ·D but for which f(λ1) > 0 for some λ1 ∈ σ(TC)
with |λ1| = r(TC). There would then exist a sequence {pn(x)} of polynomials with
nonnegative coefficients converging uniformly to f on σ(TC), so {(pn(T ))C} would
converge to f(TC) in operator norm; f(TC) would thus be a real operator and map
K into itself. But again, the same would hold true of −f(TC) (with a different
approximating sequence), so we would have f(TC) = 0, contrary to the spectral
mapping theorem, which implies that σ(f(TC)) contains f(λ1) > 0.

The following proposition can be proved by essentially the same method.

Proposition 3.4. Let H be a real Hilbert space ordered by a closed, total cone K.
Suppose U, A ∈ L(H) are commuting operators with U∗ = U−1 and A = A∗ ≥ 0,
and that T = UA has the property T [K] ⊆ K. If one of σ(U) and σ(A) has one-
dimensional Lebesgue measure zero, then r(T ) ∈ σ(T ).

Proof sketch. Under either of the measure-theoretic hypotheses, σ(T ) ⊆ Σ∗ :=
σ(U) · σ(A), and the latter set has two-dimensional Lebesgue measure zero. If
κ = sup(σ(TC) ∩R+) and V = {λ ∈ C : |λ| > κ}, then V satisfies the hypotheses
of Theorem 2.3 with Σ = σ(TC), though the reasons are different in the two cases.
Again Σ, as the spectrum of a complexified operator, is symmetric. If it was
assumed that σ(A) had one-dimensional Lebesgue measure zero, then any point
in V \ Σ is the center of a disc in V \ Σ that meets V \ Σ∗, and any point in
the latter set can be joined to the open ray (κ,∞) ⊆ R+ by an arc of a circle
lying entirely in V \ (Σ∗ ∪ κ ·D); thus V \ Σ is (arc-)connected to the unbounded
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component of C \ Σκ. If it was assumed that σ(U) had one-dimensional Lebesgue
measure zero, then any point in V \ Σ is the center of a disc in V \ Σ that meets
{ρeiθ : κ < ρ ∈ R+, eiθ /∈ σ(U)}, and all points in the latter set are obviously (arc-)
connected to the unbounded component of C \ Σκ. If it were true that κ < r(TC),
a consequence contrary to the spectral mapping theorem would now follow as in
the proof of Prop. 3.3.

Prop. 3.4 includes as a special case operators with U∗ = U−1 (unitary transfor-
mations, or perhaps “orthogonal transformations” since the scalar field is R). In
fact, it includes the case of partial isometries, i.e., operators V ∈ L(H) for which
V ∗V = I, but for a reason that has nothing to do with the order structure of H :
if V ∗V = I but V V ∗ 6= I, then σ(V ) = D necessarily holds. This follows from
well-known facts about the structure of partial isometries, but holds in somewhat
greater generality:

Proposition 3.5. Suppose that A is a complex Banach algebra with identity I and
that V ∈ A has a left inverse U . If there exists λ ∈ ρ(V ) such that 1/λ ∈ ρ(U), then
V is invertible. In particular, if A is equipped with a conjugate-linear involutory
anti-isomorphism ∗, and if V ∗V = I and r(V ) ≤ 1, then either V V ∗ = I or
σ(V ) = D.

Proof. For λ ∈ ρ(V ), we have

(I − λU)[−V (λI − V )−1](3.03)

= −V (λI − V )−1 + λ(λI − V )−1

= (λI − V )(λI − V )−1 = I .

Hence if (1/λ) ∈ ρ(U) also, then

(I − λU)−1 = −V (λI − V )−1,(3.04a)

−(I − λU)−1(λI − V ) = V,(3.04b)

making V the product of two invertible elements and hence invertible. If the setting
is a ∗-algebra, V ∗V = I, and r(V ) ≤ 1, then (C \D) ⊆ ρ(V ) by hypothesis, so V
can fail to be invertible if and only if σ(V ∗) ⊇ D◦; but σ(V ) = conj(σ(V ∗)), so V
fails to be invertible if and only if σ(V ) = D — and of course V is invertible if and
only if V V ∗ = I.

