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1 Introduction

In this paper we develop the theory of compound functional differential equations. This follows

in the spirit of compound ordinary differential equations and dynamical systems as developed by

J. Muldowney [6] and Q. Wang [8]. Broadly, this topic concerns tensor products and exterior products

of linear nonautonomous evolutionary systems. We also explore positivity issues connected with

compound systems for a class of linear scalar delay-differential equations (1.1) with a single delay and

a signed feedback.

Abstractly, a linear (evolutionary) process U(t, τ) : X → X on a Banach space X is a collection

of bounded linear operators U(t, τ), for t ≥ τ , for which U(τ, τ) = I and U(t, σ)U(σ, τ) = U(t, τ)

whenever t ≥ σ ≥ τ , with U(t, τ)x varying continuously in (t, τ) for each fixed x. Linear processes

occur as solution maps of a wide variety of nonautonomous linear equations, including of course the

finite-dimensional case ẋ = A(t)x of an ordinary differential equation. Our interest in a large part is

with linear processes generated by the delay-differential equation (int1)

ẋ(t) = −α(t)x(t) − β(t)x(t− 1), (1.1)

where α : R → R and β : R → R are locally integrable functions and where generally β(t) is of

constant sign, either positive or negative, for almost every t. Typically, the underlying Banach space

for a system such as (1.1) is X = C([−1, 0]).

Given an abstract linear process U(t, τ) as above, and given an integer m ≥ 1, one obtains the

co-called compound processes

U(t, τ) = U(t, τ)⊗m, W(t, τ) = U(t, τ)∧m,

by taking the m-fold tensor product and m-fold wedge product, respectively, of the operator U(t, τ).

These compound processes are themselves linear processes on the tensor and wedge products X⊗m

and X∧m of the space X . In general, if Xj for 1 ≤ j ≤ m are Banach spaces, then one may consider

the tensor product

X0 = X1 ⊗X2 ⊗ · · · ⊗Xm

of these spaces. For infinite dimensional spaces, there are typically many inequivalent norms for X0

arising from the norms on the Xj. For our purposes, the so-called injective cross norm is the suitable

choice for X0, and it is used throughout this paper. In a natural way, if Aj are bounded linear operators
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on Xj for 1 ≤ j ≤ m, one obtains a bounded linear operator A0 = A1 ⊗A2 ⊗ · · · ⊗Am on X0. In the

case all Xj = X are the same space one writes X0 = X⊗m, and also A0 = A⊗m if all operators Aj = A

are the same. The wedge product, or exterior product X∧m ⊆ X⊗m, is a subspace of X⊗m of elements

which satisfy an anti-symmetry property in a fashion analogous to the well-known finite-dimensional

case. The subspace X∧m is invariant for the operator A⊗m, and one denotes by A∧m = A⊗m|X∧m the

restriction of this operator to this subspace.

A key point connected with tensor and wedge products of operators is the behavior of their spectra.

Suppose that the essential spectral radius ρ(A) of A satisfies ρ(A) = 0; this is the case if either A

or some power An of A is compact, which is the case for t > τ for the operators U(t, τ) associated

to the delay equation (1.1). Then for any m ≥ 1 the spectrum of A∧m consists of all products

λ1λ2 · · ·λm where the λj are elements of the spectrum of A, and where the number of repetitions

of a given λj in this product cannot exceed the multiplicity of λj as an element of the spectrum of

A. (For a precise statement of this result, including a formula for the multiplicity of λ1λ2 · · ·λm as

an element of spec(A∧m) and a description of the eigenspace, see Proposition 2.3 below, along with

Corollary 2.2.) As we point out, this fact has ramifications for the stability of periodic orbits of

nonlinear systems as it is applied to the Floquet ananalysis of the linearized system. MENTION

MULDOWNEY/WANG?

A surprising aspect of compound systems for equation (1.1) relates to positivity properties when

the feedback coefficient β(t) is of constant sign. A main result of this paper is Theorem 4.1, the

Positivity Theorem. This states that if (−1)mβ(t) ≥ 0 almost everywhere, then for any t and τ with

t ≥ τ , the operator W(t, τ) = U(t, τ)∧m associated to equation (1.1) is a positive operator with respect

to the appropriate cone in X∧m = C([−1, 0])∧m.

If additionally the coefficients in (1.1) are periodic, say if α(t+ γ) ≡ α(t) and β(t+ γ) ≡ β(t) hold

identically for some γ > 0, and if also for the second coefficient there is a uniform positive lower bound

(−1)mβ(t) ≥ (−1)mβ0 > 0 for almost every t and some integer m, then computable lower bounds on

the norms |λ| of the Floquet multipliers (characteristic multipliers) can be obtained. More precisely,

the set of nonzero Floquet multipliers {λk}
∞
k=1 is a countably infinite set. If it is ordered so that

|λ1| ≥ |λ2| ≥ |λ3| ≥ · · ·

with repetitions according to algebraic multiplicity, then an explicit lower bound for each |λk| can be
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given. Further, the strict inequality

|λk| > |λk+1|

holds for each k for which k −m is even (that is, for a particular parity class, odd or even, for k).

For each such m, the monodromy operator U(τ + γ, τ)∧m possesses a positive eigenvector, where here

positive is interpreted in the sense of a particular cone to be described below. MORE ABOUT

u0-POSITIVITY. k OR m?

2 Tensor Products of Banach Spaces

In what follows we let L(X, Y ) denote the space of bounded linear operators between Banach spaces X

and Y . We also denote L(X) = L(X,X). For any operator A ∈ L(X), we let spec(A) and ess spec(A)

denote the spectrum and the essential spectrum of A, and we let

r(A) = sup{|λ| | λ ∈ spec(A)}, ρ(A) = sup{|λ| | λ ∈ ess spec(A)},

denote the spectral radius and essential spectral radius of A, respectively.

To begin our discussion of tensor products, let X and Y be Banach spaces, and let X � Y denote

their algebraic tensor product. Then X � Y is the vector space consisting of equivalence classes of

elements of the form (01)

z =

n∑

i=1

ai(xi ⊗ yi) (2.1)

with xi ∈ X and yi ∈ Y , and ai ∈ C, under the equivalence relation generated by all identities of the

form
(x+ x′) ⊗ y = x⊗ y + x′ ⊗ y, x⊗ (y + y′) = x⊗ y + x⊗ y′,

a(x⊗ y) = (ax)⊗ y = x⊗ (ay),

and only those identities. There are various possible (generally inequivalent) norms for X�Y , among

which are the so-called cross norms, namely norms for which ‖x⊗y‖ = ‖x‖‖y‖ holds for every x and

y, and with the corresponding equation holding with the dual norms. In particular, the norm defined

by (02)

‖z‖ = sup
(ξ,η)∈B

∣∣∣∣
n∑

i=1

aiξ(xi)η(yi)

∣∣∣∣, B = {(ξ, η) ∈ X∗ × Y ∗ | ‖ξ‖ = ‖η‖ = 1}, (2.2)

for z as in (2.1), where X∗ and Y ∗ are the dual spaces to X and Y , is a cross norm, called the

injective cross norm. One easily checks that ‖z‖ is well-defined, that is, it is independent of the
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representation (2.1) of z, and that the formula (2.2) does indeed define a norm on X �Y . Now define

X⊗Y to be the Banach space which is the completion of X�Y with respect to this norm. Throughout

this paper, we shall always take the injective cross norm when considering tensor products of Banach

spaces.

If E and G are two other Banach spaces, and A ∈ L(X,E) and B ∈ L(Y, G) are bounded linear

operators, then one defines the tensor product A⊗B of these operators by (A⊗B)(x⊗y) = (Ax)⊗(By),

and extends this by linearity first to X�Y , and then continuously to all of X⊗Y . It is easily checked

that this construction determines a unique bounded linear operator (03)

A⊗ B ∈ L(X ⊗ Y, E ⊗G), ‖A⊗ B‖ = ‖A‖‖B‖, (2.3)

with norm as indicated. One also sees that (07)

(A1 ⊗ B1)(A2 ⊗ B2) = (A1A2) ⊗ (B1B2) (2.4)

for operators defined on appropriate spaces.

If we have a direct sum decompositionX = X1⊕X2 forX , where X1, X2 ⊆ X are closed subspaces,

then there is a direct sum decomposition (12)

X ⊗ Y = (X1 ⊗ Y ) ⊕ (X2 ⊗ Y ). (2.5)

We note that a priori there are two possible definitions for Xj ⊗ Y . Namely, Xj ⊗ Y can be defined

either (a) directly, by considering Xj as a Banach space in its own right and taking the tensor product

with Y , or (b) by taking the closure in X⊗Y of the subspace spanned by elements x′⊗y with x′ ∈ Xj

and y ∈ Y . That these two constructions yield the same result, namely isometric Banach spaces,

follows from the identity

sup
(ξ′,η)∈B′

∣∣∣∣
n∑

i=1

ξ′(x′i)η(yi)

∣∣∣∣ = sup
(ξ,η)∈B

∣∣∣∣
n∑

i=1

ξ(x′i)η(yi)

∣∣∣∣, B′ = {(ξ′, η) ∈ X∗
j × Y ∗ | ‖ξ′‖ = ‖η‖ = 1},

with x′i ∈ Xj and y ∈ Y , and B as in (2.2), which is an immediate consequence of the Hahn-Banach

theorem. (For the norm in Xj we always take the norm inherited as a subspace of X .) In a similar

fashion, if Y = Y1 ⊕ Y2 then X ⊗ Y = (X ⊗ Y1) ⊕ (X ⊗ Y2).

The above constructions extend in the obvious way to products and sums of several Banach spaces.

In particular, if X , Y , and Z are Banach spaces, then (X ⊗ Y ) ⊗ Z and X ⊗ (Y ⊗ Z) are naturally
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isometrically isomorphic. If Xj are Banach spaces for 1 ≤ j ≤ m then one can define X1⊗X2⊗· · ·⊗Xm

in a natural fashion, along with products A1 ⊗A2 ⊗ · · · ⊗ Am of operators Aj ∈ L(Xj, Ej) where the

Ej are Banach spaces, with the obvious generalization of (2.3). Similarly, (2.5) generalizes to the case

of multiple summands and multiple factors. We also note that for spaces Xj of either finite or infinite

dimension, we have that

dim(X1 ⊗X2 ⊗ · · · ⊗Xm) =

m∏

j=1

dimXj,

with the convention that 0×∞ = 0.

The following result will play an important role.

Theorem 2.1 (Ichinose [3, Theorem 4.3]; see also [4] and Schechter [7]). Let Xj be a Banach

space and Aj ∈ L(Xj) for 1 ≤ j ≤ m. Then (14)

spec(A1 ⊗A2 ⊗ · · · ⊗Am) = {λ1λ2 · · ·λm | λj ∈ spec(Aj) for every 1 ≤ j ≤ m} (2.6)

for the spectrum of the tensor product.

The above theorem can be generalized to count multiplicities, at least of isolated spectral points,

as follows. ICHINOSE REFERENCES AND REMARKS.

IS THE FOLLOWING RESULT IN ICHINOSE?

Corollary 2.2. Let Aj and Xj for 1 ≤ j ≤ m be as in Theorem 2.1. Denote A0 = A1⊗A2 ⊗· · ·⊗Am

and take any λ0 ∈ spec(A0) with λ0 6= 0 for which λ0 is an isolated point of spec(A0). Then there are

finitely many distinct m-tuples (13)

(λk
1, λ

k
2, . . . , λ

k
m) ∈ Cm, (2.7)

for 1 ≤ k ≤ p, such that (17a)

λ0 = λk
1λ

k
2 · · ·λ

k
m, λk

j ∈ spec(Aj), (2.8)

for 1 ≤ j ≤ m and 1 ≤ k ≤ p. Moreover, each such λk
j is an isolated point of spec(Aj). Let Gk

j ⊆ Xj

denote the spectral subspace of Aj corresponding to λk
j , let νk

j = dimGk
j , so 1 ≤ νk

j ≤ ∞, and let (18a)

ν0 =

p∑

k=1

νk
1 ν

k
2 · · ·νk

m. (2.9)
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Then the spectral subspace G0 ⊆ X0 of A0 corresponding to λ0 is given by (18b)

G0 =

p⊕

k=1

Gk
1 ⊗Gk

2 ⊗ · · · ⊗Gk
m, (2.10)

where dimG0 = ν0, and where each subspace Gk
1 ⊗Gk

2 ⊗ · · · ⊗Gk
m is invariant under A0.

Remark. We are assuming that every possible m-tuple (2.7) satisfying (2.8) has been enumerated

and thus occurs for some k. Also, the m-tuples (2.7) are geometrically distinct points in Cm, with

no repetitions for multiplicity as elements of a spectrum, that is, (λk
1, λ

k
2, . . . , λ

k
m) = (λk′

1 , λ
k′

2 , . . . , λ
k′

m)

as points in Cm if and only if k = k′. But note it can still happen that for some j, there may be

repetitions among the quantities λ1
j , λ

2
j , . . . , λ

p
j , say λk

j = λk′

j and thus Gk
j = Gk′

j , even if k 6= k′.

Remark. A sufficient condition for λ0 to be an isolated point of spec(A0), as in the statement of

Corollary 2.2, is easily given. Namely, assume that λ0 ∈ spec(A0) satisfies

|λ0| > max
1≤j≤m

{ρjr
−1
j }r1r2 · · ·rm,

where rj = r(Aj) and ρj = ρ(Aj) are the spectral radii and essential spectral radii, respectively, of

these operators, and where we assume that rj > 0 for each j. To prove that λ0 is an isolated point of

spec(A0), it is enough to prove that for every representation λ0 = λ1λ2 · · ·λm where λj ∈ spec(Aj),

that each λj is an isolated point of spec(Aj). To this end, it is enough to prove that |λj| > ρj for each

j. Thus assume that |λj0| ≤ ρj0 for some j0. Then as |λj| ≤ rj for each j, it follows that

|λ0| = |λ1λ2 · · ·λm| ≤ (ρj0r
−1
j0

)r1r2 · · · rm,

which is a contradiction, and thus λ0 is isolated.

We remark that in our analysis of delay-differential equaions below, it is the case that ρj = 0 for

each j.

Proof of Corollary 2.2. The fact that λ0 is a nonzero isolated point of spec(A0), along with (2.6)

from Theorem 2.1, implies that if λ0 = λ1λ2 · · ·λm with λj ∈ spec(Aj), then each λj is an isolated

point of spec(Aj). This in turn implies that there is a finite number p of such representations of λ0 as

a product. Let us enumerate all such representations, as in (2.8) in the statement of the corollary.

For every j satisfying 1 ≤ j ≤ m, let qj be the number of distinct quantities λk
j for 1 ≤ k ≤ p. Here

we mean numerically distinct quantities, that is, without repetitions for multiplicity as an element of
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spec(Aj). Let λ̃i
j for 1 ≤ i ≤ qj be a renumbering of these quantities where each occurs only once, and

so we have

{λ1
j , λ

2
j, . . . , λ

p
j} = {λ̃1

j , λ̃
2
j, . . . , λ̃

qj

j },

with equality as unordered sets. Let G̃i
j ⊆ Xj denote the spectral subspace of Aj corresponding to λ̃i

j.

Then for each j we have a direct sum decomposition

Xj = G̃0
j ⊕ (G̃1

j ⊕ G̃2
j ⊕ · · · ⊕ G̃

qj

j ),

where G̃0
j is the spectral subspace of Aj corresponding to spec(Aj) \ {λ̃

1
j , λ̃

2
j , . . . , λ̃

qj

j }.

Now consider all m-tuples ι = (i1, i2, . . . , im) ∈ I where

I = {(i1, i2, . . . , im) ∈ Zm | 0 ≤ ij ≤ qj for every j satisfying 1 ≤ j ≤ m}

and for each such ι ∈ I let (16)

Γι = G̃i1
1 ⊗ G̃i2

2 ⊗ · · · ⊗ G̃im
m ⊆ X1 ⊗X2 ⊗ · · · ⊗Xm. (2.11)

Then

X1 ⊗X2 ⊗ · · · ⊗Xm =
⊕

ι∈I

Γι.

By construction, each subspace G̃i
j ⊆ Xj is invariant for the operator Aj, and thus each subspace Γι

is invariant for A0. Thus the multiplicity of λ0 as a point in the spectrum of spec(A0), namely the

dimension of the corresponding spectral subspace, equals the sum of the multiplicities of λ0 as a point

in the spectrum of A0|Γι for the various Γι, where A0|Γι is the restriction of A0 to Γι.

Note that not every A0|Γι need have λ0 in its spectrum. In fact, there are precisely p of the

m-tuples ι ∈ I for which (15)

λ0 ∈ spec(A0|Γι) (2.12)

holds, with these corresponding to the p different m-tuples in (2.7), (2.8). Moreover, it is the case that

ij 6= 0 for each ij occurring in such an m-tuple ι, that is, the associated subspace G̃
ij
j is a spectral

subspace of Aj corresponding to λ̃
ij
j , and not the complementary space G̃0

j . The spectral subspace

G0 ⊆ X0 of A0 corresponding to λ0 is thus the direct sum of those Γι ⊆ X0 satisfying (2.12). These

facts are direct consequences of the definition of the quantities λk
j , along with the re-labeling of the

λk
j as λ̃i

j and the construction of the set I. Let us denote by

ιk = (ik1, i
k
2, . . . , i

k
m), 1 ≤ k ≤ p,
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those ι ∈ I for which (2.12) holds. We may assume these m-tuples are labeled to correspond with the

m-tuples in (2.7), (2.8), namely that (17)

(λ̃
ik
1

1 , λ̃
ik
2

2 , . . . , λ̃
ikm
m ) = (λk

1, λ
k
2, . . . , λ

k
m), 1 ≤ k ≤ p. (2.13)

Thus the spectral subspace of A0 for λ0 is the direct sum (19)

G0 = Γι1 ⊕ Γι2 ⊕ · · · ⊕ Γιp (2.14)

in this notation. Then from (2.11) and using (2.13), (20)

Γιk = G̃
ik
1

1 ⊗ G̃
ik
2

2 ⊗ · · · ⊗ G̃ikm
m = Gk

1 ⊗Gk
2 ⊗ · · · ⊗Gk

m. (2.15)

Combining (2.14) and (2.15) gives the desired formula in (2.10) for G0. Furthermore, as we have

defined νk
j = dimGk

j , we obtain the formula in (2.9) for ν0 = dimG0.

Now take any Banach space X and consider the m-fold tensor product, denoted

X⊗m = X ⊗X ⊗ · · · ⊗X,

with m identical factors on the right-hand side. Let Sm denote the symmetric group on m elements,

namely the set of all maps σ : {1, 2, . . . , m} → {1, 2, . . . , m} which are one-to-one and therefore onto.

Taking any σ ∈ Sm, we define a linear operator Sσ ∈ L(X⊗m) as follows. Let (cals)

Sσ(x1 ⊗ x2 ⊗ · · · ⊗ xm) = xσ(1) ⊗ xσ(2) ⊗ · · · ⊗ xσ(m), (2.16)

then extend Sσ to all of the algebraic tensor product X�m = X � X � · · · � X by linearity, and

finally extend Sσ to all of X⊗m by continuity. One checks that Sσ is well-defined, and is an isometry,

‖Sσz‖ = ‖z‖ for every z ∈ X⊗m. Clearly, Sσ1
Sσ2

= Sσ1σ2
and S−1

σ = Sσ−1 . We now define the m-fold

exterior product X∧m to be

X∧m = {z ∈ X⊗m | Sσz = sgn(σ)z for every σ ∈ Sm},

which is a closed subspace of X⊗m. Here sgn(σ) = ±1 is the sign of the permutation σ. Equivalently,

we may define P ∈ L(X⊗m) by (pdef)

P =
1

m!