Finally, we offer the following proof of a known theorem [4], [8], using approxi-
mation by polynomials with nonnegative coefficients. Our belief is that this proof
is somewhat more transparent than previous arguments.

Theorem 3.6. Let X be a real Banach space and K ⊆ X a closed cone with X =
K −K. If A ∈ LR(X) is an operator for which A[K] ⊆ K, and if its resolvent
RA(λ) has a pole on the circle {λ : |λ| = r(A)}, then r(A) ∈ σ(A).

Proof. With no loss of generality we can assume r(A) = 1. Let λ1 be a pole of order
N of RA(λ) on the unit circle, and assume first that λ1 is not real (i.e., λ1 6= −1,

since in the only other case we are finished); then λ1 is also a pole of the resolvent,
with the principal parts at the two poles related as in (5.08) below. For the purpose
of achieving a contradiction, assume 1 /∈ σ(A). Let β := sup{Re(λ) : λ ∈ σ(A)} < 1.
Let σ∗ := (σ(A) \ {λ1, λ1}) ⊆ D, and let Σ∗ ⊆ D be the convex hull of σ∗ ∪ (β ·D).

Since 1, λ1 and λ1 are extremal points of D, they do not belong to Σ∗. Let
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δ := min{dist(λ,Σ∗) : λ = 1, λ1, λ1}; then Σ∗∗ := Σ∗+(δ/2) ·D is a closed, convex,

symmetric set containing σ∗ in its interior but not containing λ1, λ1, or 1. Finally,
let Σ be the set formed by uniting Σ∗∗ with the line segment having endpoints 0 and
2 ·λ1 and with the conjugate of that line segment. It is evident that Σ and Σ∗∗ are
symmetric with respect to the real line and star-shaped with respect to the origin,
and that neither contains 1; thus κ = sup(Σ∩R+) < 1, indeed κ ≤ (1/2)(β+1) < 1.

Let f ∈ S(Σ) be a nonnegative real-valued function which is identically zero
on Σ∗∗ and strictly positive at λ1 and λ1, e.g., f(z) = dist(z,Σ∗∗). If we take
V = C \ Σ∗∗, then V ⊆ C \ ((1/2)(β + 1) ·D) and so a fortiori V ⊆ C \ (κ ·D);
since Σ∗∗ is a convex body, V is connected. (V ∩Σ) consists of a line segment with
λ1 in its interior and the conjugate of that line segment, so it has two-dimensional
Lebesgue measure zero. Corollary 2.4 above thus implies that f and −f are uniform
limits of sequences of polynomials with nonnegative coefficients, say {pn(z)} and
{qn(z)} respectively. Let L : C(Σ)→ C(Σ) be the operator of “complex integration
along the line from 0 to z”, i.e., [Lg](z) =

∫ z
0
g(ζ) dζ, where the integral is taken

along the line segment joining those two points; evidently L is linear and continuous
in the uniform norm. If we set Pn(z) := [LN−1pn](z), then these form a sequence
of polynomials with nonnegative coefficients that converges to LN−1f uniformly on
Σ, and the k-th derivatives converge uniformly to LN−k−1f for k = 0, . . . , N − 1.
The operators Pn(AC) = Pn(A)C are real and send K into K. By the holomorphic
functional calculus, we see that

Pn(AC) =

N−1∑
ν=0

P
(ν)
n (λ1)

ν!
(AC − λ1I)

νE +

N−1∑
ν=0

P
(ν)
n (λ1)

ν!
(AC − λ1I)

νJEJ(3.05)

+
1

2πi

∫
γ0

Pn(λ)RA(λ) dλ,

where E = Res[RA(λ)|λ=λ1 ] and γ0 is a contour in Σ∗∗ winding once around σ∗. As

n → ∞, Pn(λ) → 0 uniformly on γ0, while for each ν = 0, . . . , N − 1, P
(ν)
n (λ1) →

[LN−ν−1f ](λ1) and similarly at λ1. Passing to the limit in (3.05) thus produces an
operator

P :=

N−1∑
ν=0

[LN−ν−1f ](λ1)

ν!
(AC − λ1I)

νE +

N−1∑
ν=0

[LN−ν−1f ](λ1)

ν!
(AC − λ1I)

νJEJ

(3.06)

of the type of (5.09) below, which is nonzero (because the coefficient for ν = N − 1
is f(λ1) 6= 0) and for which P [K] ⊆ K. On the other hand, exactly the same
construction employing {qn(z)} instead of {pn(z)} would show that −P [K] ⊆ K;
we have thus reached the contradiction that the nonzero operator P must be the
zero operator. Achieving the contradiction in the case where λ1 = −1 follows the
same pattern, but with the simplifications produced by constructing operators of
the form (5.10) rather than (5.09).

4. A Counterexample, and Concluding Remarks

Let H be a real Hilbert space, K ⊆ H be a closed, total cone in H , and B :
H → H be a normal operator for which B[K] ⊆ K. In §3 above we showed that
if σ(B) satisfied certain topological and measure-theoretic conditions, then r(B)
was necessarily an element of σ(B). One might reasonably suspect that those
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constraints on σ(B) were artificial ones that simply made it possible for us to adapt
the methods of Toland [12] to the treatment of normal operators, and one might
conjecture that r(B) ∈ σ(B) necessarily holds whenever B is a normal operator that
maps a closed total cone into itself. In this section, however, we shall construct
an example of a normal operator B that leaves a closed total cone invariant but
for which r(B) ∈ σ(B) fails. The spectrum of the operator B is a circle — so it
separates some component of any neighborhood of each of its points from∞— and
its existence indicates that when B[K] ⊆ K but K is not normal, then topological
properties of the spectrum of B play an intrinsic rôle in forcing r(B) ∈ σ(B), rather
than being merely an artifact of the known proofs of various affirmative results.

Theorem 4.1. There exist a real separable Hilbert space H, a bounded normal
linear operator B : H → H, and a closed total cone K ⊆ H, such that B[K] ⊆ K
but r(B) /∈ σ(B).

In fact, we shall construct B in the form B = − U − αI, where U : H → H is a
unitary operator and α is a sufficiently small positive real number. The cone K that
we shall construct is inspired by an example of Bonsall’s [4, ex. (iv), pp. 57–58],
although our major difficulty, the proof that K is total, has no analogue in [4].

Proof. We begin by establishing some fixed notation. In the proofs of Theorem 4.1
and Lemma 4.2, H will denote `2(Z,R), the real Hilbert space of “doubly infinite
sequences” {xj}j∈Z for which

∑
j∈Z|xj |2 < ∞. We shall consistently denote the

right shift operator mapping H onto itself by U. As usual, ej will denote the element
of H whose j-th coördinate is 1 and whose remaining coördinates are 0; thus U is
specified by saying that U(ej) = ej+1 for all j ∈ Z.

Our first lemma is basically a restatement of well known facts, but for complete-
ness we sketch a proof.

Lemma 4.2. If U and H are defined as above and if α is a positive real number,
then (a): σ(− U − αI) = {ζ − α : |ζ| = 1}, and (b): r(− U − αI) = 1 + α.

Proof. When we complexify H = `2(Z,R) as described in §5 below, we see that

HC =

{({xj : j ∈ Z}
{yj : j ∈ Z}

)
: {xj : j ∈ Z}, {yj : j ∈ Z} ∈ `2(Z,R)

}
.(4.01)

From the definitions of the inner products in HC and `2(Z,C) respectively, it is
clear that the 1-1 correspondence({xj : j ∈ Z}

{yj : j ∈ Z}
)
←→ {xj + i· yj : j ∈ Z}(4.02)

between these two spaces is C-linear and unitary (onto). Comparing the shift
operators on these two spaces, one sees easily that the operator UC = ( U 0

0 U ) on
HC is unitarily equivalent to the right shift operator on `2(Z,C) under that 1-
1 correspondence. It is well known that the spectrum of the latter operator is
{λ ∈ C : |λ| = 1}. For example, since ‖U‖ = 1 and ‖U−1‖ = 1, the C. Neumann
series (λI−U)−1 =

∑∞
n=0 U

n/λn+1 and its analogue for U−1 show that σ(U) ⊆ T.
On the other hand, for any N ∈ Z, N ≥ 0, and any 0 ≤ θ ≤ 2π we may define an
element z(θ,N) ∈ `2(Z,C), of norm one, by setting

z(θ,N)
n =

{
einθ/

√
2N + 1, −N ≤ n ≤ N,

0, otherwise,
(4.03)
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and it is routine to verify that ‖(eiθI − U)z(θ,N)‖ =
√

2/(2N + 1), so that each

eiθ ∈ T belongs to σ(U). Once we know the spectrum of U , assertions (a) and (b)
follow as trivial consequences of the spectral mapping theorem [14, p. 227].