∑

σ∈Sm

sgn(σ)Sσ, (2.17)
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which is easily seen to be a projection, P 2 = P . Then X∧m = PX⊗m is the range of P , and we

generally denote

x1 ∧ x2 ∧ · · · ∧ xm = P (x1 ⊗ x2 ⊗ · · · ⊗ xm).

We note here, for future use, that (psig)

PSσ = sgn(σ)P (2.18)

for every σ ∈ Sm. Let us remark also that (wdim)

dimX∧m =

(
dimX

m

)
, (2.19)

where
(
a
b

)
denotes the binomial coefficient for 1 ≤ a ≤ ∞ and 1 ≤ b < ∞, with

(
a
b

)
= 0 if b > a and

with
(∞

b

)
= ∞. One easily checks (2.19), at least if dimX = n <∞, by noting that if e1, e2, . . . , en ∈ X

is a basis for X , then the set of elements ej1 ∧ ej2 ∧ · · · ∧ ejm for 1 ≤ j1 < j2 < · · · < jm ≤ n is a basis

for X∧m.

Now denoting

A⊗m = A⊗A⊗ · · · ⊗A ∈ L(X⊗m)

for the m-fold product of any operator A ∈ L(X) on X , we observe that SσA
⊗m = A⊗mSσ for every

σ ∈ Sm, and thus PA⊗m = A⊗mP . It follows that X∧m is an invariant subspace of X⊗m for A⊗m.

With this, it makes sense to study the spectrum of A⊗m restricted to X∧m. Let us denote

A∧m = A⊗m|X∧m ∈ L(X∧m)

for this operator so restricted.

Proposition 2.3. Let X be a Banach space and A ∈ L(X). Then for every m ≥ 1

spec(A∧m) ⊆ spec(A⊗m) = {λ1λ2 · · ·λm | λj ∈ spec(A) for every j satisfying 1 ≤ j ≤ m}

for the operators A∧m ∈ L(X∧m) and A⊗m ∈ L(X⊗m). Suppose further that λ0 ∈ spec(A⊗m) is a

nonzero isolated point of spec(A⊗m) with spectral subspace G0 ⊆ X⊗m. Then (21)

PG0 = G0 ∩X
∧m (2.20)

for the image of this space under P . Moreover, PG0 6= {0} if and only if λ0 ∈ spec(A∧m), in which

case λ0 is an isolated point of spec(A∧m) with PG0 as its spectral subspace.
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Proof. The fact that P commutes with A⊗m implies that G0 is invariant under P , which in turn

implies the equality in (2.20). The remaining claims are elementary.

Assuming the setting of Proposition 2.3, we may use Corollary 2.2 to obtain detailed information

about the spectrum and spectral subspaces of A∧m. In this case each subspace Gk
j ⊆ X in (2.10) is a

spectral subspace of A, and it may happen for a given k that there are repetitions among these spaces,

namely that Gk
j = Gk

j′ and so λk
j = λk

j′ , for some j 6= j ′. It is also the case that for every subspace

Gk
1 ⊗Gk

2 ⊗ · · · ⊗Gk
m occurring as a summand in (2.10), and for every permutation σ ∈ Sm, the space

obtained by permuting the factors Gk
j using σ must also appear as a summand in (2.10). That is,

there exists k′ such that

Gk′

1 ⊗Gk′

2 ⊗ · · · ⊗Gk′

m = Sσ(Gk
1 ⊗Gk

2 ⊗ · · · ⊗Gk
m) = Gk

σ(1) ⊗Gk
σ(2) ⊗ · · · ⊗Gk

σ(m).

Of course, it may be the case that k′ = k even if σ is not the identity permutation, due to repetitions

among the Gk
j .

The following result determines the multiplicity of a point λ0 in the spectrum of A∧m, namely the

quantity dim(PG0) as in the statement of Proposition 2.3. Note that dim(PG0) = 0 is possible, that

is, it is possible that λ0 ∈ spec(A⊗m) but λ0 6∈ spec(A∧m).

Proposition 2.4. Let X be a Banach space and A ∈ L(X). Fix m ≥ 1 and let λ0 ∈ spec(A⊗m) be a

nonzero isolated point of spec(A⊗m). For 1 ≤ k ≤ p denote

Hk = Gk
1 ⊗Gk

2 ⊗ · · · ⊗Gk
m,

where we use the notation in the statement of Corollary 2.2. Define an equivalence relation ∼ on the

set {1, 2, . . . , p} by letting k ∼ k′ if and only if there exists σ ∈ Sm such that

Hk′

= SσH
k, that is, Gk′

j = Gk
σ(j) for 1 ≤ j ≤ m.

(Equivalently, k ∼ k′ if and only if the two m-tuples in (2.7) corresponding to k and k′ are obtained

from one another by permuting the entries.) Let E1, E2, . . . , Er ⊆ {1, 2, . . . , p} denote the corresponding

equivalence classes of ∼ and let (omq)

Ωq =
⊕

k∈Eq

Hk (2.21)

for each equivalence class, that is, for 1 ≤ q ≤ r. Then (pg0)
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PG0 =

r⊕

q=1

PΩq , dim(PG0) =

r∑

q=1

dim(PΩq), (2.22)

where P is as in (2.17) and G0 ⊆ X⊗m is the spectral subspace of λ0 for A⊗m, as in the statement of

Corollary 2.2.

Now fix any q in the range 1 ≤ q ≤ r and select an index k∗ ∈ Eq such that Hk∗ has the form (hkap)

Hk∗ = C⊗κ1

1 ⊗ C⊗κ2

2 ⊗ · · · ⊗ C⊗κd

d , (2.23)

where for each i we have that Ci = Gk∗
j for some j, and where Ci 6= Ci′ and thus Ci ∩ Ci′ = {0}

if i 6= i′. The integers κi ≥ 1 are thus precisely the number times that Ci occurs as a factor in this

product. (We remark that for any q such k∗ exists, and that k∗ and d, and each κi and Ci, of course

depend on q.) Then (dform2)

dim(PΩq) =

d∏

i=1

(
dimCi

κi

)
, (2.24)

with the convention in the above product that 0 ×∞ = 0.

Remark. If, in the setting of Proposition 2.4, every nonzero point of spec(A) is an isolated point

of spec(A), then the same is true for spec(A⊗m). In this case the nonzero points in the spectrum of

spec(A∧m) are precisely those points λ0 of the form (lpr)

λ0 = λ1λ2 · · ·λm, (2.25)

where each λj ∈ spec(A) with possible repetitions, but where the number of repetitions of each

λ ∈ spec(A) in the product (2.25) is less than or equal to the multiplicity of λ (the dimension of the

spectral subspace) as an element of spec(A). This means that in the formula (2.24), one requires that

κi ≤ dimCi for each i.

Remark. Suppose, in the setting of Proposition 2.4, that every nonzero point of spec(A) is an isolated

point of simple multiplicity, that is, an element of the point spectrum of algebraic multiplicity one.

Let λj for j ≥ 1 denote the distinct nonzero elements of spec(A). Then every nonzero λ0 ∈ spec(A∧m)

has the form

λ0 = λj1λj2 · · ·λjm

for distinct integers ji satisfying 1 ≤ j1 < j2 < · · · < jm. Moreover, the multiplicity of λ0 as an

element of spec(A∧m) is precisely the number of possible ways of expressing λ0 as such a product in
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this fashion. One sees this easily from Proposition 2.4, in particular, upon noting that in order for the

quantity in (2.24) to be positive one must have each κi = 1, as dimCi = 1 for each i. Thus the space

Hk∗ is a tensor product of m spectral subspaces Ci corresponding to distinct points of spec(A) whose

product is λ0.

Remark. Suppose, again in the setting of Proposition 2.4, that every nonzero point of spec(A) is

isolated. Suppose further there exists r > 0 such that there are exactlym points λ ∈ spec(A) satisfying

|λ| > r, and where here we count multiplicity. That is, the spectral subspace corresponding to all

elements of spec(A) with |λ| > r has dimension exactly m. Denote these elements of spec(A) by λj, for

j = 1, 2, . . . , m, listed with repetition in the case of multiplicity. Then λ0 = λ1λ2 · · ·λm is an isolated

point of spec(A∧m) of simple multiplicity, namely its spectral subspace has dimension +1. Further,

there exists ε > 0 such that every other λ ∈ spec(A∧m) satisfies |λ| < |λ0| − ε. Again, these facts

follow easily from Proposition 2.4, where the spaces Ci are the spectral subspaces of the various λi,

with dimension equal to the multiplicity of λi, and where κi = dimCi.

Proof of Proposition 2.4. It is clear from (2.10) and from (2.21), and the fact that ∼ is an

equivalence relation, that (gom)

G0 =

r⊕

q=1

Ωq. (2.26)

Further, it is clear using the definition of ∼ that SσΩq = Ωq for every σ ∈ Sm and 1 ≤ q ≤ r, and so (pomq)

PΩq ⊆ Ωq (2.27)

holds. Thus (2.22) follows from (2.26) and (2.27).

Now let q be fixed, along with k∗, and κi and Ci, as in the statement of the proposition. For any

k ∈ Eq there exists π ∈ Sm such that (pi)

SπH
k = Hk∗ , (2.28)

and thus from (2.18) we see that PHk = PSπH
k = PHk∗ . It follows directly from this, and from the

definition (2.21) of Ωq, that (phom)

PΩq = PHk∗ . (2.29)

Let us further denote Π ∈ L(Ωq, Hk∗) to be the canonical projection of Ωq onto Hk∗ associated to the

decomposition (2.21). Also define the isotropy group

Ψ = {σ ∈ Sm | SσH
k∗ = Hk∗}
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associated to the subspace Hk∗ . We claim that (pqp)

PΠP =
|Ψ|

m!
P on Ωq, (2.30)

where |Ψ| denotes the cardinality of Ψ. To prove (2.30), it is enough to verify that it holds on each

subspace Hk ⊆ Ωq for k ∈ Eq. Fixing such k, and with π ∈ Sm satisfying (2.28), take any x ∈ Hk and

denote y = Sπx ∈ Hk∗ . Then using (2.18) we have that

Px = sgn(π)PSπx = sgn(π)Py =
sgn(π)

m!

∑

σ∈Sm

sgn(σ)Sσy.

Upon applying the operator Π, we retain only those terms in the above sum which lie in Hk∗ , namely,

the terms for which σ ∈ Ψ. Thus

ΠPx =
sgn(π)

m!

∑

σ∈Ψ

sgn(σ)Sσy.

Applying P , where we again use (2.18), now gives

PΠPx =
sgn(π)

m!

∑

σ∈Ψ

Py =
sgn(π)|Ψ|

m!
Py =

|Ψ|

m!
Px.

From this we conclude (2.30), as desired. It follows directly from (2.30) that the map Π is one-to-one

on the space PΩq. Thus with (2.29) we conclude that (dform)

dim(PΩq) = dim(ΠPHk∗). (2.31)

Let us now examine the isotropy group Ψ more closely. As the spaces Ci in the product (2.23) are

distinct, it follows that σ ∈ Ψ if and only if σ permutes only those indices common to each given term

C⊗κi

i among themselves without involving other indices. More precisely, define sets Ki ⊆ {1, 2, . . . , m}

for 1 ≤ i ≤ d by

Ki = {n ∈ Z | κ̃i−1 < n ≤ κ̃i}, κ̃i =

i∑

j=1

κj , κ̃0 = 0,

and so Ki is the set of indices associated with the factor C⊗κi

i in (2.23), and each n in the range

1 ≤ n ≤ m belongs to exactly one Ki. Define subgroups Ψi ⊆ Sm, for 1 ≤ i ≤ d, by

Ψi = {σ ∈ Sm | σ(n) ∈ Ki if n ∈ Ki, and σ(n) = n if n ∈ Kj for some j 6= i},
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consisting of those σ which permute only the indices in Ki, leaving all other indices fixed. Also define

operators

Pi =
1

κi!

∑

σ∈Ψi

sgn(σ)Sσ, P0 = P1P2 · · ·Pd,

for 1 ≤ i ≤ d. The one easily sees that Ψ is precisely the set of elements of the form (sigi)

σ = σ1σ2 · · ·σd (2.32)

with σi ∈ Ψi for 1 ≤ i ≤ d, and that the decomposition in (2.32) is unique for each σ ∈ Ψ. Note the

commutativity property, that σiσi′ = σi′σi if σi ∈ Ψi and σi′ ∈ Ψi′ with i 6= i′. One sees that operator

P 2
i = Pi is a projection on Hk∗ whose range is the space

C⊗κ1

1 ⊗ · · · ⊗ C
⊗κi−1

i−1 ⊗C∧κi

i ⊗ C
⊗κi+1

i+1 ⊗ · · · ⊗C⊗κd

d ,

and using the above-mentioned commutativity, one sees that P 2
0 = P0 is also a projection on Hk∗

whose range is the subspace

C∧κ1

1 ⊗ C∧κ2

2 ⊗ · · · ⊗ C∧κd

d .

We claim that (clm)

ΠP =
κ1!κ2! · · ·κd!

m!
P0 on Hk∗ , (2.33)

from which it follows directly, with the above remarks, that (qph)

ΠPHk∗ = C∧κ1

1 ⊗ C∧κ2

2 ⊗ · · · ⊗ C∧κd

d . (2.34)

Note that (2.34), along with (2.19) and (2.31), implies our desired result (2.24). To prove (2.33), first

observe that for every x ∈ Hk∗ we have that (pip)

ΠPx =
1

m!

∑

σ∈Sm

sgn(σ)ΠSσx =
1

m!

∑

σ∈Ψ

sgn(σ)Sσx. (2.35)

Now decomposing σ ∈ Ψ as in (2.32), we have that

∑

σ∈Ψ

sgn(σ)Sσx =
∑

σ1∈Ψ1

∑

σ2∈Ψ2

· · ·
∑

σd∈Ψd

sgn(σ1) sgn(σ2) · · ·sgn(σd)Sσ1
Sσ2

· · ·Sσd
x

= (κ1!κ2! · · ·κd!)P1P2 · · ·Pdx = (κ1!κ2! · · ·κd!)P0x,

which with (2.35), proves the claim (2.33). With this, the proposition is proved.
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We now consider the specific case of Banach spaces

Xj = C(Θj) = {ϕ : Θj → R | ϕ is continuous}

for 1 ≤ j ≤ m, where each Θj is a compact Hausdorff space and where the supremum norm is taken

for C(Θj). As described in [1, Chapter I, Section 4], one may regard (05)

C(Θ0) = C(Θ1) ⊗C(Θ2) ⊗ · · · ⊗ C(Θm), Θ0 = Θ1 × Θ2 × · · · × Θm, (2.36)

as follows. First, taking any ϕj ∈ C(Θj) for 1 ≤ j ≤ m, define ϕ ∈ C(Θ0) by (phi)

ϕ(θ1, θ2, . . . , θm) = ϕ1(θ1)ϕ2(θ2) · · ·ϕm(θm), (2.37)

and identify ϕ1 ⊗ ϕ2 ⊗ · · · ⊗ ϕm with ϕ. More generally, identify any finite sum

n∑

i=1

ϕ1,i ⊗ ϕ2,i ⊗ · · · ⊗ ϕm,i ∈ C(Θ1)⊗ C(Θ2) ⊗ · · · ⊗C(Θm)

where ϕj,i ∈ C(Θj) for 1 ≤ i ≤ n and 1 ≤ j ≤ m, with ϕ ∈ C(Θ0) given by (06)

ϕ(θ1, θ2, . . . , θm) =

n∑

i=1

ϕ1,i(θ1)ϕ2,i(θ2) · · ·ϕm,i(θm). (2.38)

One sees that this identification is an isometry, that is, (04)

‖ϕ‖ =

∥∥∥∥
n∑

i=1

ϕ1,i ⊗ ϕ2,i ⊗ · · · ⊗ ϕm,i

∥∥∥∥, (2.39)

where the norms in (2.39) are those in C(Θ0) and C(Θ1) ⊗ C(Θ2) ⊗ · · · ⊗ C(Θm), respectively. To

prove (2.39), first take elements ξj ∈ C(Θj)
∗ of the dual spaces, with ‖ξj‖ = 1, for 1 ≤ j ≤ m. Each ξj

is given by integration with respect to a Borel measure dµj(θj) on Θj with total variation |µj|(Θj) = 1.

Then with (2.38) we have, following (2.2), that (meas)

∣∣∣∣
n∑

i=1

ξ1(ϕ1,i)ξ2(ϕ2,i) · · ·ξm(ϕm,i)

∣∣∣∣

=

∣∣∣∣
∫

Θ1

∫

Θ2

· · ·

∫

Θm

ϕ(θ1, θ2, . . . , θm) dµm(θm) · · ·dµ2(θ2) dµ1(θ1)

∣∣∣∣ ≤ ‖ϕ‖.

(2.40)

Upon taking the supremum over all such ξj, we have that (measinq)
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∥∥∥∥
n∑

i=1

ϕ1,i ⊗ ϕ2,i ⊗ · · · ⊗ ϕm,i

∥∥∥∥ ≤ ‖ϕ‖. (2.41)

To obtain equality in (2.41), take any point (θ∗1, θ
∗
2, . . . , θ

∗
m) ∈ Θ1 × Θ2 × · · · × Θm at which the

maximum of |ϕ(θ1, θ2, . . . , θm)| is achieved, where without loss, by multiplying ϕ by a scalar of norm

+1, we may assume that ϕ(θ∗1, θ
∗
2, . . . , θ

∗
m) = ‖ϕ‖ ≥ 0. Then letting dµj(θj) be the unit point mass

at θ∗j , we see that the integral expression (2.40) equals ‖ϕ‖, and thus equality holds in (2.41). This

establishes (2.39). With (2.38) and (2.39), it follows that the space C(Θ1) ⊗ C(Θ2) ⊗ · · · ⊗ C(Θm)

is isometrically embedded as a subspace of C(Θ0). In fact this subspace is all of C(Θ0), that is, the

first equality in (2.36) holds. This follows directly from the fact that the set of functions ϕ of the

form (2.38) is dense in C(Θ0), by the Stone-Weierstrass Theorem.