Note that Lemma 4.2 implies that 1 + α = r(− U − αI) /∈ σ(− U − αI).
Proof of the theorem, continued. With H and U as before, fix an α with 0 < α <
1/3 and define B by

B = − U − αI.(4.04)

The lemma implies that r(B) = 1 + α /∈ σ(B). It remains for us to construct a
closed, total cone K with B[K] ⊆ K. Fix a δ > 0 with 3α ≤ 1 − δ, and for each
z ∈ Iδ = {z ∈ R : −1 + (δ/2) ≤ z ≤ −1 + δ}, define vz ∈ H by

vz :=

∞∑
k=0

zkek.(4.05)

With 〈·, ·〉 denoting the inner product on H, define the set K ⊆ H by

K := {a ∈ H : 〈a, (B∗)j(vz)〉 ≥ 0 for all z ∈ Iδ and all j ≥ 0} .(4.06)

Evidently if a ∈ K then also B(a) ∈ K, because

〈B(a), (B∗)j(vz)〉 = 〈a, (B∗)j+1(vz)〉 ≥ 0

for all j ≥ 0 and all z ∈ Iδ. As the reader can easily check, the fact that K is a
closed wedge in H follows immediately from its definition. It remains to be shown
that K ∩ (−K) = {0} and — the harder part — that K is total in H .

The identity

(B∗)k = (−1)k(U∗ + αI)k = (−1)k
k∑

j=0

(
k

j

)
αk−j (U∗)j(4.07)

is an instance of the binomial theorem. For a fixed z ∈ Iδ, this identity implies that
with v = vz, and using the notation(

(B∗)k(v)
)
m

:= the m-th coördinate of (B∗)k(v) ,(4.08)

we have (
(B∗)k(v)

)
m

= (−1)k
k∑

j=0

(
k

j

)
αk−j

(
(U∗)j(v)

)
m
.(4.09)

With vm denoting the m-th coördinate of v, so vm = zm for m ≥ 0 while vm = 0
for m < 0, the relation (4.09) then tells us that

(
(B∗)k(v)

)
m

= (−1)k
k∑

j=0

(
k

j

)
αk−j vm+j .(4.10)

Classifying the three possible cases of (4.10), we see that

(
(B∗)k(v)

)
m

=


(−1)k

∑k
j=0

(
k
j

)
αk−jzm+j = (−1)kzm(z + α)k, m ≥ 0,

(−1)kzm
∑k

j=|m|
(
k
j

)
αk−jzj, −k ≤ m < 0,

0, m < −k.

(4.11)
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If a is an element of H, we deduce from (4.06) and (4.11) that a ∈ K if and only if
the inequalities

(−1)k(z + α)k
∞∑
m=0

amz
m + (−1)k

−1∑
m=−k

amz
m
( k∑
j=|m|

(
k

j

)
αk−jzj

) ≥ 0(4.12)

hold for all k ≥ 0 and all z ∈ Iδ (where of course am denotes the m-th coördinate
of a).

In order to show that K is a (proper) cone, we must show that if a ∈ K ∩ (−K)
then a = 0, i.e., that all the coördinates am are zero. Because a ∈ K ∩ (−K),
equality must hold in (4.12) for all k ≥ 0 and all z ∈ Iδ. These equalities tell us
immediately that am = 0 for all indices m ≥ 0, because for k = 0 the equalities are

∞∑
m=0

amz
m = 0 for all z ∈ Iδ,(4.13)

and so am = 0 for all m ≥ 0 by the identity theorem for holomorphic functions (the
function defined by the sum

∑
amz

m is easily seen to be holomorphic on D and
indeed to belong to H2(D)). For coördinates with negative index, we may reason
by induction. Suppose we have shown that am = 0 for all m > −N, where N is a
positive integer; then taking k = N in (4.12), we see that there is only one nonzero
term on the left-hand side, and it gives us (−1)Na−N = 0, i.e., a−N = 0. This
completes the induction and shows us that if a ∈ K ∩ (−K), then am = 0 for all
m ∈ Z, so a = 0 as we wished.

To see that K−K is a dense subspace of H, we begin by considering the subspace
and subcone defined by

H+ := {a ∈ H : am = 0 for all m ≤ 0} and K+ := K ∩H+ .(4.14)

Since (−1)k(z + α)k > 0 for all k ≥ 0 and z ∈ Iδ, we see as a consequence of (4.12)
that for an element a ∈ H+ the condition

∞∑
m=1

amz
m ≥ 0 for all z ∈ Iδ(4.15)

is necessary and sufficient for a to belong to K+. In particular, since z < 0 for all
z ∈ Iδ, if a is known to belong to H+, then for a ∈ K+ to hold it is sufficient that
(−1)mam ≥ 0 for all m ≥ 1. The trivial decomposition

{am : m ∈ Z} =
∑
{amem : (−1)mam ≥ 0} −

∑
{amem : (−1)mam < 0}(4.16)

of an element a ∈ H+ thus represents it as an element of K+ −K+.
Next, for each positive integer N define a subspace HN and a subcone KN by

HN := {a ∈ H : am = 0 for all m > 0 and all m < −N} and KN := K ∩HN .

(4.17)

Evidently HN is a real Hilbert space of finite dimension N + 1 and therefore iso-
metrically isomorphic to RN+1, and because K is a cone, KN is a (proper) cone
in HN . In order to show that HN = KN −KN , it will consequently suffice to show
that KN has nonempty interior in HN . If we can establish this, therefore, we shall
know that (HN +H+) ⊆ K−K for every positive integer N. Since N was arbitrary,
this will tell us precisely that if a is an element of H for which there exists an N
such that am = 0 for all m < −N , then a ∈ K − K, and since those a’s form a
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dense subspace of H we shall have proved that K −K is total and established the
validity of our example.

Thus all that remains to prove is that KN has nonempty interior in HN . To that
end it suffices to exhibit a number R > 0 such that if a = {am} ∈ HN satisfies
a0 ≥ R and |am| ≤ 1 for −N ≤ m ≤ −1, then a ∈ KN . For a ∈ HN , the relations
(4.12) imply that a ∈ KN if and only if for all z ∈ Iδ and all k ≥ 0 the inequalities

(−1)k(z + α)ka0 + (−1)k
[ −1∑
m=−min(N,k)

amz
m (

k∑
j=|m|

(
k

j

)
αk−jzj)

]
≥ 0(4.18)

hold. If we assume that a0 ≥ R > 0 and that |am| ≤ 1 for −N ≤ m < 0, and we
recall that (−1)k(z + α)k > 0 for all z ∈ Iδ and observe that

k∑
j=|m|

(
k

j

)
αk−jzm = (z + α)k −

|m|−1∑
j=0

(
k

j

)
αk−jzj ,(4.19)

then we see that for the relations (4.18) to hold it is sufficient that the relations

R ≥
−1∑

m=−min(N,k)

|z|m · ( 1

|z + α|k ) ·
∣∣∣∣(z + α)k −

|m|−1∑
j=0

(
k

j

)
αk−jzj

∣∣∣∣(4.20)

hold for all k ≥ 0 and all z ∈ Iδ. To estimate the right-hand sides of (4.20), observe
that

1

|z + α|k ·
∣∣∣∣(z + α)k −

|m|−1∑
j=0

(
k

j

)
αk−jzj

∣∣∣∣ ≤ 1 +

|m|−1∑
j=0

(
k

j

)
(

α

|z + α| )
k(
|z|
α

)j(4.21)

≤ 1 + (
α

|z + α| )
k · ( |z|

α
)|m|−1 · (|m|−1∑

j=0

(
k

j

))
.