Suppose further that Aj ∈ L(C(Θj)) for 1 ≤ j ≤ m. For 1 ≤ k ≤ m define an operator Ãk ∈

L(C(Θ0)) by (atil)

Ãk = I ⊗ · · · I ⊗Ak ⊗ I · · · ⊗ I, (2.42)

where the factor Ak occurs in the kth position. Then if ϕj ∈ C(Θj) for 1 ≤ j ≤ m and with ϕ given

by (2.37), we have that

(Ãkϕ)(θ1, . . . , θm) = ϕ1(θ1) . . .ϕk−1(θk−1)[(Akϕk)(θk)]ϕk+1(θk+1) · · ·ϕm(θm)

for every (θ1, . . . , θm) ∈ Θ0, that is, Ak acts upon the function ϕk with the other functions ϕj for

j 6= k untouched. More generally, for any ϕ ∈ C(Θ0) not necessarily of the product form (2.37), one

has that (cd)

(Ãkϕ)(θ1, . . . , θm) = [Akϕ(θ1, . . . , θk−1, · , θk+1, . . . , θm)](θk) (2.43)

which is interpreted as follows. Let the points θj ∈ Θj for j 6= k be held fixed and regard

ϕ(θ1, . . . , θk−1, · , θk+1, . . . , θm) ∈ C(Θk)

as a function of one variable represented by the centered dot “ · ”. Apply the operator Ak to this

function, and then evaluate the resulting function at the point θk ∈ Θk to get the right-hand side

of (2.43). It follows that to calculate (A0ϕ)(θ1, θ2, . . . , θm) where A0 ∈ L(C(Θ0)) is the operator (a0)

A0 = A1 ⊗A2 ⊗ · · · ⊗Am = Ã1Ã2 · · · Ãm, (2.44)

one successively applies the operators Ak for 1 ≤ k ≤ m with the variable in the kth position free,

while holding the remaining m − 1 variables fixed. Note that one may apply these operators in any

order, as the operators Ãk commute with one another.
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In the special case that all the spaces Xj = X = C(Θ) are the same, then Θ0 = Θm, the m-fold

cartesian product, and so we have the identification C(Θ)⊗m = C(Θm). Further, it is clear that

C(Θ)∧m is identified with the subspace of C(Θm) consisting of all anti-symmetric functions, that is, (as)

C(Θ)∧m = {ϕ ∈ C(Θm) | ϕ(θσ(1), θσ(2), . . . , θσ(m)) = sgn(σ)ϕ(θ1, θ2, . . . , θm)

for every (θ1, θ2, . . . , θm) ∈ Θm, and every σ ∈ Sm}.

(2.45)

As a practical matter, the above observations will be useful in evaluating tensor products of solution

operators of linear delay-differential equations. In such applications we shall typically work with the

exterior product space C([−1, 0])∧m.

The following basic result from will be needed later. Although it is proved in [3], we provide a

proof for completeness.

Proposition 2.5 (Ichinose [3, Lemma 3.6]). Let Xj and Yj be Banach spaces and Aj ∈ L(Xj, Yj)

for 1 ≤ j ≤ m. Assume that each operator Aj is one-to-one. Then the operator A0 = A1⊗A2⊗· · ·⊗Am

is one-to-one from X1 ⊗X2 ⊗ · · · ⊗Xm to Y1 ⊗ Y2 ⊗ · · · ⊗ Ym.

Proof. Without loss it is enough to consider the case m = 2, as the case of general m can be proved

inductively by writing A0 = A∗ ⊗ Am where A∗ = A1 ⊗ A2 ⊗ · · · ⊗ Am−1. Further, if m = 2, then by

writing A1 ⊗ A2 = (A1 ⊗ IY2
)(IX1

⊗ A2) where IX1
and IY2

denote the identity operators on X1 and

Y2 respectively, we see that it is enough to prove that both A1 ⊗ IY2
and IX1

⊗ A2 are one-to-one. In

fact, it is enough to prove that the operator A1 ⊗ Y2 is one-to-one.

Therefore, denoting A = A1, X = X1, Y = Y1, and Z = Y2, let us consider an operator A ∈

L(X, Y ) which is one-to-one. We must prove that A⊗ I ∈ L(X ⊗ Z, Y ⊗Z) is also one-to-one, where

I denotes the identity operator on Z. Letting Z∗ denote the dual space of Z, for any ζ ∈ Z∗ define

an operator LX(ζ) ∈ L(X ⊗ Z,X) by setting

LX(ζ)(x⊗ z) = ζ(z)x

for any x ∈ X and z ∈ Z, and then extending LX(ζ) to all of X ⊗ Z first by linearity and then by

continuity. One easily sees that LX(ζ) is well-defined, with operator norm

‖LX(ζ)‖ = ‖ζ‖.

One also easily checks that (yy)
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‖u‖ = sup
ζ∈Z∗

‖ζ‖=1

‖LX(ζ)u‖ (2.46)

for every u ∈ X ⊗Z, which in fact follows directly from the definition (2.2) of the injective norm. We

also define the operator LY (ζ) ∈ L(Y ⊗ Z, Y ) in an analogous fashion. Finally, let us note that (x)

LY (ζ)(A⊗ I) = ALX(ζ) (2.47)

for every ζ ∈ Z, which one easily sees by showing that the operators in (2.47) agree on all elements

x⊗ z ∈ X ⊗ Z.

Now assume that (A × I)u = 0 for some u ∈ X ⊗ Z. Then from (2.47) we have for every ζ ∈ Z∗

that ALX(ζ)u = 0, and hence that LX(ζ)u = 0 as A is one-to-one. But then (2.46) implies that

‖u‖ = 0, thus u = 0. We conclude that A ⊗ I is one-to-one, as desired.

3 Tensor Products of Linear Processes

Before specializing to the delay-differential equation (1.1), we begin with some general observations

about abstract linear processes. These observations not only apply to (1.1), but also to a large class

of linear nonautonomous delay-differential equations as well as to many other systems.

By a linear process (sometimes called a linear evolutionary process) U(t, τ) on a Banach

space X , we mean a family of bounded linear operators U(t, τ) ∈ L(X), for every t, τ ∈ R with t ≥ τ ,

for which

(1) U(τ, τ) = I for every τ ∈ R;

(2) U(t, σ)U(σ, τ) = U(t, τ) for every t, σ, τ ∈ R with t ≥ σ ≥ τ ; and

(3) U(t, τ) is strongly continuous in t and τ , that is, for every x ∈ X it is the case that U(t, τ)x

varies continuously in X as a function of t and τ , for t ≥ τ .

It is easy to check, using the uniform boundedness principle, that there is a bound ‖U(t, τ)‖ ≤ K in

the neighborhood of any point (t0, τ0) in the domain of U(·, ·), where such K depends on (t0, τ0).

Now fix an integer m ≥ 1 and consider the m-fold tensor product X⊗m. For every k satisfying

1 ≤ k ≤ m, and with t and τ as before, we may define an operator Uk(t, τ) ∈ L(X⊗m) by (uk)

Uk(t, τ) = I ⊗ · · · ⊗ I ⊗ U(t, τ)⊗ I ⊗ · · · ⊗ I, (3.1)
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where the factor U(t, τ) occurs in the kth place. It is easily checked that Uk(t, τ) is a linear process

on X⊗n. Also, one has from (2.4) that (08)

Uk(t, τ)Uj(t
′, τ ′) = Uj(t

′, τ ′)Uk(t, τ) (3.2)

for any real numbers t ≥ τ and t′ ≥ τ ′, with j 6= k in the range 1 ≤ j, k ≤ m. Next define the operator

U(t, τ) ∈ L(X⊗m) for t ≥ τ by (bigu)

U(t, τ) = U(t, τ)⊗m = U1(t, τ)U2(t, τ) · · ·Um(t, τ), (3.3)

where it does not matter in what order the above product is taken due to the commutativity (3.2).

Again, U(t, τ) is a linear process on X⊗m. It is also clear that the subspace X∧m ⊆ X⊗m is invariant

under U(t, τ), and we shall denote by (bigw)

W(t, τ) = U(t, τ)∧m = U(t, τ)|X∧m (3.4)

the restriction of this linear process to X∧m. Certainly, W(t, τ) ∈ L(X∧m) is itself a linear process

on the space X∧m.

It often happens that a linear process U(t, τ) is periodic, meaning that there exists some γ > 0

such that

U(t+ γ, τ + γ) = U(t, τ)

for every t and τ with t ≥ τ . In this case, for each τ ∈ R we define

M(τ) = U(τ + γ, τ),

the so-called monodromy operator with initial time τ , and we note that M(τ + γ) = M(τ). We

refer to the nonzero spectrum of M(τ) as the Floquet spectrum of the linear process, and we call

the set of nonzero elements in the point spectrum of M(τ) the set of Floquet multipliers. Let us

observe that the Floquet spectrum does not depend on the initial time τ , that is, spec(M(τ)) \ {0} =

spec(M(τ ′)) \ {0} for every τ, τ ′ ∈ R. To prove this, without loss we may take τ ′ = 0 and let τ lie in

the range 0 < τ < γ. With τ so fixed, we have that (decomp)

M(0) = AB, M(τ) = BA, where A = U(γ, τ), B = U(τ, 0), (3.5)

and we must show that spec(AB) \ {0} = spec(BA) \ {0}. In fact, this is a well-known result for any

pair of operators, whose proof we sketch. Taking any λ ∈ C \ {0} satisfying λ 6∈ spec(AB), one easily
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checks by multiplication that the operator λ−1I +λ−1B(λI −AB)−1A is the inverse of λI −BA, and

so λ 6∈ spec(BA). Thus spec(AB)\{0} ⊇ spec(BA)\{0}, with the opposite inclusion proved similarly.

It is also the case that the nonzero point spectra of AB and BA are the same, and so the set of

Floquet multipliers is independent of the initial time. Indeed, if λ 6= 0 is in the point spectrum of

M(0) then ABx = λx 6= 0 for some x ∈ X . Letting y = Bx 6= 0, we thus have that M(τ)y = BAy =

BABx = λBx = λy 6= 0, and so λ is in the point spectrum of M(τ).

It is easily seen from (3.5) that if for some τ ′ ∈ R and some n ≥ 1 the operator M(τ ′)n is compact,

then for every τ ∈ R the operator M(τ)n+1 is compact. In this case the remarks above imply that the

Floquet spectrum consists entirely of Floquet multipliers. This will indeed be the case in our studies

of delay-differential equations below.

Remark. The above observations in connection with compound (exterior product) systems have great

relevance for the stability of periodic solutions of nonlinear systems. For example, in the case of an

autonomous ODE, say (nonl)

ẋ = f(x), x ∈ Rn, (3.6)

suppose that x = ξ(t) is a nonconstant periodic solution of minimal period γ > 0. Consider the

associated linearized system ẏ = A(t)y where A(t) = f ′(ξ(t)), with U(t, τ) the associated fundamental

solution with U(τ, τ) = I . Let the Floquet multipliers (the characteristic multipliers) be ordered so

that |λ1| ≥ |λ2| ≥ · · · ≥ |λn| with repetitions according to algebraic multiplicities and recall that

λk = 1 for some k, the so-called trivial multiplier. Then the periodic solution ξ(t) is exponentially

asymptotically stable for the nonlinear system (3.6) if and only if (exst)

λ1 = 1 > |λ2|. (3.7)

Further, consider the compound linear process W(t, τ) = U(t, τ)∧2 = U(t, τ) ∧ U(t, τ), which acts

on the space Rn ∧ Rn of dimension
(
n
2

)
= 1

2n(n − 1) and whose Floquet multipliers are precisely

the quantities µ = λiλj for 1 ≤ i < j ≤ n. Then |µ| < 1 for every such µ if and only if (3.7)

holds, that is, if and only if ξ(t) is exponentially asymptotically stable. REFERENCES TO MUL-

DOWNEY/WANG?

The appropriate generalizations of this conclusion hold for a wide variety of infinite dimensional

systems, including a large class of retarded functional differential equations ẋ(t) = f(xt), not limited

to a single delay. (Here we follow the notation as in [2].)



OCTOBER 24, 2010 21

4 Tensor Products of Delay-Differential Equations

Consider the linear scalar delay-differential equation (1.1) which we write here (0)

ẏ(t) = −α(t)y(t) − β(t)y(t− 1) (4.1)

using the variable y. The change of variables (cov)

x = µ(t)y, µ(t) = exp

(∫ t

0
α(s) ds

)
, (4.2)

transforms (4.1) into the equivalent equation (1)

ẋ(t) = −b(t)x(t− 1), (4.3)

where

b(t) =
µ(t)β(t)

µ(t− 1)
= β(t) exp

(∫ t

t−1
α(s) ds

)
.

Note that β(t) and b(t) have the same sign for every t.

As a standing hypothesis, throughout this section AND THE NEXT (WHERE SOME OF

THE RESULTS OF THE PRESENT SECTION ARE PROVED) we shall always assume

that α, β : R → R and b : R → R are locally integrable functions. (Actually, it will be enough only

to assume these properties on the interval [τ, τ + η] considered in our results.)

Generally, we shall work with the simpler equation (4.3) and interpret our results back for equa-

tion (4.1). Both equations (4.1) and (4.3) generate linear processes, which we denote by Û(t, τ) and

U(t, τ), respectively, on the Banach space

X = C([−1, 0]),

where we keep this notation for the remainder of the paper. In particular, U(t, τ) ∈ L(X) for any

t, τ ∈ R with t ≥ τ denotes the associated solution operator on X to equation (4.3) defined as

U(t, τ)ϕ = xt.

Here x(t) satisfies (4.3) for t ≥ τ , with xt ∈ X defined in the usual fashion [2] by xt(θ) = x(t + θ)

for θ ∈ [−1, 0], and where we take the initial condition xτ = ϕ ∈ X , that is, x(τ + θ) = ϕ(θ) for

θ ∈ [−1, 0]. Similarly, Û(t, τ) denotes the analogous solution operator for equation (4.1), and one sees

the relation (conj)
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Û(t, τ) = Σ(t)−1U(t, τ)Σ(τ) (4.4)

between these two processes, where Σ(t) ∈ L(X) is defined to be the multiplication operator

[Σ(t)ϕ](θ) = µ(t+ θ)ϕ(θ), θ ∈ [−1, 0],

for any t ∈ R. Writing t = τ + η, we see that if 0 ≤ η ≤ 1 then we have the explicit formula (m1)

[U(τ + η, τ)ϕ](θ) =





ϕ(η+ θ), for −1 ≤ θ ≤ −η,

ϕ(0)−

∫ η+θ

0
b(τ + s)ϕ(s− 1) ds, for −η ≤ θ ≤ 0.

(4.5)

Now fix an integer m ≥ 1 and recall the identification

X⊗m = C([−1, 0]m)

of the m-fold tensor product as described above in Section 2. Generally, we shall denote the argument

of a function in X⊗m by θ = (θ1, θ2, . . . , θm) ∈ [−1, 0]m. Also recall the operators Uk(t, τ) in (3.1),

which for 1 ≤ k ≤ m are linear processes on X⊗m. From remarks at the end of Section 2, we have that

Uk(t, τ) is simply the solution operator to equation (4.3) taken along the kth coordinate in [−1, 0]m,

with the remaining m − 1 coordinates staying fixed. To see this more concretely, fix k and for any

θ = (θ1, θ2, . . . , θm) ∈ [−1, 0]m let

θ̃ = (θ1, . . . , θk−1, θk+1, . . . , θm) ∈ [−1, 0]m−1,

which is θ with the kth coordinate removed. Then regarding θ̃ as a fixed parameter, consider ϕ(θ) as a

function of θk alone and take this function as the initial condition for equation (4.3) at initial time τ .

Denoting the resulting solution by x(t, θ̃) for t ≥ τ , we have that

[Uk(t, τ)ϕ](θ) = x(t+ θk, θ̃).

If 0 ≤ η ≤ 1 then we also have the explicit formula (11)

[Uk(τ + η, τ)ϕ](θ) =





ϕ(η + θk, θ̃), for −1 ≤ θk ≤ −η,

ϕ(0, θ̃) −

∫ η+θk

0
b(τ + s)ϕ(s− 1, θ̃) ds, for −η ≤ θk ≤ 0,

(4.6)

following (4.5), where we slightly abuse notation by writing ϕ(θk, θ̃) for ϕ(θ).



OCTOBER 24, 2010 23

Recall also the operator U(t, τ) ∈ L(X⊗m) as in (3.3), and its restriction W(t, τ) ∈ L(X∧m) to

the invariant subspace X∧m ⊆ X⊗m as in (3.4), which give linear processes in their respective spaces.

Concerning the space X∧m, note that if ϕ ∈ X∧m then the anti-symmetry property (2.45) implies that

the values of ϕ(θ) for θ ∈ [−1, 0]m are completely determined by the values for which θ ∈ Tm, where (tri)

Tm = {θ = (θ1, θ2, . . . , θm) ∈ [−1, 0]m | θ1 ≤ θ2 ≤ · · · ≤ θm}. (4.7)

Our main interest will be positivity properties of the operator W(t, τ) on X∧m, and to this end we

define the set (km)

Km = {ϕ ∈ X∧m | ϕ(θ) ≥ 0 for every θ ∈ Tm}, (4.8)

which is a closed, convex cone in the space X∧m. Indeed, Km is a so-called reproducing cone for

X∧m, meaning that every element of X∧m can be written as the difference of two element of Km.

With respect to the cone Km and to equation (4.3), we shall prove the following theorem, which

is one of our main results.

Theorem 4.1 (Positivity Theorem). Fix m ≥ 1, and let τ ∈ R and η ≥ 0. Assume that

(−1)mb(t) ≥ 0 for almost every t ∈ [τ, τ + η] for the coefficient function in equation (4.3). Then the

operator W(τ + η, τ) ∈ L(X∧m) defined in (3.4) is a positive operator with respect to the cone Km

in (4.8), that is, W(τ + η, τ) maps Km into itself.

The corresponding result for equation (4.1) holds, where one assumes that (−1)mβ(t) ≥ 0 for

almost every t ∈ [τ, τ + η].

The above Positivity Theorem for equation (4.3) is a straightforward consequence of the following

result, Proposition 4.2, which provides more detailed information. The Positivity Theorem for equa-

tion (4.1) then follows using the conjugacy (4.4) and the fact that Σ(t)∧m and its inverse [Σ(t)∧m]−1

are positive operators on X∧m with respect to the cone Km. MENTION RESULTS ARE NEW

EVEN FOR CONSTANT COEFFICIENTS.

In the following result and below, we denote (brho)

bρ(s) = b(ρ+ s) (4.9)

for ease of notation. The superscript notation here is formally distinguished from the subscript notation

xt(θ) = x(t+ θ) used earlier wherein the argument θ was restricted to the interval θ ∈ [−1, 0] and xt
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was regarded as an element of C([−1, 0]). No restriction is imposed upon the argument s of bρ(s), and

bρ(·) is not viewed as an element of any particular space, but merely as a shorthand notation.

Proposition 4.2. Fix m ≥ 1, and let τ ∈ R and 0 < η ≤ 1. Fix any θ = (θ1, θ2, . . . , θm) ∈ Tm where

Tm is as in (4.7), and let a be any integer satisfying (thet)

θa ≤ −η ≤ θa+1, (4.10)

where a = 0 is allowed in case −η ≤ θ1, and a = m is allowed in case θm ≤ −η. Then for every

ϕ ∈ X∧m we have that (uform)

[W(τ + η, τ)ϕ](θ) = (−1)am

∫ η+θa+2−1

η+θa+1−1
· · ·

∫ η+θm−1

η+θm−1−1
bτ+1(t1) · · ·b

τ+1(tm−a−1)

× ϕ(t1, . . . , tm−a−1, η + θ1, . . . , η + θa, 0) dtm−a−1 · · ·dt1

+(−1)(a+1)m

∫ η+θa+1−1

−1

∫ η+θa+2−1

η+θa+1−1
· · ·

∫ η+θm−1

η+θm−1−1
bτ+1(t1) · · ·b

τ+1(tm−a)

× ϕ(t1, . . . , tm−a, η + θ1, . . . , η + θa) dtm−a · · ·dt1,

(4.11)

if 0 ≤ a ≤ m−2, where the terms η+ θj in the arguments of ϕ are absent if a = 0. If a = m−1 then (uformx)

[W(τ + η, τ)ϕ](θ) = ϕ(η + θ1, . . . , η + θm−1, 0)

+(−1)m

∫ η+θm−1

−1

bτ+1(t1)ϕ(t1, η + θ1, . . . , η + θm−1) dt1,

(4.12)

while (uformz)

[W(τ + η, τ)ϕ](θ) = ϕ(η + θ1, . . . , η + θm) (4.13)

if a = m.