Our choice of δ and α insures that for all z ∈ Iδ and k ≥ 0 we have

(
α

|z + α| )
k ≤ (

1

2
)k.(4.22)

It is trivial that

|m|−1∑
j=0

(
k

j

)
≤

k∑
j=0

(
k

j

)
= 2k .(4.23)

Combining the relations (4.21)–(4.23), we see that the relations (4.20) will hold if
R can be so chosen that for all z ∈ Iδ and k ≥ 0 we have

R ≥
−1∑

m=−min(N,k)

|z|m · [1 + (
|z|
α

)|m|−1
]
.(4.24)

It is easy to check that (4.14) will be satisfied if

R ≥ N · ( 1

1− δ )N · [1 + (
1

α
)N−1

]
,(4.25)

and that completes the proof of the theorem.
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Remark 4.3. If B is the operator constructed in Theorem 4.1 above and if f(z) is

a function holomorphic on a neighborhood of σ(B) and satisfying f(z) = f(z) for
all z in its domain, then f(B) is normal. For many choices of f(z), one will also
have f(B)[K] ⊆ K. This is particularly easy to see when f(z) is a polynomial in
z with nonnegative coefficients, or when f(z) = (λ − z)−1, where 1 − α < λ ∈ R.
In this way one obtains a source of further counterexamples to a priori plausible
extensions of the results given here. For example, if f(z) = 2αz + z2 + εz3, where
ε > 0, and if one sets B1 = f(B), then one sees easily that B1 is normal (and real)
and that B1[K] ⊆ K. However, if ε is sufficiently small then one can show that
r(B1) /∈ σ(B1) and that — in contrast with the case of the operator B produced
by the detailed construction that is Theorem 4.1 — there exists no real λ ∈ σ(B1)
for which |λ| = r(B1). We omit the detailed verification of this statement.

Remark 4.4. The cone K constructed in the proof of Theorem 4.1 above is not
normal.

This is not difficult to check. To see it, let N ≥ 2 be an even integer and suppose
that c ∈ H is a sequence for which the j-th coördinate cj of c equals zero unless
j = N or j = 2N . If cN > 0, it follows from the relations (4.12) that c ∈ K if and
only if (

1 + (
c2N
cN

) zN
)
≥ 0 for all z ∈ Iδ .(4.26)

If a ∈ H is defined by setting aj = 0 for j 6= N or 2N , aN = 1 and a2N =
[1 − (δ/2)]−N , and b ∈ H is defined by setting bj = 0 for j 6= N or 2N , bN = 2
and b2N = 1, then one can use the relations (4.26) to check that a, b and b− a are

elements of K. However, ‖b‖ =
√

5 for all even integers N ≥ 2, while ‖a‖ → ∞ as
N →∞, so K cannot be normal.

Remark 4.5. For the operator B constructed in the proof of Theorem 4.1, one can
see that (−1−α) ∈ σ(B) but that −1−α does not belong to the point spectrum of
B. The following proposition, which is a special case of a result of [7], shows that
this fact is not accidental.

Proposition 4.6. Let K be a closed, total cone in a reflexive real Banach space X
and B : X → X be a bounded linear mapping for which B[K] ⊆ K. Suppose that
the spectral radius r = r(B) is positive and that there exists a constant M for which

‖Bn‖ ≤M rn for all n ≥ 1 .(4.27)

If there exist a complex λ in the point spectrum of BC and an integer m ≥ 1 for
which λm = rm, then r belongs to the point spectrum of B.

If K is a closed, total cone in a real Hilbert space H and B : H → H is a normal
operator with B[K] ⊆ K, then the relations (4.27) are satisfied with M = 1. If
r = r(B) = ‖B‖ > 0 also holds, and there exist some λ in the point spectrum of
B and some m ≥ 1 such that λm = rm, then Prop. 4.6 implies that r must be an
element of the point spectrum of B. In particular, if −r ∈ σ(B) and r /∈ σ(B),
then −r cannot belong to the point spectrum of B.

Remark 4.7. Suppose X is a real Banach space, K ⊆ X is a closed, total cone and
U ∈ L(X) is such that ‖U‖ = 1 and (− U)[K] ⊆ K. Define α0 by

α0 := sup{α ≥ 0 : (− U − αI)[K] ⊆ K} .(4.28)
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For the unitary operator U of Theorem 4.1 above, we were able to find cones K
for which α0 ≥ β held for any β ≤ 1/3. We observe, however, that in all such cases
α0 ≤ 1. This follows from the following simple observation, applied to −U .