Remark. The integer a in the statement of Proposition 4.2 need not be unique; indeed, this is the

case if θk = −η for some k, where either a = k− 1 or a = k could be taken. Indeed, if a is not unique

then any value permitted by the statement of the proposition may be taken. In any case, 0 ≤ a ≤ m

must hold.

Before proving Theorem 4.1 and Proposition 4.2, we believe it is instructive to verify them in the
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simplest nontrivial case of m = 2 and η = 1. First, by equation (4.6) we have that

[U1(τ + 1, τ)ϕ](θ) = ϕ(0, θ2) −

∫ 1+θ1

0
b(τ + s)ϕ(s− 1, θ2) ds,

[U2(τ + 1, τ)ϕ](θ) = ϕ(θ1, 0)−

∫ 1+θ2

0
b(τ + s)ϕ(θ1, s− 1) ds,

for every ϕ ∈ X⊗2 = C([−1, 0]2), where θ = (θ1, θ2) ∈ [−1, 0]2. We next compose these two formulas

as in (3.3), substituting the second into the first. Denoting ψ(θ) = [U2(τ + 1, τ)ϕ](θ), we have that (u2)

[U(τ + 1, τ)ϕ](θ) = ψ(0, θ2) −

∫ 1+θ1

0
b(τ + s)ψ(s− 1, θ2) ds

= ϕ(0, 0)−

∫ 1+θ2

0

b(τ + s)ϕ(0, s− 1) ds−

∫ 1+θ1

0

b(τ + s)ψ(s− 1, θ2) ds

= ϕ(0, 0)−

∫ 1+θ2

0
b(τ + s)ϕ(0, s− 1) ds

−

∫ 1+θ1

0
b(τ + s)

(
ϕ(s− 1, 0)−

∫ 1+θ2

0
b(τ + r)ϕ(s− 1, r− 1) dr

)
ds

= ϕ(0, 0)−

∫ 1+θ2

0
b(τ + s)ϕ(0, s− 1) ds−

∫ 1+θ1

0
b(τ + s)ϕ(s− 1, 0) ds

+

∫ 1+θ1

0

∫ 1+θ2

0
b(τ + s)b(τ + r)ϕ(s− 1, r− 1) dr ds.

(4.14)

The formula occurring after the final equal sign in (4.14) simplifies in the anti-symmetric case ϕ ∈ X∧2,

that is, where ϕ(θ1, θ2) ≡ −ϕ(θ2, θ1) holds identically. For such ϕ we have that ϕ(0, 0) = 0. Moreover,

we have that

−

∫ 1+θ2

0

b(τ + s)ϕ(0, s− 1) ds−

∫ 1+θ1

0

b(τ + s)ϕ(s− 1, 0) ds =

∫ 1+θ2

1+θ1

b(τ + s)ϕ(s− 1, 0) ds,
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and also that
∫ 1+θ1

0

∫ 1+θ2

0

b(τ + s)b(τ + r)ϕ(s− 1, r− 1) dr ds

=

∫ 1+θ1

0

∫ 1+θ1

0
b(τ + s)b(τ + r)ϕ(s− 1, r− 1) dr ds

+

∫ 1+θ1

0

∫ 1+θ2

1+θ1

b(τ + s)b(τ + r)ϕ(s− 1, r− 1) dr ds

=

∫ 1+θ1

0

∫ 1+θ2

1+θ1

b(τ + s)b(τ + r)ϕ(s− 1, r− 1) dr ds,

where the integral taken over the square [0, 1 + θ1]
2 vanishes on account of the anti-symmetry. With

this we obtain from (4.14) that (uu2)

[W(τ + 1, τ)ϕ](θ) =

∫ 1+θ2

1+θ1

b(τ + s)ϕ(s− 1, 0) ds

+

∫ 1+θ1

0

∫ 1+θ2

1+θ1

b(τ + s)b(τ + r)ϕ(s− 1, r− 1) dr ds,

(4.15)

and one sees this formula coincides with (4.11), where a = 0 is taken. It follows directly from

equation (4.15) that W(τ + 1, τ) is a positive operator with respect to the cone K2 provided that

(−1)mb(t) = b(t) ≥ 0 in [τ, τ + 1]. To see this, first let θ ∈ T2, that is, −1 ≤ θ1 ≤ θ2 ≤ 0. Then

taking ϕ ∈ K2, one notes for the first term in (4.15) that s − 1 ≤ θ2 ≤ 0, thus (s − 1, 0) ∈ T2 and

so ϕ(s − 1, 0) ≥ 0. Similarly, for the second term in (4.15) we have that s − 1 ≤ θ1 ≤ r − 1, thus

(s − 1, r − 1) ∈ T2 and ϕ(s− 1, r − 1) ≥ 0. It follows that the expression in (4.15) is nonnegative, so

W(τ + 1, τ)ϕ ∈ K2, as desired.

We end this section by describing several properties of the above linear processes. The first is a

well-known compactness property of U(τ + η, τ) and Û(τ + η, τ) for η > 0. Its significance is that in

the case of a periodic process, some power of the monodromy operator is compact, and so the Floquet

spectrum consists entirely of Floquet multipliers, and these are isolated values λ ∈ C \ {0} of finite

multiplicity which can only cluster at λ = 0.

Proposition 4.3. If η ≥ 1 then the solution operator U(τ +η, τ) for equation (4.3) is compact. More

generally, if η ≥ 1
n

for some n ≥ 1 then the nth power U(τ + η, τ)n is compact. The same conclusions

hold for the solution operator Û(t+ η, τ) for equation (4.1).
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Proof. For simplicity we consider only the operator U(τ + η, τ). The operator U(τ + 1, τ) is easily

seen from (4.5) to be compact, being the sum of the rank-one operator ϕ(0) and an integral operator,

and thus if η ≥ 1 then the operator U(τ + η, τ) = U(τ + η− 1, τ + 1)U(τ + 1, τ) is also compact. Now

suppose that η ≥ 1
n

for some n ≥ 1. Define a new function b̃(t) by setting b̃(t) = b(t) for τ ≤ t < τ +η,

and extending it periodically so that b̃(t+ η) = b̃(t) for every t ∈ R. Let Ũ(τ̃ + η̃, τ̃) denote the linear

process associated to equation (4.3) but with b̃(t) replacing b(t), where τ̃ ∈ R and η̃ ≥ 0 are general

arguments. Note that Ũ(τ+η, τ) = U(τ+η, τ) for our specific τ and η, as these operators only involve

the range where b̃(t) and b(t) agree. Also note that Ũ(τ̃ + η̃+η, τ̃ +η) = Ũ(τ̃ + η̃, τ̃) for every τ̃ and η̃,

due to the η-periodicity of b̃(t). From this it follows that U(τ + η, τ)n = Ũ(τ + η, τ)n = Ũ(τ + nη, τ),

which is a compact operator by our earlier remarks as nη ≥ 1.

The next result concerns one-to-oneness of the above linear processes.

Proposition 4.4. Assume, for some τ ∈ R and η > 0, that b(t) 6= 0 for almost every t ∈ [τ, τ + η]

for the coefficient in equation (4.3). Let m ≥ 1. Then the operators U(τ + η, τ) ∈ L(X⊗m) and thus

W(τ + η, τ) ∈ L(X∧m) are one-to-one. The corresponding results also hold for equation (4.1), where

we assume that β(t) 6= 0 for almost every t ∈ [τ, τ + η].

Proof. By Proposition 2.5 it is enough to show that U(τ + η, τ) ∈ L(X) is one-to-one. Also, we may

assume without loss that 0 < η ≤ 1 due to the fact that U(t, τ) is a linear process. Assume for such η

that U(τ + η, τ)ϕ = 0 for some ϕ ∈ X . Then from (4.5) we have that ϕ(θ) = 0 for every θ ∈ [η− 1, 0]

and that ∫ θ

0

b(τ + s)ϕ(s− 1) ds = 0 for every θ ∈ [0, η].

Differentiating the above integral shows that b(τ + s)ϕ(s− 1) = 0 for almost every s ∈ [0, η], and as

b(τ + s) 6= 0 for almost every such s, we conclude that ϕ(s− 1) = 0 for s ∈ [0, η]. Thus ϕ(θ) = 0 for

every θ ∈ [−1, 0], and this gives the result.

5 Positivity and Floquet Theory

In this section we describe some basic consequences of the Positivity Theorem in the context of Floquet

theory. If the coefficients in equation (4.1) are γ-periodic for some γ > 0, that is (gper)

α(t+ γ) = α(t), β(t+ γ) = β(t), (5.1)
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for almost every t, recall the monodromy operator M̂(0) = Û(γ, 0) where Û(t, τ) denotes the linear

process onX = C([−1, 0]) associated to equation (4.1). As some power of M̂(0) is compact, the Floquet

spectrum spec(M̂(0))\{0} consists entirely of point spectrum (Floquet multipliers), of which there are

at most countably many, and each of finite multiplicity. Our main result of this section, Theorem 5.1

below, provides additional structure to the the Floquet multipliers and their associated eigenfunctions

in the case that the feedback coefficient β(t) is of constant sign. These results supplement results of

Sell and one of the authors [5] which provided partial information on the multipliers.

Theorem 5.1. Consider equation (4.1) where α : R → R and β : R → R are locally integrable and

γ-periodic for some γ > 0, and so satisfy (5.1) for almost every t. Also assume that

(−1)mβ(t) ≥ (−1)mβ0 > 0

for almost every t, for some integer m and some β0 6= 0. Then there are countably infinitely many

Floquet multipliers {λk}
∞
k=1, that is, spectra of the monodromy operator. Further, if the multipliers

are labelled so that (mults)

|λ1| ≥ |λ2| ≥ |λ3| ≥ · · · , (5.2)

with repetitions according to algebraic multiplicity, then it is the case that the strict inequality

|λk| > |λk+1|

holds whenever k −m is even.

We shall prove Theorem 5.1 below, although we defer the proof of the Positivity Theorem (The-

orem 4.1) and also Proposition 4.2, on which the proof of Theorem 5.1 relies, to the next section.

Before presenting the proof of Theorem 5.1, we need to develop several concepts.

Suppose Y is a Banach space and K ⊆ Y is a closed, convex cone, that is, K is closed, convex

set such that if u ∈ K then σu ∈ K for every σ ≥ 0, and such that if both u,−u ∈ K then u = 0.

We say the cone K is total if the set {u − v | u, v ∈ K} is dense in Y . Also, if AL(Y ) then we say

the operator A is positive if it maps K into K, that is, Au ∈ K whenever u ∈ K, and we write

A ≥ 0. The following basic result will be needed. PUT DISCUSSION OF CONES EARLIER

IN PAPER?
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Proposition 5.2. Let Y be a Banach space and K ⊆ Y a total cone. Suppose A,B ∈ L(Y ) satisfy

B ≥ A ≥ 0, that is, A ≥ 0 and B − A ≥ 0. Then

r(A) ≤ r(B)

for the spectral radii of these operators.

Proof of Theorem 5.1. Without loss we prove the result only for the simpler equation (4.3), where

we assume that b : R → R is locally integrable, γ-periodic, and enjoys the bound

(−1)mb(t) ≥ (−1)mb0 > 0

for some b0 6= 0. The proof for the full equation (4.1) follows straightforwardly via the change of

variables (4.2) as described in the previous section.

Let U(t, τ) denote the linear process on X = C([−1, 0]) associated to equation (4.3), and let U0(t)

denote the semiflow on X associated to the autonomous linear equation (cc)

ẋ(t) = −b0x(t− 1). (5.3)

We let M = M(0) = U(γ, 0) denote the monodromy operator associated to equation (4.3). We denote

the characteristic multipliers of this equation, that is, the nonzero spectra of M , by {λk}
∞
k=1 ordered

so that (5.2) holds. In case there are only finitely many such multipliers, say k0 of them, we write

λk = 0 for k > k0.

We observe directly from Proposition 4.2, and in particular the formulas (4.11), (4.12), and (4.13),

that U(t, τ)∧m ≥ U0(t− τ)∧m whenever t ≥ τ , and thus

M∧m ≥ U0(γ)∧m,

where the relation ≥ is taken with respect to the cone Km given by (4.8). NEED TO EXPLAIN

THIS. MAY OVERLAP WITH PROOF OF POSITIVITY THEOREM 4.1 IN NEXT

SECTION. As the cone Km is total (in fact, reproducing), it follows from Proposition 5.2 that

r(M∧m) ≥ r(U0(γ)∧m).

The nonzero spectrum of U0(t) consists of the points eζt where ζ satisfies the characteristic equation

ζ = −b0e
−ζ of equation (5.3). Let the roots of the characteristic equation (of which there are countably

many, with real parts bounded above) be ordered so that

Re ζ1 ≥ Re ζ2 ≥ Re ζ3 ≥ · · · ,
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with repetitions according to multiplicity. Denote λ0,k = eζkγ , and so |λ0,k| = eRe ζkγ . Then

r(M∧m) = |λ1λ2 · · ·λm|, r(U0(γ)) = |λ0,1λ0,2 · · ·λ0,m|,

and so (linq)

|λ1λ2 · · ·λm| ≥ |λ0,1λ0,2 · · ·λ0,m| > 0. (5.4)

In particular, λm 6= 0 and so equation (4.3) possesses at least m characteristic multipliers. But m can

be replaced with any integer of the same parity, and thus can be taken arbitrarily large. It follows

that equation (4.3) possesses countably infintely many characteristic multipliers, as claimed.

Remark. An examination of the above proof shows that a computable lower bound (albeit probably

not a sharp bound) can be found for the characteristic multipliers. We have |λk| ≤ r(M) for each k,

and with (5.4) this gives

|λm| ≥ r(M)−(m−1)|λ0,1λ0,2 · · ·λ0,m|,

at least if m has the parity for which (−1)mb(t) > 0. For indices of the opposite parity, say for m− 1,

the inequality |λm−1| ≥ |λm| provides the requisite bound.

STILL NEED TO PROVE GAP BETWEEN MULTIPLIERS.

6 The Proof of the Positivity Theorem

Here we prove Proposition 4.2 for general m, and from it we will obtain Theorem 4.1, the Positivity

Theorem, for general m. Our approach follows that of the special case with m = 2 and η = 1 above.

Namely, with η ≤ 1 in Proposition 4.2, we have an explicit expression (4.6) for each Uk(τ + η, τ), and

composing these expressions will provide an explicit formula for U(τ+η, τ)ϕ, for any ϕ ∈ X⊗m. Then,

assuming that ϕ ∈ X∧m, namely that ϕ is anti-symmetric, we will observe significant cancellations in

this formula, and this will yield a much simpler formula for W(τ + η, τ)ϕ.

Proof of Proposition 4.2. Fix m, τ , η, and b(t), as in the statement of the proposition. Define

operators Zk, Bk ∈ L(X⊗m) for 1 ≤ k ≤ m by

(Zkψ)(θ) = ψ(θ1, . . . , θk−1, ω(θk), θk+1, . . . , θm),

(Bkψ)(θ) =

∫ Ω(θk)

−1
bτ+1(s)ψ(θ1, . . . , θk−1, s, θk+1, . . . , θm) ds,
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where we denote

ω(s) = min{η + s, 0}, Ω(s) = max{η + s, 0} − 1,

and we recall the notation (4.9). Then from (4.6) one sees that

Uk(τ + η, τ) = Zk − Bk,

and so (bigu2)

U(τ + η, τ) = (Z1 − B1)(Z2 −B2) · · · (Zm −Bm) (6.1)

by equation (3.3). Next observe the commutativity properties (com)

ZjZk = ZkZj , BjBk = BkBj , ZjBk = BkZj, provided j 6= k. (6.2)

Concerning symmetries, let us define the swap operators Sj,k ∈ L(X⊗m) for 1 ≤ j, k ≤ m by (swap)

(Sj,kψ)(θ) = ψ(θ), θi =





θk, if i = j,

θj, if i = k,

θi, if i 6= j and i 6= k.

(6.3)

Note that Sj,k = Sσj,k
in the notation (2.16), where σj,k ∈ Sm is the permutation satisfying σj,k(j) = k

and σj,k(k) = j, with σj,k(i) = i if i 6= j and i 6= k. We write Sj,k rather than Sσj,k
for simplicity of

notation. Each Sj,k is an isometry on the space X⊗m, and of course Sj,k = Sk,j = S−1
j,k . One easily

checks that (inter)
Sj,kZk = ZjSj,k, Sj,kBk = BjSj,k,

Sj,kZi = ZiSj,k, Sj,kBi = BiSj,k,

in the last two cases provided i 6= j and i 6= k.

(6.4)

Let us note that Sj,kU(τ + η, τ) = U(τ + η, τ)Sj,k by (6.2) and (6.4), and so the space X∧m of anti-

symmetric functions is invariant under the operator U(τ + η, τ). However, also note that X∧m is not

in general invariant under either of the operators Zk or Bk.

Fix ϕ ∈ X∧m and let the right-hand side of (6.1) be expanded and act on ϕ. We obtain a sum of

all terms of the form (cprod)

±C1C2 · · ·Cmϕ, Ck = Zk or Bk, (6.5)

where the sign ± is (−1)i, where i is the number of Bk appearing in the product (6.5). Now fix θ ∈ Tm,

along with the integer a satisfying (4.10) as in the statement of the proposition. Both θ and a will
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stay fixed for the remainder of this proof. Here we make two crucial observations. First, suppose that

Ck = Bk for some k satisfying 1 ≤ k ≤ a. Note that Ω(θk) = −1 and thus (Bkψ)(θ) = 0 for every

ψ ∈ X⊗m, for our chosen θ. (We are not claiming that Bkψ is the zero function, however, but simply

that it vanishes at this particular θ.) In particular, taking ψ = C1 · · ·Ck−1ĈkCk+1 · · ·Cmϕ where

the hat ̂ indicates the term is omitted, and using the commutativity properties (6.2), we have that

C1C2 · · ·Cmϕ = Bkψ and thus (czer)

(C1C2 · · ·Cmϕ)(θ) = 0. (6.6)

Secondly, suppose that Ck1
= Zk1

and Ck2
= Zk2

for two values k1, k2 satisfying a < k1 < k2 ≤ m.