Remark 4.8. Let X be a real Banach space and K ⊆ X be a closed wedge that is
proper, i.e., in which there exists u ∈ K for which − u /∈ K. Let V ∈ L(X) be a
linear operator for which V [K] ⊆ K. If α ∈ R is such that (V − αI)[K] ⊆ K, then
α ≤ r(V ).

Indeed, suppose there were such an α > r(V ). Then the C. Neumann series
(αI − V )−1 =

∑∞
n=0 V

n/αn+1 shows that (αI − V )−1[K] ⊆ K, but this fact com-
bined with (V − αI)[K] ⊆ K would give

−K = (−I)[K] = (V − αI)(αI − V )−1[K] ⊆ K,
and K would not be proper.

5. Remarks on Spectral Theory in Complexifications

Let X be a real Banach (or Hilbert) space. The standard way to do spectral
theory on X is to tensor X with C over R, setting XC = C ⊗R X and using the
obvious multiplication. Since dim(C : R) = 2, this comes to the same thing as
forming

XC = X ⊕R X = {
(
x

y

)
: x, y ∈ X}(5.01)

and defining

(α+ iβ)

(
x

y

)
=

(
αx− βy
βx+ αy

)
.(5.02)

XC is then a complex vector space and normable real TVS in an essentially unique
way, and if for example one sets

‖
(
x

y

)
‖2 =

1

2π

∫ π

−π
[‖(cos t)x− (sin t)y‖2 + ‖(sin t)x+ (cos t)y‖2] dt,(5.03)

then it is routine to verify that this is a real norm that also satisfies ‖λ(xy)‖ =

|λ| · ‖(xy)‖ for complex λ. If the space X was a Hilbert space with inner product

〈·, ·〉, then setting

〈
(
x

y

)
,

(
u

v

)
〉 = {[〈x, u〉+ 〈y, v〉] + i · [−〈x, v〉+ 〈y, u〉]}(5.04)

makes XC a complex Hilbert space whose inner product norm is the same as the
norm defined by (5.03).

In all cases it is instructive to think of LR(XC) as being given by matrices (A B
C D )

with entries in LR(X), acting on XC in the obvious way. Then the elements of
LR(XC) that are C-linear are just those that commute with multiplication by i =
( 0 −I
I 0 ), i.e., matrices of the form ( A −B

B A ). A rather laborious but straightforward

computation shows that if X was a real Hilbert space, then the adjoint of ( A −B
B A )

on XC is ( A∗ B∗
−B∗ A∗ ). A useful but non-C-linear—indeed, a conjugate-linear—map

in LR(XC) is J = ( I 0
0 −I ), which sends ( xy )→ ( x−y ). (This can be viewed as τ ⊗ I

on C ⊗R X, where τ : λ → λ is complex conjugation.) Clearly J is an isometry
and J2 = I. If T ∈ LC(XC) then JTJ is again C-linear, and since T → JTJ is a
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(real) inner automorphism of LR(XC) it preserves all the real-algebra operations of
LC(XC); however, T → JTJ is only C-conjugate-linear, and J( A −B

B A )J = ( A B
−B A ),

so J is “complex conjugation” on LC(XC) also. It preserves the ∗ operation if X
is a Hilbert space. We shall call JTJ the conjugate of T and thus distinguish it
from the Hilbert-space adjoint. It is easily verified that the operations of taking
conjugates and taking adjoints commute.

There is a natural isomorphism of LR(X) into LC(XC) given by

A→ 1⊗R A↔
(
A 0
0 A

)
def
= AC.(5.05)

Elements of the image are characterized by both being complex-linear and commut-
ing with J (i.e., satisfying JTJ = T ). The simple matrix computation that we gave
above shows this, because JTJ = T holds if and only if B = −B. We shall call
such elements of LC(XC) real. A real operator T ∈ LC(XC) can thus be identified
with a unique operator belonging to LR(X); we have tried to call attention to such
an identification whenever we made it.