Then ω(θk1
) = ω(θk2

) = 0 and so

(Zk1
Zk2

ψ)(θ) = ψ(θ1, . . . , θk1−1, 0, θk1+1, . . . , θk2−1, 0, θk2+1, . . . , θm)

for every ψ ∈ X⊗m. If it is further the case that ψ satisfies (k1k2)

Sk1,k2
ψ = −ψ (6.7)

identically as functions, then in fact (Zk1
Zk2

ψ)(θ) = 0. (Again, this is for our chosen θ, and there is

no claim that Zk1
Zk2

ψ is the zero function.) Taking

ψ = C1 · · ·Ck1−1Ĉk1
Ck1+1 · · ·Ck2−1Ĉk2

Ck2+1 · · ·Cmϕ

and recalling that ϕ ∈ X∧m, we see from the anti-symmetry of ϕ and the properties (6.4) that (6.7)

holds. Thus C1C2 · · ·Cmϕ = Zk1
Zk2

ψ and again (6.6) holds.

Following the above two crucial observation, we see that only a few select terms survive in the

expansion of (6.1) when applied to ϕ ∈ X∧m and evaluated at our chosen θ. These are the terms as

in (6.5) for which Ck = Zk for every k satisfying 1 ≤ k ≤ a, and for which also Ck = Zk for at most

one k in the range a < k ≤ m. We conclude that for every ϕ ∈ X∧m, we have that (gam)

[W(τ + η, τ)ϕ](θ) = (−1)m−a[(Γ0ϕ)(θ)] + (−1)m−a+1
m−a∑

k=1

(Γkϕ)(θ), (6.8)

where (gammas)
Γ0 = Z1 · · ·ZaBa+1 · · ·Bm,

Γk = Z1 · · ·ZaBa+1 · · ·Ba+k−1Za+kBa+k+1 · · ·Bm,

(6.9)

for 1 ≤ k ≤ m − a. The signs (−1)m−a and (−1)m−a+1 occurring in the above formulas count the

number of Bj terms.
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(We remark on these formulas in the extreme cases a = 0 and a = m. If a = 0 then the factors

Z1 · · ·Za in (6.9) are simply absent. If a = m then the summation in (6.8) is empty, so no Γk are

defined. Also, if a = m then Γ0 = Z1 · · ·Zm. We leave the verification of these facts to the reader.)

We note a peculiarity of the formula (6.8), namely that the operators Γ0 and Γk depend on a,

which in turn depends on θ. Thus it is not the case, in general, that the operator W(τ + η, τ) is the

sum of the operators Γ0 and Γk with the indicated signs as in (6.8). Rather, equation (6.8) is only

valid pointwise for those θ which satisfy (4.10). We emphasize that for this reason, we work with a

fixed θ ∈ Tm.

Let us now evaluate the terms in (6.8). We first consider the term involving Γk with 1 ≤ k ≤ m−a.

As noted, the case a = m is vacuous. If a = m − 1, then k = 1 and Γ1 = Z1 · · ·Zm−1Zm, which

immediately gives (ma1)

(Γ1ϕ)(θ) = ϕ(η + θ1, . . . , η+ θm−1, 0), (6.10)

as we note that ω(θj) = η+θj for 1 ≤ j ≤ m−1 but ω(θm) = 0. Now let us assume that 0 ≤ a ≤ m−2.

We have, from the above formula (6.9) for Γk, and also from the formulas for Zk and Bk, that (gk)

(Γkϕ)(θ) =

∫ Ω(θa+1)

−1
· · ·

̂∫ Ω(θa+k)

−1
· · ·

∫ Ω(θm)

−1
bτ+1(s1) · · · ̂bτ+1(sk) · · · b

τ+1(sm−a)

× ϕ(η + θ1, . . . , η + θa, s1, . . . , sk−1, 0, sk+1, . . . , sm−a) dsm−a · · · d̂sk · · ·ds1,

(6.11)

where here again (and below) the hat ̂ denotes that the indicated expression is omitted, and where

we note that ω(θj) = η + θj for 1 ≤ j ≤ a but ω(θa+k) = 0. (If a = 0, then the terms η + θj in the

integral (6.11) are simply absent.) Next, by permuting the arguments of ϕ in (6.11) and using the

anti-symmetry of ϕ, we see that (perm)

ϕ(η + θ1, . . . , η + θa, s1, . . . , sk−1, 0, sk+1, . . . , sm−a)

= (−1)a+k+(a+1)mϕ(t1, . . . , tk−1, tk, . . . , tm−a−1, η + θ1, . . . , η + θa, 0),

where tj =





sj , for 1 ≤ j ≤ k − 1,

sj+1, for k ≤ j ≤ m− a− 1.

(6.12)

The explanation for the term (−1)a+k+(a+1)m, arising from the anti-symmetry of ϕ, is as follows. Each

term sj , for 1 ≤ j ≤ k − 1, is moved leftward a places by means of swaps with adjacent terms η + θi

for 1 ≤ i ≤ a. This is a total of a(k − 1) swaps of such terms. Each term sj , for k + 1 ≤ j ≤ m− a,
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is moved leftward a + 1 places by means of swaps with adjacent terms 0 and then η + θi. This is an

additional (a+ 1)(m− a− k) swaps. The total number of swaps is thus a(k− 1) + (a+ 1)(m− a− k),

and one sees easily that this number has the same parity as a+ k + (a+ 1)m.

Let us now introduce some notation which will simplify our calculations. We define a bounded

linear operator E ∈ L(X∧m, X∧(m−a−1)) by (q)

(Eψ)(t1, . . . , tm−a−1) = ψ(t1, . . . , tm−a−1, η + θ1, . . . , η + θa, 0). (6.13)

We also define operators I i
j, J

i
j ∈ L(X⊗(m−a−1)) by (iop)

(I i
jψ)(t1, . . . , tm−a−1) =

∫ Ω(θa+i)

Ω(θa+i−1)
bτ+1(s)ψ(t1, . . . , tj−1, s, tj+1, . . . , tm−a−1) ds,

(J i
jψ)(t1, . . . , tm−a−1) =

∫ Ω(θa+i)

−1
bτ+1(s)ψ(t1, . . . , tj−1, s, tj+1, . . . , tm−a−1) ds,

(6.14)

where 1 ≤ i ≤ m − a and 1 ≤ j ≤ m− a − 1, and where we note that Ω(θa) = −1. (If a = 0, then by

convention we set Ω(θ0) = −1.) Observe that (jdef)

J i
j = I1

j + I2
j + · · ·+ I i

j (6.15)

holds. With this notation, and upon inserting the formula (6.12) into (6.11), one sees that (6.11) takes

the form (jform)

(Γkϕ)(θ) = (−1)a+k+(a+1)mJ1
1J

2
2 · · ·Jk−1

k−1J
k+1
k · · ·Jm−a

m−a−1Eϕ. (6.16)

We remind the reader again, that θ has been fixed and does not serve as the argument of the functions

Eψ, I i
jψ, and J i

jψ above. Rather, these are functions of the variables (t1, . . . , tm−a−1). The functions

I i
jψ and J i

jψ, in particular, are constant in the variable tj , as the right-hand sides in (6.14) are

independent of tj . Thus the right-hand side of (6.16) is formally a function of (t1, . . . , tm−a−1), and

in fact is a constant function of those variables. That constant value is the value of the function Γkϕ

evaluated at the point θ.

The operators I i
j and J i

j act on the full tensor product, and not just the wedge product. That is,

no symmetry assumption is made on the argument function ψ ∈ X⊗(m−a−1) in (6.14). Observe that (asym)

Sj1,j2I
i
j = I i

jSj1,j2 , Sj1,j2J
i
j = J i

jSj1,j2 ,

in both cases provided j 6= j1 and j 6= j2.

(6.17)
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Thus if it is the case that ψ is anti-symmetric in tj1 and tj2 , meaning that Sj1,j2ψ = −ψ, then I i
jψ and

J i
jψ are also anti-symmetric in these variables as long as j 6= j1, j2.

It is easily seen that (zer2)

J i
j1
J i

j2
ψ = 0, J i

j1
J i+1

j2
ψ = J i

j1
I i+1
j2

ψ, J i
j1
J i+2

j2
ψ = J i

j1
(I i+1

j2
+ I i+2

j2
)ψ,

in every case provided j1 6= j2 and Sj1,j2ψ = −ψ.

(6.18)

Indeed, the first equation in (6.18) holds as it is simply the integral over the square [−1,Ω(θa+i)]
2 of

an anti-symmetric function of (tj1 , tj2). The second and third equations in (6.18) follow from the first

equation because J i+1
j = J i

j + I i+1
j and J i+2

j = J i
j + I i+1

j + I i+2
j .

We now use the identities (6.18) to obtain a simplification of equation (6.16) when the function ϕ

is anti-symmetric. We begin with the rightmost pair of J-operators in (6.16), namely Jm−a−1
m−a−2J

m−a
m−a−1

and move to the left. The result is that each factor J i+1
i is replaced with I i+1

i , and each J i
i is replaced

with I i
i , except for the factor Jk+1

k which is replaced with Ik
k + Ik+1

k . At each stage we observe,

using (6.17), that the relevant function is anti-symmetric in the appropriate variables, as required

by (6.18). Finally noting that J1
1 = I1

1 , we conclude directly that (iform)

(Γkϕ)(θ) = (−1)a+k+(a+1)mI1
1 I

2
2 · · · I

k−1
k−1 (Ik

k + Ik+1
k )Ik+2

k+1 · · · I
m−a
m−a−1Eϕ. (6.19)

The reader can verify that the formula (6.19) degenerates in the extreme cases of the indices, as

follows. If m− a ≥ 4 then

(Γ1ϕ)(θ) = (−1)a+1+(a+1)m(I1
1 + I2

1 )I3
2 · · · I

m−a
m−a−1Eϕ,

(Γ2ϕ)(θ) = (−1)a+2+(a+1)mI1
1 (I2

2 + I3
2 )I4

3 · · ·I
m−a
m−a−1Eϕ,

(Γm−a−1ϕ)(θ) = (−1)m−1+(a+1)mI1
1I

2
2 · · ·I

m−a−2
m−a−2 (Im−a−1

m−a−1 + Im−a
m−a−1)Eϕ,

(Γm−aϕ)(θ) = (−1)m+(a+1)mI1
1I

2
2 · · ·I

m−a−1
m−a−1Eϕ.

If m− a = 3 then we have

(Γ1ϕ)(θ) = (−1)a+1+(a+1)m(I1
1 + I2

1 )I3
2Eϕ,

(Γ2ϕ)(θ) = (−1)a+2+(a+1)mI1
1 (I2

2 + I3
2 )Eϕ,

(Γ3ϕ)(θ) = (−1)a+3+(a+1)mI1
1I

2
2Eϕ,
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while if m− a = 2 then we have

(Γ1ϕ)(θ) = (−1)a+1+(a+1)m(I1
1 + I2

1 )Eϕ,

(Γ2ϕ)(θ) = (−1)a+2+(a+1)mI1
1Eϕ.

These formulas follow easily from (6.16) using the identities (6.18). Now define the operators

R1 = I2
1 I

3
2 · · · I

m−a
m−a−1,

Rk = I1
1 · · ·I

k−1
k−1 I

k+1
k · · ·Im−a

m−a−1, 2 ≤ k ≤ m− a− 1,

Rm−a = I1
1I

2
2 · · · I

m−a−1
m−a−1 ,

Rm−a+1 = 0.

Then (6.19) can be rewritten as (rform)

(Γkϕ)(θ) = (−1)a+k+(a+1)m(Rk+1 +Rk)Eϕ, (6.20)

and we see that the formula is valid for all values 1 ≤ k ≤ m−a with m−a ≥ 2, including the extreme

cases above. It follows immediately that the summation in (6.8) telescopes to give (gammak)

(−1)a+1+(a+1)m
m−a∑

k=1

(Γkϕ)(θ) = R1Eϕ

=

∫ Ω(θa+2)

Ω(θa+1)
· · ·

∫ Ω(θm)

Ω(θm−1)
bτ+1(t1) · · ·b

τ+1(tm−a−1)[(Eϕ)(t1, . . . , tm−a−1)] dtm−a−1 · · ·dt1.

(6.21)

Upon multiplying the above formula by (−1)am and noting that (−1)am(−1)a+1+(a+1)m = (−1)m−a+1,

we obtain (x1)

(−1)m−a+1
m−a∑

k=1

(Γkϕ)(θ) = (−1)am

∫ η+θa+2−1

η+θa+1−1
· · ·

∫ η+θm−1

η+θm−1−1
bτ+1(t1) · · ·b

τ+1(tm−a−1)

× ϕ(t1, . . . , tm−a−1, η+ θ1, . . . , η+ θa, 0) dtm−a−1 · · ·dt1,

(6.22)

where the formula (6.13) for E is used along with the fact that Ω(θj) = η + θj − 1 for a+ 1 ≤ j ≤ m.

The calculation of (Γ0ϕ)(θ) is handled in a similar fashion, and in fact is slightly simpler. If a = m

then Γ0 = Z1Z2 · · ·Zm, and so (gzz)

(Γ0ϕ)(θ) = ϕ(η + θ1, . . . , η+ θm). (6.23)
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Let us therefore assume that 0 ≤ a ≤ m− 1. We have first that (gz)

(Γ0ϕ)(θ) =

∫ Ω(θa+1)

−1

· · ·

∫ Ω(θm)

−1

bτ+1(s1) · · ·b
τ+1(sm−a)

× ϕ(η+ θ1, . . . , η+ θa, s1, . . . , sm−a) dsm−a · · ·ds1,

(6.24)

and also, using the anti-symmetry of ϕ, that

ϕ(η + θ1, . . . , η + θa, s1, . . . , sm−a) = (−1)a(m−a)ϕ(s1, . . . , sm−a, η+ θ1, . . . , η+ θa).

Introducing the operator E0 ∈ L(X∧m, X∧(m−a)) given by (q0)

(E0ψ)(t1, t2, . . . , tm−a) = ψ(t1, . . . , tm−a, η + θ1, . . . , η + θa), (6.25)

we have from (6.24) that

(Γ0ϕ)(θ) = (−1)a(m−a)J1
1J

2
2 · · ·Jm−a

m−aE0ϕ.

Here the operators J i
j , and I i

j are as before, except they now operate on functions of m− a variables

rather than m− a− 1 variables. Using (6.17) and (6.18) as before, we obtain (gammaz)

(−1)a(m−a)[(Γ0ϕ)(θ)] = I1
1I

2
2 · · · I

m−a
m−aE0ϕ

=

∫ Ω(θa+1)

Ω(θa)
· · ·

∫ Ω(θm)

Ω(θm−1)
bτ+1(t1) · · ·b

τ+1(tm−a)[(E0ϕ)(t1, . . . , tm−a)] dtm−a · · ·dt1.

(6.26)

Upon multiplying the above formula by (−1)(a+1)m and noting that (−1)(a+1)m(−1)a(m−a) = (−1)m−a,

we obtain (x2)

(−1)m−a[(Γ0ϕ)(θ)] = (−1)(a+1)m

∫ η+θa+1−1

−1

∫ η+θa+2−1

η+θa+1−1
· · ·

∫ η+θm−1

η+θm−1−1
bτ+1(t1) · · ·b

τ+1(tm−a)

× ϕ(t1, . . . , tm−a, η+ θ1, . . . , η+ θa) dtm−a · · ·dt1,

(6.27)

where the formula (6.25) for E0 is used, and where we have that Ω(θa) = −1. Adding the two

equations (6.22) and (6.27) and using (6.8) gives (4.11), as desired, at least in the case that 0 ≤ a ≤

m−2. If a = m−1 then (6.22) must be replaced by (6.10) to give the desired formula (4.12). Finally,

if a = m then the term corresponding to (6.22) is absent, while (6.27) is given by (6.23) to give (4.13),

again as desired. With this, the proposition is proved.

We now prove the Positivity Theorem.
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Proof of Theorem 4.1. We prove the result only for equation (4.3). The corresponding result for

the more general equation (4.1) follows directly from the conjugacy (4.4) and the positivity of the

operators Σ(t)∧m and [Σ(t)∧m]−1.

Due to the fact that W(τ + η, τ) is a linear process, it is enough to prove the theorem in the case

that 0 < η ≤ 1. Taking such η, we assume that (−1)mb(t) ≥ 0 almost everywhere in [τ, τ + η]. With

ϕ ∈ Km ⊆ X∧m and θ ∈ Tm fixed, and with a as in the statement of Proposition 4.2, consider the

formulas (4.11), (4.12), and (4.13) in that result for [W(τ + η, τ)ϕ](θ). Note that

(t1, . . . , tm−a−1, η + θ1, . . . , η + θa, 0) ∈ Tm, (t1, . . . , tm−a, η+ θ1, . . . , η+ θa) ∈ Tm,

both hold for the arguments of ϕ in these formulas, in particular because η + θm − 1 ≤ η + θ1 and

η + θa ≤ 0. Therefore ϕ evaluated at these points is nonnegative. Thus if m is even, so b(t) ≥ 0,

it is immediate from these formulas that [W(τ + η, τ)ϕ](θ) ≥ 0. If m is odd, so b(t) ≤ 0, the same

conclusion holds after noting that (−1)am=(−1)m−a−1 and (−1)(a+1)m=(−1)m−a. In either case one

concludes that W(τ + η, τ)ϕ ∈ Km, as desired.

7 u0-Positivity

Here we consider the question of u0-positivity of the linear process W(t, τ) ∈ L(X∧m) under the

assumption that (−1)mb(t) ≥ 0 as in Theorem 4.1. We maintain the same notation as in the PRE-

VIOUS TWO SECTIONS, with X = C([−1, 0]) and the cone Km ⊆ X∧m given by (4.8), with

the set Tm ⊆ [−1, 0] given by (4.7), and where W(t, τ) ∈ L(X∧m) is the m-fold wedge product of

the linear process associated to the delay-differential equation (4.3). Corresponding questions for the

more general equation (4.1) are also addressed via the conjugacy (4.4), as before.

Generally, if Y is a Banach space and K ⊆ Y is a closed, convex cone, then we say two elements

u, v ∈ K \ {0} are comparable in case there exist quantities M2 ≥M1 > 0 such that

M1v ≤ u ≤M2v,

where ≤ denotes the ordering with respect to K. We denote this relation by

u ∼ v.

Clearly, ∼ is an equivalence relation on K. The following definition is classical.
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Definition. Suppose that A ∈ L(Y ) is a positive operator with respect to a closed, convex cone

K ⊆ Y in a Banach space Y , that is, Au ∈ K whenever u ∈ K. Let u0 ∈ K \ {0}. Then we say that

the operator A is u0-positive in case there exists an integer k0 ≥ 1 such that Aku ∼ u0 for every

u ∈ K \ {0} and every k ≥ k0.

In the case of a linear process, we make a related definition which accounts for continuous rather

than discrete time, with constants M1 and M2 which are uniform with respect to compact time-

intervals.

Definition. Suppose that U(t, τ) ∈ L(Y ), for t ≥ τ , is a linear process on a Banach space Y . Suppose

also that U(t, τ) is a positive operator with respect to a closed, convex cone K ⊆ Y , for every t, τ ∈ R

with t ≥ τ . Let u0 ∈ K \ {0}. Then we say that the process U(t, τ) is u0-positive in case there exists

η0 > 0 such that the following holds. Given any u ∈ K \ {0}, and given τ ∈ R and η∗ ≥ η0, then there

exist M1 > 0 and M2 > 0 such that

M1u0 ≤ U(τ + η, τ)u≤M2u0

for every η ∈ [η0, η∗].

For each m ≥ 2 let us define a function (u0)

um(θ) =

( ∏

1≤i<j≤m

(θj − θi)

)( ∏

1≤i<j≤m−1

(1 + θi − θj)

)
for θ ∈ Tm, (7.1)

and extend um to all of [−1, 0]m as an anti-symmetric function, so that (Sσum)(θ) = sgn(σ)um(θ) for

every σ ∈ Sm and every θ ∈ [−1, 0]m. Note that for m = 2 the range 1 ≤ i < j ≤ m− 1 of the indices

in the second factor of (7.1) is empty. In this and other such cases, here and below, we interpret such

an empty product to be equal to +1 identically. Also note that the extended function um is continuous

throughout [−1, 0]m, that is um ∈ X∧m. This holds because um(θ) = 0 whenever θ ∈ Tm is such that

θj = θj+1 for some j with 1 ≤ j ≤ m − 1. Of course the polynomial formula (7.1) is not generally

valid for θ ∈ [−1, 0]m \ Tm.

The following theorem is the main result of this section. It is followed by a conjecture concerning

the natural generalization of this result.

Theorem 7.1. Let m = 2 or m = 3 be fixed. Assume that the coefficient function b : R → R in
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equation (4.3) is measurable and that for every compact interval [t1, t2] ⊆ R there exist M2 ≥M1 > 0

such that

M1 ≤ (−1)mb(t) ≤M2 for almost every t ∈ [t1, t2].

Then the linear process W(t, τ) on X∧m is um-positive with respect to the cone Km, with the above

function um. Moreover, we have that η0 = 3 if m = 2 and η0 = 5 if m = 3 for the quantity η0 in the

above definition of a u0-positive linear process.

The corresponding result for equation (4.1) holds, where one assumes the same condition on the

coefficient β : R → R as for b, and where the coefficient α : R → R is locally integrable.

Conjecture A. Let m ≥ 4. Then the conclusions of Theorem 7.1 hold for this m, with η0 = 2m−1.

For our purpose here it will be sufficient to take η = 1 in the formula (4.11), and so we may take

a = 0 in that formula, as per the statement of Proposition 4.2. Assume that (−1)mb(t) ≥ 0 for almost

every t satisfying τ ≤ t ≤ τ + 1. Then (4.11) gives (eta1x)

[W(τ + 1, τ)ϕ](θ) =

∫ θ2

θ1

· · ·

∫ θm

θm−1

|bτ+1(t1) · · ·b
τ+1(tm−1)|ϕ(t1, . . . , tm−1, 0) dtm−1 · · ·dt1

+

∫ θ1

−1

∫ θ2

θ1

· · ·

∫ θm

θm−1

|bτ+1(t0) · · ·b
τ+1(tm−1)|ϕ(t0, . . . , tm−1) dtm−1 · · ·dt0

(7.2)

for every ϕ ∈ X∧m provided that θ ∈ Tm. (For convenience later, we have reindexed the vari-

ables tj in the final term of (7.2).) Note that in the case of odd m, where b(t) ≤ 0, the identities

(−1)am=(−1)m−a−1 and (−1)(a+1)m=(−1)m−a are used in taking the absolute values of b(t).

We shall need both positive upper and lower bounds for the operator W(τ+1, τ), which is why we

assume in Theorem 7.1 that there are uniform positive upper and lower bounds for |b(t)| on compact

intervals. The bounds for W(τ + 1, τ) will then be given by appropriate multiples of the operator

A = A0 + A1, where (aa)

(A0ϕ)(θ) =

∫ θ2

θ1

· · ·

∫ θm

θm−1

ϕ(t1, . . . , tm−1, 0) dtm−1 · · ·dt1,

(A1ϕ)(θ) =

∫ θ1

−1

∫ θ2

θ1

· · ·

∫ θm

θm−1

ϕ(t0, . . . , tm−1) dtm−1 · · ·dt0.

(7.3)

The operator A is a central object of study below. Although we prove some general results (Proposi-

tions 7.5 and 7.6) valid for every m ≥ 1, our focus is ultimately on the cases m = 2 and m = 3, as in
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Theorem 7.1.

We shall consider A as acting on the space C(Tm) of all continuous functions ϕ : Tm → R, which

is in contrast to earlier sections where we worked with the space X∧m. However, note that X∧m is

isometrically isomorphic to the subspace (iso)

X∧m
r = {ϕ ∈ C(Tm) | ϕ(θ) = 0 whenever θj = θj+1 for some j satisfying 1 ≤ j ≤ m− 1} (7.4)

of C(Tm) consisting of all restrictions ϕ|Tm of functions ϕ ∈ X∧m to Tm ⊆ [−1, 0]m. As such, we shall

freely regard the function um in (7.1) to be an element of C(Tm), in fact, um ∈ X∧m
r ⊆ C(Tm). Also,

without loss, we may regard W(t, τ) to be an operator on X∧m
r rather than on X∧m, as we wish to

compare W(t, τ) with powers of the operator A. Note that the ranges of A0 and A1 on C(Tm) lie in

the subspace X∧m
r , and so the subspace X∧m

r ⊆ C(Tm) is invariant under these operators.

Let us also denote the positive cone in C(Tm) by (pm)

C(Tm)+ = {ϕ ∈ C(Tm) | ϕ(θ) ≥ 0 for every θ ∈ Tm}. (7.5)

The crucial part in proving Theorem 7.1 is to show that the operator A is um-positive with respect

to C(Tm)+. Indeed, we have the following result.

Proposition 7.2. Let m ≥ 2 and suppose it is the case that the operator A ∈ L(C(Tm)) given above

is a um-positive operator with respect to the cone C(Tm)+, with um as in (7.1). Then the conclusion

of Theorem 7.1 holds, but with the value of m chosen here. Further, we have that η0 = k0 for the

quantities in the above definitions of u0-positive operator and u0-positive linear process, corresponding

to the operator A and to the linear process W(t, τ).

Proposition 7.2 implies that in order to prove Theorem 7.1, it is sufficient to prove the following

result.

Theorem 7.3. Let m = 2 or m = 3. Then the operator A acting on C(Tm) is um-positive with

respect to the cone C(Tm)+, with um as in (7.1). Further, if ϕ ∈ C(Tm)+ \ {0} then Akϕ ∼ um for

every k ≥ 3 if m = 2, and for every k ≥ 5 if m = 3.

Remark. The fact that um ∈ X∧m
r , along with the invariance of X∧m

r under A, implies that A, as

an operator on X∧m
r , is also um-positive for that space with respect to the cone C(Tm)+ ∩X∧m

r .
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Conjecture B. Let m ≥ 4. Then the conclusions of Theorem 7.3 hold for this m, but where

Akϕ ∼ um for every k ≥ 2m− 1.

It is clear from Proposition 7.2 that if Conjecture B holds, then so does Conjecture A.

Proof of Proposition 7.2. For simplicity, we prove only the conclusions of Theorem 7.1 pertaining to

equation (4.3), that is, for the linear process W(t, τ). The corresponding conclusions for equation (4.1)

can be obtained from these using the conjugacy (4.4).

By assumption, there exists k0 ≥ 1 such that Akϕ ∼ um for every k ≥ k0 and every ϕ ∈ C(Tm)+ \

{0}. Let τ ∈ R and let η∗ ≥ k0 be given. Then there exist M2 ≥M1 > 0 such that (bbnd)

M1 ≤ (−1)mb(t) ≤M2 for almost every t ∈ [τ, τ + η∗], (7.6)

as in the statement of Theorem 7.1. We shall work in the space X∧m
r ⊆ C(Tm), and we note that

C(Tm)+ ∩ X∧m
r is a closed, convex cone in that space. First note that if ϕ ∈ C(Tm)+ ∩ X∧m

r , then

from the formulas (7.2) and (7.3), and the bounds (7.6), we have that if [σ, σ + 1] ⊆ [τ, τ + η∗] then

M3Aϕ ≤ (Mm−1
1 A0 +Mm

1 A1)ϕ ≤ W(σ + 1, σ)ϕ≤ (Mm−1
2 A0 +Mm

2 A1)ϕ ≤M4Aϕ

where

M3 = min{Mm−1
1 , Mm

1 }, M4 = max{Mm−1
2 , Mm

2 },

with ≤ denoting the ordering in the cone C(Tm)+ ∩X∧m
r . It follows by iteration that if [σ, σ + k] ⊆

[τ, τ + η∗] for some integer k ≥ 1, then (kbnd)

Mk
3 Akϕ ≤ W(σ + k, σ)ϕ ≤Mk

4 Akϕ. (7.7)

Now let ϕ ∈ [C(Tm)+ ∩X∧m
r ] \ {0} be given; we shall keep ϕ fixed for the remainder of the proof.

Given any η ∈ [k0, η∗], let ψ = W(τ + η − k0, τ)ϕ, and note that ψ ∈ [C(Tm)+ ∩X∧m
r ] \ {0} where

Proposition 4.4 is used. Thus there exists ε = ε(η) > 0 such that if we define

ψ−(θ) = inf
η′∈[k0,η∗]∩(η−ε,η+ε)

[W(τ + η′ − k0, τ)ϕ](θ),

for θ ∈ Tm, then ψ−(θ) > 0 for some θ and so ψ− ∈ [C(Tm)+ ∩X∧m
r ] \ {0}. Fix such ε and let

ψ+(θ) = sup
η′∈[k0,η∗]∩(η−ε,η+ε)

[W(τ + η′ − k0, τ)ϕ](θ),
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and so also ψ+ ∈ [C(Tm)+ ∩X∧m
r ] \ {0}. Then for any η′ ∈ [k0, η∗] ∩ (η − ε, η + ε), we have that (ord)

ψ− ≤ W(τ + η′ − k0, τ)ϕ ≤ ψ+, (7.8)

and upon applying the positive operator W(τ + η′, τ + η′ − k0) to (7.8), one obtains

W(τ + η′, τ + η′ − k0)ψ− ≤ W(τ + η′, τ)ϕ ≤ W(τ + η′, τ + η′ − k0)ψ+.

It follows, by (7.7), that (ord4)

Q1um ≤Mk0

3 Ak0ψ− ≤ W(τ + η′, τ)ϕ ≤Mk0

4 Ak0ψ+ ≤ Q2um (7.9)

for some Q2 ≥ Q1 > 0, where the existence of Q1 and Q2 follows directly from the assumption that

A is um-positive, specifically, that Ak0ψ± ∼ um.

To complete the proof of the theorem, let us denote the constants in (7.9) by Qj,η, for j = 1, 2 and

any η ∈ [k0, η∗]. We observe that the open intervals (η− ε(η), η+ ε(η)) for such η form an open cover

of [k0, η∗], so we may extract a finite subcover, corresponding to points ηi for 1 ≤ i ≤ p. Then upon

setting Q1,∗ = min
1≤i≤p

{Q1,ηi
} and Q2,∗ = max

1≤i≤p
{Q2,ηi

}, we see that

Q1,∗um ≤ W(τ + η′, τ)ϕ ≤ Q2,∗um

for every η′ ∈ [k0, η∗]. With this, the proof is complete.

Moving toward the proof of Theorem 7.3, we shall first obtain a pointwise upper bound for

|(Akϕ)(θ)| in Proposition 7.5 below, and in fact we shall obtain such for every m ≥ 2. To this

end we define functions uq
m ∈ C(Tm) by (umq)

uq
m(θ) =

( ∏

1≤i,j≤m

1≤j−i≤q

(θj − θi)

)( ∏

1≤i,j≤m−1

j−i≥m−q

(1 + θi − θj)

)
, (7.10)

for 0 ≤ q ≤ m − 1. Here and below we shall always assume q is in this range, although we shall

sometimes impose additional restrictions on q. We assume that m ≥ 2 and that θ ∈ Tm. Note that

all factors in the products (7.10) are nonnegative and bounded above by +1. Now define (wdef)

wm(θ) =

m−1∏

j=1

(θj+1 − θj), w̃m(θ) = (1 + θ1 − θm−1)wm(θ1, . . . , θm), (7.11)
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and let polynomials vq
m and ṽq

m be defined by (vdef)

uq
m(θ) = vq

m(θ)wm(θ), for 1 ≤ q ≤ m− 1,

uq
m(θ) = ṽq

m(θ)w̃m(θ), for 2 ≤ q ≤ m− 1,

ṽ1
m(θ) ≡ 1 identically.

(7.12)

It is easy to check that vq
m and ṽq

m are well-defined polynomials, as every factor of of wm and w̃m

occurs as a factor of the polynomial uq
m for the indicated ranges of q. Note that u0

m(θ) ≡ 1 identically,

while u1
m(θ) = wm(θ), where some of the products in (7.10) are empty hence take the value +1, as

noted earlier. Also observe that um−1
m (θ) = um(θ) as in (7.1).

Now let us take quantities tj for 0 ≤ j ≤ m− 1 satisfying (tthet)

t0 ∈ [−1, θ1], tj ∈ [θj, θj+1] for 1 ≤ j ≤ m− 1, (7.13)

as in the integrands of (7.3). The following lemma provides a crucial estimate needed for the proof of

Proposition 7.5.

Lemma 7.4. With m ≥ 2, let θ ∈ Tm and let tj for 0 ≤ j ≤ m− 1 satisfy (7.13). Then (uinq)

0 ≤ uq
m(t1, . . . , tm−1, 0) ≤ vq+1

m (θ), 0 ≤ uq
m(t0, . . . , tm−1) ≤ ṽq+1

m (θ), (7.14)

for 0 ≤ q ≤ m− 2. Further, (uinq2)

0 ≤ um−1
m (t1, . . . , tm−1, 0) ≤ vm−1

m (θ), 0 ≤ um−1
m (t0, . . . , tm−1) ≤ ṽm−1

m (θ), (7.15)

holds.

Proof. In this proof care must be taken to ensure the correct ranges of the indices i and j, and it will

be helpful to note that i < j in many places.

Assume that θ ∈ Tm and that (7.13) holds. We begin by observing that (tinq)

0 ≤ tj − ti ≤ θj+1 − θi ≤ 1, for 1 ≤ i < j ≤ m− 1,

0 ≤ tj − t0 ≤ 1 + θj+1 − θm−1 ≤ 1, for 1 ≤ j ≤ m− 2,

0 ≤ −ti ≤ 1 + θ1 − θi ≤ 1, for 1 ≤ i ≤ m− 1,

0 ≤ 1 + ti − tj ≤ 1 + θi+1 − θj ≤ 1, for 0 ≤ i < j ≤ m− 1.

(7.16)
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We first establish (7.14). Suppose that 0 ≤ q ≤ m− 2. Then from (7.10) we have that (prod0)

uq
m(t1, . . . , tm−1, 0) =

( ∏

1≤i,j≤m−1

1≤j−i≤q

(tj − ti)

)( ∏

m−q≤i≤m−1

(−ti)

)( ∏

1≤i,j≤m−1

j−i≥m−q

(1 + ti − tj)

)
. (7.17)

Using (7.16) we see that (first)

∏

1≤i,j≤m−1

1≤j−i≤q

(tj − ti) ≤
∏

1≤i,j≤m−1

1≤j−i≤q

(θj+1 − θi) =
∏

1≤i,j≤m

2≤j−i≤q+1

(θj − θi) (7.18)

for the first product in (7.17). We also have that (third)

∏

1≤i,j≤m−1

j−i≥m−q

(1 + ti − tj) ≤
∏

1≤i,j≤m−1

j−i≥m−q

(1 + θi+1 − θj) =
∏

2≤i,j≤m−1

j−i≥m−q−1

(1 + θi − θj) (7.19)

for the third product in (7.17). Using the inequality −ti ≤ 1+θ1−θi from (7.16) in the second product

in (7.17), and reindexing using j instead of i, we may combine this with (7.19) to obtain
( ∏

m−q≤i≤m−1

(−ti)

)( ∏

1≤i,j≤m−1

j−i≥m−q

(1 + ti − tj)

)
≤

∏

1≤i,j≤m−1

j−i≥m−q−1

(1 + θi − θj).

Combining this further with (7.18), we see that with (7.17) this gives

uq
m(t1, . . . , tm−1, 0) ≤

( ∏

1≤i,j≤m

2≤j−i≤q+1

(θj − θi)

)( ∏

1≤i,j≤m−1

j−i≥m−q−1

(1 + θi − θj)

)
= vq+1

m (θ),

to give the first half of (7.14).

Next observe that (prod1)

uq
m(t0, . . . , tm−1) =

( ∏

0≤i,j≤m−1

1≤j−i≤q

(tj − ti)

)( ∏

0≤i,j≤m−2

j−i≥m−q

(1 + ti − tj)

)
. (7.20)

For the first product in (7.20) we have, again using (7.16), that (first2)

∏

0≤i,j≤m−1

1≤j−i≤q

(tj − ti) ≤

( ∏

1≤i,j≤m−1

1≤j−i≤q

(θj+1 − θi)

)( ∏

1≤j≤q

(1 + θj+1 − θm−1)

)

≤

( ∏

1≤i,j≤m

2≤j−i≤q+1

(θj − θi)

)( ∏

2≤i≤q

(1 + θi − θm−1)

)
.

(7.21)
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Note that in the second inequality of (7.21), we have used the estimate 1 + θq+1 − θm−1 ≤ 1, which

holds because q ≤ m− 2, and which allows us to drop the term 1 + θq+1 − θm−1. Now for the second

product in (7.20) we have that (second2)

∏

0≤i,j≤m−2

j−i≥m−q

(1 + ti − tj) ≤
∏

0≤i,j≤m−2

j−i≥m−q

(1 + θi+1 − θj) =
∏

1≤i,j≤m−2

j−i≥m−q−1

(1 + θi − θj). (7.22)

If q ≥ 1 then combining (7.21) and (7.22) gives

uq
m(t0, . . . , tm−1) ≤

( ∏

1≤i,j≤m

2≤j−i≤q+1

(θj − θi)

)( ∏

1≤i,j≤m−1

m−3≥j−i≥m−q−1

(1 + θi − θj)

)
= ṽq+1

m (θ),

while if q = 0 we have directly that

u0
m(t0, . . . , tm−1) = 1 = ṽ1

m(θ).

This establishes the second half of (7.14).

We now prove (7.15). This follows directly by noting that

0 ≤ um−1
m (t1, . . . , tm−1, 0) ≤ um−2

m (t1, . . . , tm−1, 0),

0 ≤ um−1
m (t0, . . . , tm−1) ≤ um−2

m (t0, . . . , tm−1),

and then applying (7.14) for q = m− 2. With this the proof is complete.

Proposition 7.5. Let m ≥ 2. Then we have the pointwise bounds (ubnd)

0 ≤ (Aiu
q
m)(θ) ≤ uq+1

m (θ), 0 ≤ (Aium)(θ) ≤ um(θ), (7.23)

for 0 ≤ q ≤ m− 2 and i = 0, 1, for θ ∈ Tm. Thus for every ϕ ∈ C(Tm) we have the pointwise bound (b3)

|(Akϕ)(θ)| ≤ 2kum(θ)‖ϕ‖, (7.24)

for k ≥ m− 1 and θ ∈ Tm.