Since T → JTJ is a real automorphism of LC(XC), an operator T has a left (or
right, or two-sided) inverse if and only if JTJ does. By conjugate linearity we have

(λI − T )RT (λ) = I ⇐⇒ (λI − JTJ)(JRT (λ)J) = I(5.06)

with a similar relation on the other side, so

λ ∈ ρ(T ) ⇐⇒ λ ∈ ρ(JTJ)(5.07)

or equivalently

λ ∈ σ(T ) ⇐⇒ λ ∈ σ(JTJ).

If λ1 ∈ σ(T ) is an isolated point of σ(T ), then locally

RT (λ) =

∞∑
n=0

(T − λ1I)
n

(λ− λ1)n+1
E + (analytic function of λ),(5.08a)

where E = Res[RT (λ)|λ=λ1 ] [14, Ch. VIII, §7, p. 225 ff.], and thus

RJTJ (ζ) =
∞∑
n=0

(JTJ − λ1I)
n

(ζ − λ1)n+1
JEJ + (analytic function of ζ)(5.08b)

(think of ζ as λ) near λ1. The cases of this pair of equations that interest us here
are those in which T is real, so that T = JTJ — suppose T = AC. The spectrum of
A ∈ LR(X) is then defined to be σ(AC), so in these cases σ(A) ⊆ C is automatically
symmetric with respect to R (a well-known two-dimensional example shows that
while σ(A) must be nonempty, it need not contain points of R). If λ1 ∈ R, then by
uniqueness of Laurent series we have E = JEJ ; the residue, which is the spectral
projection onto the spectral subspace of XC belonging to {λ1}, must be real and
therefore identifiable with a (unique) idempotent in LR(X). If λ1 /∈ R, then JEJ
is the spectral projection onto the spectral subspace belonging to {λ1}, and by
the holomorphic functional calculus [14] we have E · (JEJ) = (JEJ) · E = 0.
It follows that E + JEJ is the projection onto the spectral subspace belonging
to {λ1, λ1}, and that this projection is real, so that, again, it can be identified
with an idempotent in LR(X). If λ1 is a pole of RT (λ) of order N — this occurs
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when and only when the operator T − λ1I is nilpotent of order N on the spectral
subspace belonging to λ1, so in particular λ1 is an eigenvalue of T — then the
same properties hold for the operator JTJ and the eigenvalue λ1. It is now easy
to verify that in the case where T = AC and λ1 ∈ σ(A) \ R is a pole of order
N , the restriction of A to the subspace (E + JEJ)[X ] satisfies a (minimal) real
polynomial equation of degree exactly 2N. Indeed, if p(λ) is a real polynomial for
which p(A)|(E + JEJ)[X ] = 0, then p(A) is a complex polynomial for which both
p(AC)|E[XC] = 0 and p(AC)|JEJ [XC] = 0, and since those two subspaces are
AC-direct summands in XC, both of the prime powers (λ − λ1)

N and (λ − λ1)
N

must divide p(λ) in C[λ], so the real polynomial [(λ − λ1)(λ − λ1)]
N must divide

p(λ) in R[λ]. Now of course [(AC−λ1I)(AC−λ1I)]
N |(E+JEJ)[XC] = 0, whence

the same statement is true without the subscript “C”s — and so the prime power
(λ2−2Re[λ1]λ+|λ1|2)N ∈ R[λ] must be the minimal polynomial ofA|(E+JEJ)[X ].
One sees in an analogous manner that any operator of the form

N−1∑
n=0

αn(AC − λ1I)
nE +

N−1∑
n=0

αn(AC − λ1I)
nJEJ(5.09)

will be real—hence well-defined as an element of LR(X)—and will be the zero

operator if and only if all the (complex) coefficients {αn}N−1
n=0 equal zero. The

corresponding assertions in the case where λ1 ∈ R is a pole of order N are even
simpler to verify, since the operators

N−1∑
n=0

αn(AC − λ1I)
nE = [

N−1∑
n=0

αn(A− λ1I)
nE]C(5.10)

(where the coefficients {αn}N−1
n=0 must now be real) are already real and the degree

of the minimal polynomial of A|E[X ] must be N.
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