Proof. Let ϕ = uq
m in (7.3) where 0 ≤ q ≤ m− 2. The using (7.14) in Lemma 7.4, we have for every

θ ∈ Tm that

0 ≤ (A0u
q
m)(θ) =

∫ θ2

θ1

· · ·

∫ θm

θm−1

uq
m(t1, . . . , tm−1, 0) dtm−1 · · ·dt1

≤

∫ θ2

θ1

· · ·

∫ θm

θm−1

vq+1
m (θ) dtm−1 · · ·dt1 = wm(θ)vq+1

m (θ) = uq+1
m (θ).
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Similarly, if 1 ≤ q ≤ m− 2 we have that (a1q)

0 ≤ (A1u
q
m)(θ) =

∫ θ1

−1

∫ θ2

θ1

· · ·

∫ θm

θm−1

uq
m(t0, . . . , tm−1) dtm−1 · · ·dt0

≤

∫ θ1

−1

∫ θ2

θ1

· · ·

∫ θm

θm−1

ṽq+1
m (θ) dtm−1 · · ·dt0

=

(
1 + θ1

1 + θ1 − θm−1

)
w̃m(θ)ṽq+1

m (θ) ≤ w̃m(θ)ṽq+1
m (θ) = uq+1

m (θ).

(7.25)

If q = 0 we again have (7.25) except with an inequality ≤ in place of the final equal sign, as

w̃m(θ)ṽ1
m(θ) = w̃m(θ) ≤ wm(θ) = u1

m(θ).

This gives the first half of (7.23). For the second half of (7.23), involving (Aium)(θ), one argues

similarly except using (7.15) instead of (7.14), where we recall that um = um−1
m . We omit the details.

It follows that 0 ≤ (Auq
m)(θ) ≤ 2uq+1

m (θ) if 0 ≤ q ≤ m− 2, while 0 ≤ (Aum−1
m )(θ) ≤ 2um−1

m (θ), for

every θ ∈ Tm. Thus (b1)

0 ≤ (Aku0
m)(θ) ≤ 2kuγ(k)

m (θ), γ(k) = min{k, m− 1}, (7.26)

for every k ≥ 1. Also, as A is a positive operator with respect to the cone C(Tm)+ in (7.5), we have

the pointwise bound (b2)

|(Akϕ)(θ)| ≤ (Ak|ϕ|)(θ) ≤ [(Aku0
m)(θ)]‖ϕ‖ (7.27)

for every ϕ ∈ C(Tm), where we recall that u0
m(θ) ≡ 1 identically. Combining (7.26) and (7.27)

gives (7.24), as desired.

Related to the operator A is the operator B, which we define as B = B0 + B1, where (bformx)

(B0ϕ)(θ) =
1

um(θ)

∫ θ2

θ1

· · ·

∫ θm

θm−1

um(t1, . . . , tm−1, 0)ϕ(t1, . . . , tm−1, 0) dtm−1 · · ·dt1,

(B1ϕ)(θ) =
1

um(θ)

∫ θ1

−1

∫ θ2

θ1

· · ·

∫ θm

θm−1

um(t0, . . . , tm−1)ϕ(t0, . . . , tm−1) dtm−1 · · ·dt0.

(7.28)

Formally, B is conjugate to A via the operator given by multiplication by um, and B will play a

significant role in proving Theorem 7.3. In particular, obtaining the required equivalence Akϕ ∼ um

for large k is essentially the same as showing that Bkψ ∼ 1 where ϕ = umψ. Concerning the
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appropriate space on which B acts, we see that if ϕ ∈ C(Tm) then the function Bϕ is continuous

almost everywhere on Tm, specifically, it is continuous at each point θ ∈ Om where (om)

Om = {θ ∈ Tm | θj < θj+1 for every j satisfying 1 ≤ j ≤ m− 1}. (7.29)

However, as we shall see, Bϕ can have discontinuities in Tm\Om, and thus need not belong to C(Tm).

In light of the estimate (7.24), one might wish to consider B acting on the space L∞(Tm) of bounded

measurable functions. However, Bϕ is not well-defined for general ϕ ∈ L∞(Tm) due to the zero entry

in the final argument of ϕ in the formula (7.28) for B0ϕ. However, if we define (wm)

Wm = {ϕ ∈ L∞(Tm) | ϕ is continuous at every point θ ∈ Om}, (7.30)

where Om is as in (7.29), then Wm ⊆ L∞(Tm) is a closed subspace, and one easily sees that B is well-

defined as an operator on Wm with range in Wm, that is, B ∈ L(Wm). We have have the following

result.

Proposition 7.6. Let m ≥ 2. Then B0 and B1 in (7.28), and thus B = B0 + B1, define bounded

linear operators on the space Wm with ‖B0‖, ‖B1‖ ≤ 1 and ‖B‖ ≤ 2. Here Wm is defined by (7.29),

(7.30) with the norm inherited from L∞(Tm).

Proof. The proof is very similar to the proof of Proposition 7.5, and entails using the bounds (7.15)

of Lemma 7.4 to estimate the integrals (7.28) just as before. We omit the details.

It is natural to ask what is the minimal closed invariant subspace Y ⊆ Wm for the operator B

which contains C(Tm). Such Y would be given by letting (y)

Y =

∞⋃

n=0

Yn, where Y0 = C(Tm), Yn+1 = BYn + C(Tm) for n ≥ 0, (7.31)

where we note that Y0 ⊆ Y1 ⊆ Y2 ⊆ · · · ⊆ Y ⊆Wm. In the next section, as part of our efforts to prove

Theorem 7.3, we show that if m = 2 then Y = C(T2), while if m = 3 then Y = C(T3)⊕ V where V is

a certain two-dimensional subspace of Wm.

8 u0-Positivity for m = 2 and m = 3

Let us now specialize to the cases m = 2 and m = 3, as in Theorem 7.3. We retain all the conventions

and notation of the previous section. In working toward the proof of Theorem 7.3, our analysis here
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is largely concerned with the operator B.

We first consider the case m = 2. Then u2(θ1, θ2) = θ2 − θ1, and so (71)

(B0ϕ)(θ) = −∼

∫ θ2

θ1

t1ϕ(t1, 0) dt1, (B1ϕ)(θ) =

∫ θ1

−1

∼

∫ θ2

θ1

(t1 − t0)ϕ(t0, t1) dt1 dt0, (8.1)

as in (7.28). For convenience of notation, we denote the so-called average integral by

∼

∫ b

a

f(x) dx =
1

b− a

∫ b

a

f(x) dx, with ∼

∫ a

a

f(x) dx = f(a).

Note that for locally integrable f , the above average integral is continuous as a function of a and b for

a 6= b. It is also continuous where a = b provided that f is continuous at this point. It thus follows

that B0 and B1, and thus B, are bounded linear operators on the space C(T2), and so Y = C(T2) for

the space Y in (7.31). One sees moreover that B0, B1, and B are positive operators on C(T2) with

respect to the cone C(T2)
+. (Keep in mind that t1 ≤ 0 for the integrand in the formula for B0.)

We have the following result.

Proposition 8.1. Let ϕ ∈ C(T2)
+ \ {0}. Then for every k ≥ 3 there exists Mk > 0 such that

(Bkϕ)(θ) ≥Mk for every θ ∈ T2. Thus the operator B with m = 2 and acting on C(T2) is u0-positive

with respect to the cone C(T2)
+, where u0(θ) ≡ 1 identically on T2.

Proof. It is clear that u0-positivity follows from the existence of the lower bounds Mk, as we clearly

have the pointwise upper bounds |(Bkϕ)(θ)| ≤ ‖Bkϕ‖. Also, it is sufficient to prove the existence only

of M3, as the constants Mk for k ≥ 4 follow directly by induction, using the positivity of B. Indeed,

having obtained Mj for 3 ≤ j ≤ k, we obtain a lower bound Mk+1 for |(Bk+1)(θ)| by applying B3 to

the function Bk−2ϕ ∈ C(T2)
+ \ {0}.

To show that M3 exists, it is enough, due to the continuity of B3ϕ, to show that if ϕ ∈ C(T2)
+\{0}

then we have strict positivity (B3ϕ)(θ) > 0 for every θ ∈ T2. To this end let

L = {θ ∈ T2 | θ2 = 0} = [−1, 0]× {0},

which is the upper boundary of the set T2 ⊆ R2. Then it is enough to prove that the following three

facts hold for every ϕ ∈ C(T2)
+.

(1) If ϕ(θ) > 0 for some θ ∈ T2, then (Bϕ)(θ̃) > 0 for some θ̃ ∈ L;
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(2) if ϕ(θ) > 0 for some θ ∈ L, then (Bϕ)(θ̃) > 0 for every θ̃ ∈ L; and

(3) if ϕ(θ) > 0 for every θ ∈ L, then (Bϕ)(θ̃) > 0 for every θ̃ ∈ T2.

The proofs of properties (1) through (3) follow easily from the formulas (8.1). With ϕ ∈ C(T2)
+,

if ϕ(θ) > 0 for some θ = (θ1, θ2) ∈ T2 we may assume without loss that −1 < θ1 < θ2 ≤ 0.

Then (B1ϕ)(θ1, 0) > 0 holds, in particular because the integrand (t1 − t0)ϕ(t0, t1) in (8.1), which is

nonnegative throughout the range −1 ≤ t0 ≤ θ1 ≤ t1 ≤ 0, is strictly positive at (t0, t1) = (θ1, θ2).

With this, (1) is established.

Now suppose that ϕ(θ) > 0 for some θ = (θ1, 0) ∈ L. Then (B0ϕ)(θ̃1, 0) > 0 for every θ̃1 satisfying

−1 ≤ θ̃1 ≤ θ1 and θ̃1 6= 0, and (B1ϕ)(θ̃1, 0) > 0 for every θ̃1 satisfying θ1 ≤ θ̃1 ≤ 0 and θ̃1 6= −1. In

any case, (Bϕ)(θ̃) > 0 for every θ̃ = (θ̃1, 0) ∈ L. This establishes (2).

Finally suppose that ϕ(θ) > 0 for every θ ∈ L. Then (B0ϕ)(θ̃) > 0 for every θ̃ ∈ T2 except

θ̃ = (0, 0). However, (B1ϕ)(0, 0) > 0 for this point. With this, (3) is established and the result is

proved.

Let us now consider the case m = 3, so θ = (θ1, θ2, θ3) ∈ T3. Here

u3(θ) = (θ2 − θ1)(θ3 − θ2)(θ3 − θ1)(1 + θ1 − θ2).

We introduce the functions (nu)

ν0(θ) =
−(θ2 + θ3)

1 + θ1 − θ2
, ν1(θ) =

1 + θ1
1 + θ1 − θ2

, (8.2)

which will play a key role in our analysis. Observe that due to the ordering of the θj in the defini-

tion (4.7) of T3, the functions ν0 and ν1 are well-defined and continuous everywhere in T3 except at

the point θ = (−1, 0, 0). Further, we have the bounds 0 ≤ ν0(θ1, θ2, θ3) ≤ 2 and 0 ≤ ν1(θ1, θ2, θ3) ≤ 1

throughout T3 \ {(−1, 0, 0)}, so ν0, ν1 ∈W3, where we recall the definition of Wm in (7.30).

After a short calculation one sees from (7.28) that (bm3)

(B0ϕ)(θ) = ∼

∫ θ2

θ1

∼

∫ θ3

θ2

Φ0(t1, t2, θ1, θ2, θ3)ϕ(t1, t2, 0) dt2 dt1,

(B1ϕ)(θ) = ν1(θ)(B̃1ϕ)(θ), where

(B̃1ϕ)(θ) = ∼

∫ θ1

−1

∼

∫ θ2

θ1

∼

∫ θ3

θ2

Φ1(t0, t1, t2, θ1, θ3)ϕ(t0, t1, t2) dt2 dt1 dt0,

(8.3)
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for any ϕ ∈W3, and where the kernels Φ0 and Φ1 are given by (phiker)

Φ0(t1, t2, θ1, θ2, θ3) =

(
t2 − t1
θ3 − θ1

)
t1

(
t2

1 + θ1 − θ2

)
(1 + t1 − t2),

Φ1(t0, t1, t2, θ1, θ3) = (t1 − t0)

(
t2 − t1
θ3 − θ1

)
(t2 − t0)(1 + t0 − t1).

(8.4)

Note that we have grouped like terms in the kernels (8.4), so that each ratio in these formulas is at

most +1 in absolute value. In particular, we have that

0 ≤ t2 − t1 ≤ θ3 − θ1, 0 ≤ −t2 ≤ 1 + θ1 − θ2,

and so (phibnd)

0 ≤ Φ0(t1, t2, θ1, θ2, θ3) ≤ 1, 0 ≤ Φ1(t0, t1, t2, θ1, θ3) ≤ 1, (8.5)

as long as −1 ≤ t0 ≤ θ1 ≤ t1 ≤ θ2 ≤ t2 ≤ θ3 ≤ 0. This confirms the conclusion of Proposition 7.6 in

the case m = 3, in particular that B0, B1, and B define bounded linear operators on W3. However,

in contrast to the case m = 2 above, we shall see that here B is not an operator on C(T3), as Bϕ is

not in general a continuous function on T3 even if ϕ is continuous there. Instead, the following result

holds.

Theorem 8.2. Let V ⊆W3 denote the two-dimensional vector space spanned by the functions ν0 and

ν1 in (8.2), and let C0,V ⊆ CV ⊆W3 be defined as (cv)

CV = C(T3) ⊕ V, C0,V = C0(T3) ⊕ V, C0(T3) = {ϕ ∈ C(T3) | ϕ(−1, 0, 0) = 0}. (8.6)

Then the space CV is invariant under the operators B0, B1, and thus B, and moreover, the ranges of

these operators on CV are contained in C0,V . More precisely, if ϕ ∈ CV then (49)

(Bϕ)(θ) = Q0ν0(θ) +Q1ν1(θ) + ψ(θ),

Q0 =
1

2

∫ 0

−1
t2(1 + t)ϕ(t, 0, 0) dt, Q1 =

∫ 0

−1
t2(1 + t)ϕ(−1, t, 0) dt,

(8.7)

where ψ ∈ C0(T3). Further, we have Y = CV for the space Y defined in (7.31).

Remark. The above theorem implies that although Bϕ need not be continuous even if ϕ is continuous,

the discontinuities of Bϕ can only be of a special form and located at the specific point (−1, 0, 0) on the
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boundary of T3. The analogous issue for m ≥ 4, namely a description or classification of the possible

discontinuities that can arise for iterates Bkϕ where ϕ ∈ C(Tm), or more generally a characterization

of the space Y , should be relevant to the conjecture stated earlier, as well as being an interesting

question in its own right.

A number of preliminary results are needed before proving Theorem 8.2. We begin by examining

the continuity properties of B0ϕ and B̃1ϕ in T3 for ϕ ∈ CV . For such ϕ, it is clear from the form (8.4)

of the kernels Φi and from the formulas (8.2) for ν0 and ν1 that the only possible points θ ∈ T3 at

which B0ϕ is discontinuous are where either θ3 − θ1 = 0 or where 1 + θ1 − θ2 = 0, and that the only

possible points of discontinuity of B̃1ϕ are where θ3 − θ1 = 0. Note that θ3 − θ1 = 0 for θ ∈ T3 if and

only if θ = (θ∗, θ∗, θ∗) for some θ∗ ∈ [−1, 0]. Also note that 1 + θ1 − θ2 = 0 for θ ∈ T3 if and only if

θ = (−1, 0, 0). The following lemma describes these continuity properties of B0ϕ and B̃1ϕ at these

points.

Lemma 8.3. Let ϕ ∈ CV . Then the only possible point θ ∈ T3 of discontinuity of B0ϕ is θ = (−1, 0, 0),

while B̃1ϕ is continuous throughout T3, that is, B̃1ϕ ∈ C(T3). Further, (btrip)

(B0ϕ)(θ∗, θ∗, θ∗) =
θ2∗ϕ(θ∗, θ∗, 0)

2
,

(B̃1ϕ)(θ∗, θ∗, θ∗) =
1

2
∼

∫ θ∗

−1
(θ∗ − t)2(1 + t− θ∗)ϕ(t, θ∗, θ∗) dt,

(8.8)

for every θ ∈ [−1, 0].

Proof. From the remarks preceeding the statement of the lemma, all that is necessary is to prove

continuity of B0ϕ and B̃1ϕ at each point of the form (θ∗, θ∗, θ∗) in T3. We present only the proof for

B0, as the proof for B̃1 is similar. With ϕ ∈ CV fixed, let γ1 = θ2 − θ1 and γ2 = θ3 − θ2, which are

nonnegative quantities for θ ∈ Tm. Making the change of variables t1 = θ1+τ1γ1 and t2 = θ1+γ1+τ2γ2

in (8.3), we obtain

(B0ϕ)(θ) =

∫ 1

0

∫ 1

0
Φ0(θ1 + τ1γ1, θ1 + γ1 + τ2γ2, θ1, θ1 + γ1, θ1 + γ1 + γ2)

× ϕ(θ1 + τ1γ1, θ1 + γ1 + τ2γ2, 0) dτ2 dτ1

=

∫ 1

0

∫ 1

0

(
(1 − τ1)γ1 + τ2γ2

γ1 + γ2

)
S(τ1, τ2, θ1, γ1, γ2)ϕ(θ1 + τ1γ1, θ1 + γ1 + τ2γ2, 0) dτ2 dτ1
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where

S(τ1, τ2, θ1, γ1, γ2) =
(θ1 + τ1γ1)(θ1 + γ1 + τ2γ2)(1 + (τ1 − 1)γ1 − τ2γ2)

1 − γ1
.

This formula is valid throughout T3 as long as the coordinates θj for j = 1, 2, 3 are not all equal and

θ 6= (−1, 0, 0), equivalently as long as γ1 + γ2 > 0 and γ1 6= 1. Upon letting θ = (θ1, θ2, θ3) approach

a given point (θ∗, θ∗, θ∗) in T3 (say, along a sequence), one sees that γ1 and γ2 approach 0, hence

S(τ1, τ2, θ1, γ1, γ2) approaches θ2∗ and ϕ(θ1 + τ1γ1, θ1 + γ1 + τ2γ2, 0) approaches ϕ(θ∗, θ∗, 0), uniformly

in the range of integration. The fact that
∫ 1

0

∫ 1

0

(
(1 − τ1)γ1 + τ2γ2

γ1 + γ2

)
dτ2 dτ1 =

1

2
,

with an integrand which is bounded uniformly for nonnegative γ1 and γ2, implies that

(B0ϕ)(θ) →
θ2∗ϕ(θ∗, θ∗, 0)

2
= (B0ϕ)(θ∗, θ∗, θ∗),

where the above equality may be taken as the defnition of (B0ϕ)(θ∗, θ∗, θ∗). This gives the first

equation in (8.8). We omit the proof of the second equation in (8.8), which is similar. With this, the

result is proved.

Remark. Although γ1 → 0 and γ2 → 0 in the above proof, there is no assumption about the relative

rates at which these quantities converge. Consequently, the ratio ((1− τ1)γ1 + τ2γ2)/(γ1 + γ2) in the

integrand above need not have a pointwise limit in (τ1, τ2) as γ1, γ2 → 0.

The next two lemmas give partial information on continuity properties of B0ϕ near (−1, 0, 0).

Lemma 8.4. Let ϕ ∈ CV and suppose that ϕ(θ1, 0, 0) ≡ 0 identically for θ1 ∈ (−1, 0]. Then (B0ϕ)(θ)

is continuous at each θ ∈ T3, that is, B0ϕ ∈ C(T3). Moreover, (B0ϕ)(−1, 0, 0) = 0, and thus

B0ϕ ∈ C0(T3).

Proof. From Lemma 8.3, the only point at which B0ϕ can fail to be continuous is θ = (−1, 0, 0).

Now fix ε satisfying 0 < ε < 1. Then if θ ∈ T3 \ {(−1, 0, 0)} is such that θ1 ≤ −1+ ε ≤ θ2 and θ1 6= θ2,

we have from the formula (8.3) that

(B0)(θ) =
1

θ2 − θ1

∫ −1+ε

θ1

∼

∫ θ3

θ2

Φ0(t1, t2, θ1, θ2, θ3)ϕ(t1, t2, 0) dt2 dt1

+
1

θ2 − θ1

∫ θ2

−1+ε

∼

∫ θ3

θ2

Φ0(t1, t2, θ1, θ2, θ3)ϕ(t1, t2, 0) dt2 dt1.
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We have thus the bounds

1

θ2 − θ1

∣∣∣∣
∫ −1+ε

θ1

∼

∫ θ3

θ2

Φ0(t1, t2, θ1, θ2, θ3)ϕ(t1, t2, 0) dt2 dt1

∣∣∣∣ ≤
(
−1 + ε − θ1
θ2 − θ1

)
‖ϕ‖ ≤

ε‖ϕ‖

θ2 − θ1
,

1

θ2 − θ1

∣∣∣∣
∫ θ2

−1+ε

∼

∫ θ3

θ2

Φ0(t1, t2, θ1, θ2, θ3)ϕ(t1, t2, 0) dt2 dt1

∣∣∣∣ ≤ sup
−1+ε≤t1≤θ2≤t2≤0

|ϕ(t1, t2, 0)| = δε(θ2),

following from (8.5), where the above equality serves as the definition of δε(θ2). Note that the point

(−1, 0, 0) is excluded from the region over which the above supremum is taken, and so, with ε fixed,

δε(θ2) depends continuously on θ2 near θ2 = 0 and with δε(0) = 0 from the assumptions on ϕ. Letting

θ → (−1, 0, 0) (say, along a sequence), we obtain

lim sup
θ→(−1,0,0)

|(B0ϕ)(θ)| ≤ ε‖ϕ‖

from the above. As ε can be chosen arbitrarily small, this implies the result.

Lemma 8.5. Let ϕ ∈ CV and suppose that ϕ(θ1, θ2, 0) ≡ ϕ(θ1, 0, 0) identically for every (θ1, θ2) ∈ T2

with θ1 6= −1. Then (nnu1)

(B0ϕ)(θ) = Qν0(θ) + ψ(θ), Q =
1

2

∫ 0

−1
t2(1 + t)ϕ(t, 0, 0) dt, (8.9)

for some ψ ∈ C0(T3).

Proof. We first claim that (pwr)

∼

∫ θ3

θ2

(t2 − t1)t1t2(1 + t1 − t2) dt2 =
−1

2

(
t21(1 + t1)(θ2 + θ3) +R(t1, θ2, θ3)

)
, (8.10)

where the polynomial R satisfies (rest)

R(t1, θ2, θ3) = O(t1(θ
2
2 + θ23)) (8.11)

near the origin in R3. Indeed, this can be readily verified by direct calculation, by expanding the

integrand in (8.10) in powers of t2 about the origin. We omit the details. We next observe that (nu1)

(B0ϕ)(θ) =
−1

2(θ3 − θ1)(1 + θ1 − θ2)
∼

∫ θ2

θ1

(
t21(1 + t1)(θ2 + θ3) + R(t1, θ2, θ3)

)
ϕ(t1, 0, 0) dt1, (8.12)
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which follows immediately from (8.3), (8.4), and (8.10), using the assumption on ϕ. Denoting

ψ̃(θ) =
1

2(θ3 − θ1)
∼

∫ θ2

θ1

t21(1 + t1)ϕ(t1, 0, 0) dt1,

ψ(θ) =
−1

2(θ3 − θ1)(1 + θ1 − θ2)
∼

∫ θ2

θ1

R(t1, θ2, θ3)ϕ(t1, 0, 0) dt1,

we have that (B0ϕ)(θ) = ν0(θ)ψ̃(θ) + ψ(θ).

Certainly ψ̃ is continuous in a neighborhood of the point (−1, 0, 0) in T3. Also, ψ is continuous in

some neighborhood of (−1, 0, 0), in fact with ψ(−1, 0, 0) = 0, in light of the estimate (8.11). Letting

ψ(θ) = ν0(θ)[ψ̃(θ)−Q] +ψ(θ) where Q = ψ̃(−1, 0, 0), we have that (8.9) holds. Also, ψ is continuous

in some neighborhood of (−1, 0, 0) in T3, and ψ(−1, 0, 0) = 0, where the boundedness of ν0 near that

point is used. Further, B0ϕ and ν0 are continuous at every point of T3 \{(−1, 0, 0)}, using Lemma 8.3,

so ψ is also continuous there, by (8.9). Thus ψ ∈ C0(T3), as claimed.

Proposition 8.6. Let ϕ ∈ CV . Then B0ϕ has the form (8.9) where ψ ∈ C0(T3), with Q as in that

formula.

Proof. With ϕ ∈ CV , write ϕ(θ) = ϕ̃(θ) + ϕ(θ) where

ϕ̃(θ1, θ2, θ3) = ϕ(θ1, θ2, θ3) − ϕ(θ1, θ3, θ3), ϕ(θ1, θ2, θ3) = ϕ(θ1, θ3, θ3).

Then ϕ̃ and ϕ satisfy the conditions of Lemmas 8.4 and 8.5, respectively. Further, ϕ(θ1, 0, 0) ≡

ϕ(θ1, 0, 0) identically on (−1, 0]. The result follows immediately.

Proof of Theorem 8.2. Let ϕ ∈ CV . We have that (B0ϕ)(θ) = Q0ν0(θ) + ψ0(θ) with Q0 as

in (8.7) and where ψ0 ∈ C0(T3), by Proposition 8.6. Also, by Lemma 8.3 we have that B̃1ϕ ∈ C(T3),

and from (8.3) and (8.4) we have that (B̃1ϕ)(−1, 0, 0) = Q1 for Q1 as in (8.7). Thus upon letting

ψ1(θ) = ν1(θ)[(B̃1ϕ)(θ) −Q1], we have from (8.3) that (B1ϕ)(θ) = Q1ν1(θ) + ψ1(θ), so upon letting

ψ(θ) = ψ0(θ) + ψ1(θ) we have (8.7). The fact that ψ ∈ C0(T3), or equivalently, that ψ1 ∈ C0(T3),

follows directly from the definition of ψ1 using the continuity of B̃1ϕ and the choice of Q1.

To prove the final claim in the statement of the theorem, it is enough to show that every pair of

numbers Q0, Q1 ∈ R as in (8.7) can be achieved for some ϕ ∈ C(T3). However, this follows easily from

the explicit formulas (8.7) for Q0 and Q1.
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Lemma 8.7. Let ϕ ∈ C0,V have the form

ϕ(θ) = Q0ν0(θ) +Q1ν1(θ) + ψ(θ)

for θ ∈ T3 \ {(−1, 0, 0)} where ψ ∈ C0(T3). Assume that ϕ(θ) > 0 for every θ ∈ T3 \ {(−1, 0, 0)} and

also that Q0 > 0 and Q1 > 0. Then there exists M > 0 such that (79m)

ϕ(θ) ≥M (8.13)

for every θ ∈ T3 \ {(−1, 0, 0)}.

Proof. Denote θ0 = (−1, 0, 0). Then for any r satisfying 0 < r ≤ 1, let

δ(r) = inf
|θ−θ0|≥r

ϕ(θ), ε(r) = sup
0≤|θ−θ0|≤r

|ψ(θ)|,

where | · | denotes the euclidean distance in R3 and θ ∈ T3. Since ϕ is continuous and positive

throughout Tm \ {θ0}, it follows that δ(r) is positive and depends continuously on r. Also, since

ψ is continuous in T3 and ψ(θ0) = 0, we have that ε(r) also depends continuously on r, and that

lim
r→0

ε(r) = 0. (We note that it need not be the case that the function ψ is nonnegative everywhere.)

Therefore,

inf
0<|θ−θ0 |≤r

ϕ(θ) ≥ inf
0<|θ−θ0 |≤r

(
Q0ν0(θ) +Q1ν1(θ)

)
− ε(r)

= inf
0<|θ−θ0 |≤r

(
−Q0(θ2 + θ3) +Q1(1 + θ1)

1 + θ1 − θ2

)
− ε(r) ≥ min{2Q0, Q1} − ε(r).

By choosing r sufficiently small that ε(r) < min{2Q0, Q1}, one sees immediately that the desired

inequality (8.13) holds throughout Tm \ {θ0} with M = min{δ(r), min{2Q0, Q1} − ε(r)}.

Define the set

C+
V = {ϕ ∈ CV | ϕ(θ) ≥ 0 for every θ ∈ T3 \ {(−1, 0, 0)}},

which is a closed, convex cone in CV . The following result is the analog of Proposition 8.1 for m = 3.

Proposition 8.8. Let ϕ ∈ C+
V \ {0}. Then for every k ≥ 5 there exists Mk > 0 such that (Bkϕ)(θ) ≥

Mk for every θ ∈ T3 \ {(−1, 0, 0)}. Thus the operator B with m = 3 and acting on CV is u0-positive

with respect to the cone C+
V , where u0(θ) ≡ 1 identically on T3.
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Proof. Just as in the proof of Proposition 8.1, it is sufficient here only to prove the existence of M5.

Toward this end, let us first define the sets

L0 = T3 \ {(−1, 0, 0)},

L1 = {θ ∈ T3 \ {(−1, 0, 0)} | θ3 = 0},

L2 = {θ ∈ T3 \ {(−1, 0, 0)} | θ2 = θ3 = 0},

L3 = {(0, 0, 0)},

observing that L3 ⊆ L2 ⊆ L1 ⊆ L0. Also define

Lδ = {θ ∈ T3 \ {(−1, 0, 0)} | θ2 ∈ [−δ, 0) and θ3 = 0}

for any δ > 0. We claim the following facts hold for every ϕ ∈ C+
V .

(1) If ϕ(θ) > 0 for some θ ∈ L0, then (Bϕ)(θ̃) > 0 for some θ̃ ∈ L1;

(2) if ϕ(θ) > 0 for some θ ∈ L1, then (Bϕ)(θ̃) > 0 for some θ̃ ∈ L2;

(3) if ϕ(θ) > 0 for some θ ∈ L2, then there exists δ > 0 such that (Bϕ)(θ̃) > 0 for every θ̃ ∈ Lδ;

(4) if there exists δ > 0 such that ϕ(θ) > 0 for every θ ∈ Lδ, then (Bϕ)(θ̃) > 0 for every θ̃ ∈ L1 \L2;

and

(5) if ϕ(θ) > 0 for every θ ∈ L1 \ L2, then (Bϕ)(θ̃) > 0 for every θ̃ ∈ L0 \ L2.

Additionally, we claim the following facts hold for every ϕ ∈ C+
V .

(3′) If ϕ(θ) > 0 for some θ ∈ L2, then (Bϕ)(θ̃) > 0 for θ̃ = (0, 0, 0), that is, for θ̃ ∈ L3; and

(5′) if ϕ(θ) > 0 for every θ ∈ L1 \ L2, then (Bϕ)(θ̃) > 0 for every θ̃ ∈ L2 \ L3.

If one accepts the above facts then it is immediate from (1)–(5) that if ϕ ∈ C+
V \{0} then (B5ϕ)(θ) > 0

for every θ ∈ L0 \L2. (Note that if ϕ ∈ C+
V \ {0} then ϕ(θ) > 0 for some θ ∈ L0.) It is also immediate

from (1)–(4) and (5′) that if ϕ ∈ C+
V \ {0} then (B5)(θ) > 0 for every θ ∈ L2 \ L3 and thus for every

θ ∈ (L0 \ L2) ∪ (L2 \ L3) = L0 \ L3 = L0 \ {(0, 0, 0)}. Finally, one sees that if ϕ ∈ C+
V \ {0} then also

B2ϕ ∈ C+
V \ {0}, and using (1), (2), and (3′) one concludes that (B5ϕ)(θ) > 0 at θ = (0, 0, 0). One

therefore concludes that if ϕ ∈ C+
V \ {0}, then (B5)(θ) > 0 for every θ ∈ L0 = T3 \ {(−1, 0, 0)}.
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Now fixing any ϕ ∈ C+
V \ {0}, write

(B5ϕ)(θ) = Q0ν0(θ) +Q1ν1(θ) + ψ(θ)

with ψ ∈ C0(T3) as per Theorem 8.2. Then

Q0 =
1

2

∫ 0

−1
t2(1 + t)[(B4ϕ)(t, 0, 0)] dt, Q1 =

∫ 0

−1
t2(1 + t)[(B4ϕ)(−1, t, 0)] dt.

As B2ϕ ∈ C+
V \ {0}, one has from (1) and (2) that (B4ϕ)(θ) > 0 for some θ ∈ L2, that is, for some

θ = (t, 0, 0) with t ∈ (−1, 0]. Thus Q0 > 0. Similarly, as Bϕ ∈ C+
V \ {0}, one has from (1)–(3) that

there exists δ > 0 such that (B4ϕ)(θ) > 0 for every θ ∈ Lδ, and in particular for every θ = (−1, t, 0)

with t ∈ [−δ, 0). Thus Q1 > 0. With this, the existence of a uniform lower bound M5 for B5ϕ follows

directly from Lemma 8.7.

There remains to establish the properties (1)–(5) and (3′) and (5′). For the most part, these follow

rather straightforwardly from the formulas (8.3), (8.4) for B0ϕ and B1ϕ. Let us write (8.3) as (bm33)

(B0ϕ)(θ̃) = ∼

∫ eθ2

eθ1

∼

∫ eθ3

eθ2

Φ0(t1, t2, θ̃1, θ̃2, θ̃3)ϕ(t1, t2, 0) dt2 dt1,

(B̃1ϕ)(θ̃) = ν1(θ̃) ∼

∫ eθ1

−1

∼

∫ eθ2

eθ1

∼

∫ eθ3

eθ2

Φ1(t0, t1, t2, θ̃1, θ̃3)ϕ(t0, t1, t2) dt2 dt1 dt0,

(8.14)

using the variable θ̃ = (θ̃1, θ̃2, θ̃3). We recall that the arguments of these integrals are nonnegative

throughout the range of integration, and so it is enough to prove for each of the indicated θ̃ in the

above claimed properties, that either (B0ϕ)(θ̃) > 0 or (B1ϕ)(θ̃) > 0. Generally, this will be done by

exhibiting a point (t1, t2) or (t0, t1, t2) in the range of integration at which the integrand is strictly

positive. As we are taking average integrals, it will not matter if the upper and lower limits of an

integral are equal.

To prove (1), we assume that ϕ(θ) > 0 for some θ = (θ1, θ2, θ3) ∈ L0, and without loss we may

assume that (spaced)

−1 < θ1 < θ2 < θ3 < 0 (8.15)

as ϕ is continuous on L0. Now letting θ̃ = (θ̃1, θ̃2, θ̃3) = (θ1, θ2, 0) ∈ L1, one sees directly that

(B1ϕ)(θ̃) > 0. In particular, the relevant integrand in (8.14) is strictly positive at the point (t0, t1, t2) =

(θ1, θ2, θ3) which lies within the range of integration, as we have from (8.4) that

Φ1(θ1, θ2, θ3, θ1, 0)ϕ(θ1, θ2, θ3) = (θ2 − θ1)

(
θ3 − θ2
−θ1

)
(θ3 − θ1)(1 + θ1 − θ2)ϕ(θ1, θ2, θ3) > 0.
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Observe that the assumptions (8.15) are used in drawing this conclusion. Additionally, ν1(θ̃) > 0 as

θ1 > −1. With this (1) is established.

The proof of (2) is similar. We assume that ϕ(θ) > 0 for some θ = (θ1, θ2, 0) ∈ L1, and without loss

−1 < θ1 < θ2 < θ3 = 0. Letting θ̃ = (θ1, 0, 0) ∈ L2, one sees that the integrand of the second integral

in (8.14) is positive at (t0, t1, t2) = (θ1, θ2, 0) and also ν1(θ̃) > 0 as before. Thus again (B1ϕ)(θ̃) > 0,

and (2) is proved.

The proof of (3) is slightly different from the proofs of (1) and (2). First, assuming that ϕ(θ) > 0

for some θ ∈ L2, we may assume that θ = (θ1, 0, 0) where −1 < θ1 < 0. Further, by continuity, there

exists δ > 0 such that ϕ(θ1, γ, 0) > 0 for every γ ∈ [−δ, 0], and where also θ1 < −δ. Now let any

point θ̃ ∈ Lδ be given, that is, θ̃ = (θ̃1, θ̃2, 0) where −1 ≤ θ̃1 ≤ θ̃2 < 0 and also −δ ≤ θ̃2 < 0. Two

cases now arise. First, suppose that θ̃1 ≥ θ1. Then as in the proofs of (1) and (2), one shows that

(B1ϕ)(θ̃) > 0 by noting that the point (t0, t1, t2) = (θ1, θ̃2, 0) lies in the domain of integration and the

relevant integrand is positive there, and again that ν1(θ̃) > 0. The fact that (thinq)

θ1 < −δ ≤ θ̃2 < 0, (8.16)

in particular, is used here. For the second case we assume that θ̃1 ≤ θ1, and here we show that

(B0ϕ)(θ̃) > 0. Indeed, the relevant integrand is strictly positive at (t1, t2) = (θ1, θ̃2), again because

of (8.16). This establishes (3). NEED TO FINISH PROOF.

Proof of Theorem 7.3. Given any ϕ ∈ C(Tm)+ \ {0}, then by (7.24) of Proposition 7.5 we have the

upper bound Akϕ ≤ 2k‖ϕ‖um (here the order is with respect to the cone C(Tm)+) for every k ≥ m−1,

and in particular for every k ≥ 3 if m = 2 and for every k ≥ 5 if m = 3.

To obtain a lower bound for Akϕ, fix ψ ∈ C(Tm)+\{0} satisfying ψ ≤ ϕ and such that the support

of the function ψ is contained in the set Om. Then upon defining

ζ(θ) =
ψ(θ)

um(θ)
for θ ∈ Tm,

we have that ζ ∈ C(Tm)+\{0}. Moreover, we have directly from the formulas (7.3) and (7.28) defining

A and B that

(Bkζ)(θ) =
(Akψ)(θ)

um(θ)
≤

(Akϕ)(θ)

um(θ)

for every k ≥ 1 and for θ ∈ Om. From this it follows, by Proposition 8.1 in the case m = 2, and by

Proposition 8.8 in the case m = 3, that we have the lower bounds (ab)
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Mkum(θ) ≤ (Akϕ)(θ) (8.17)

for every k ≥ 3 if m = 2 and for every k ≥ 5 if m = 3. The bounds (8.17) are valid for θ in the interior

of Tm, and thus for every θ ∈ Tm as the functions involved are continuous in Tm.

We conclude that Akϕ ∼ um for every k ≥ 3 if m = 2 and for every k ≥ 5 if m = 2, as desired.

Proof of Theorem 7.1. This follows directly from Proposition 7.2 and Theorem 7.3.
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