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Periodic points of nonexpansive maps and nonlinear
generalizations of the Perron-Frobenius theory
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Abstract. Let Kn = {x ∈ Rn | xi ≥ 0, 1 ≤ i ≤ n} and suppose that f : Kn → Kn is
nonexpansive with respect to the l1-norm, ‖x‖1 =

∑n
i=1 |xi|, and satisfies f(0) = 0. Let P3(n)

denote the (finite) set of positive integers p such that there exists f as above and a periodic point
ξ ∈ Kn of f of minimal period p. For each n ≥ 1 we use the concept of “admissible arrays
on n symbols” to define a set of positive integers Q(n) which is determined solely by number
theoretical and combinatorial constraints and whose computation reduces to a finite problem. In
a separate paper the sets Q(n) have been explicitly determined for 1 ≤ n ≤ 50, and we provide
this information in an appendix. In our main theorem (Theorem 3.1) we prove that P3(n) = Q(n)
for all n ≥ 1. We also prove that the set Q(n) and the concept of admissible arrays are intimately
connected to the set of periodic points of other classes of nonlinear maps, in particular to periodic
points of maps g : Dg → Dg, where Dg ⊂ Rn is a lattice (or lower semilattice) and g is a lattice
(or lower semilattice) homomorphism.
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1. Introduction

If D is a set and g : D→ D a map, gj will denote the j-fold composition of g with
itself. If ξ ∈ D and gp(ξ) = ξ for some p ≥ 1, ξ will be called a periodic point of g
of period p and p will be called the minimal period if gj(ξ) 6= ξ for 1 ≤ j < p. If D
is a subset of a vector space V and ‖ · ‖ is a norm on V , a map f : D→ V is called
nonexpansive with respect to ‖ · ‖ if

‖f(x)− f(y)‖ ≤ ‖x− y‖ for all x, y ∈ D. (1.1)
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We define H(D, ‖ · ‖) to be the set of maps h : D→ D such that h is nonexpansive
with respect to ‖ · ‖. If V is finite dimensional, a norm ‖ · ‖ on V is polyhedral if
there exist finitely many continuous linear functionals θi, 1 ≤ i ≤ N , such that

‖x‖ = max {|θi(x)| : 1 ≤ i ≤ N}.

Important examples of polyhedral norms on Rn are the l∞-norm or sup-norm,
‖ · ‖∞, and the l1-norm, ‖ · ‖1:

‖x‖∞ = max
1≤i≤n

|xi| and ‖x‖1 =
n∑
i=1

|xi|. (1.2)

If D is a closed subset of a vector space V , h ∈ H(D, ‖ · ‖) and x ∈ D, it is
of interest in many applications to understand the behaviour of hj(x) as j → ∞.
If V is finite dimensional and ‖ · ‖ is polyhedral, it is known (see [1], [2], [5], [6], [8],
[9], [19], [20]) that if h ∈ H(D, ‖ · ‖) and {‖hj(x)‖ : j ≥ 1} is bounded, then hj(x)
approaches a periodic orbit of h, i.e., there exists a periodic point ξ = ξx ∈ D of
minimal period p = px and limj→∞ hjp(x) = ξ. Furthermore, there is an integer
N = N(dimV, ‖ · ‖), independent of h ∈ H(D, ‖ · ‖) such that the minimal period
p of any periodic point of any h ∈ H(D, ‖ · ‖) satisfies p ≤ N . Thus

P(D, ‖ · ‖) =
{
p | ∃h ∈ H(D, ‖ · ‖) and a periodic point of h

of minimal period p
} (1.3)

is a finite set, and it is reasonable to ask whether one can explicitly determine
P(D, ‖ · ‖) or some naturally defined subset of P(D, ‖ · ‖).

In this paper we take V = Rn, ‖ · ‖ = ‖ · ‖1, the l1-norm, and D = Kn = {x ∈
Rn | xi ≥ 0, 1 ≤ i ≤ n}. We define F3(n) by

F3(n) =
{
h ∈ H(D, ‖ · ‖) | h(0) = 0

}
, (1.4)

and we define a natural subset of P(Kn, ‖ · ‖1) by

P3(n) =
{
p ≥ 1 | ∃h ∈ F3(n) and a periodic point of h

of minimal period p
}
.

(1.5)

We shall determine P3(n) precisely in terms of combinatorial and number theoreti-
cal constraints. In an appendix we shall explicitly list the sets P3(n) for 1 ≤ n ≤ 50.

To describe a special case of our main theorem, it is necessary to define an
admissible array on n symbols.

Suppose that L is a finite, totally ordered set with total ordering ≺, that Σ is
a set with n elements, and that for each i ∈ L, θi : Z→ Σ is a map. (Z will always
denote the integers and N the natural numbers.) We shall say that {θi | i ∈ L}
is an admissible array on n symbols if the maps θi, i ∈ L, satisfy the following
conditions:
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(1) For each i ∈ L, the map θi : Z→ Σ is periodic of minimal period pi, where
1 ≤ pi ≤ n. Furthermore, for 1 ≤ j < k ≤ pi we have θi(j) 6= θi(k).

(2) If m1 ≺ m2 ≺ · · · ≺ mr+1 is any increasing sequence of (r + 1) elements of
L (r ≥ 1) and if

θmi(si) = θmi+1(ti)

for 1 ≤ i ≤ r, then

r∑
i=1

(ti − si) 6≡ 0 mod ρ,

where ρ is the greatest common divisor of {pmi | 1 ≤ i ≤ r + 1}.
If {θλ : Z→ Σ | λ ∈ L} is an admissible array on n symbols as above, we define

the period of the admissible array to be the least common multiple of {pλ | λ ∈ L}.
Generally, if S is a finite set of positive integers, gcd(S) will denote the greatest
common divisor of the elements of S and lcm(S) will denote the least common
multiple of the elements of S. We sometimes denote an admissible array by θ
instead of {θλ | λ ∈ L}, where θ : Z× L→ Σ and θ(j, λ) = θλ(j). We define a set
Q(n) by

Q(n) =
{
p ∈ N | ∃ an admissible array on n symbols which has period p

}
. (1.6)

For purposes of computing Q(n), one can always assume (see [16]) that L is a
subset of N with the usual ordering and Σ = {j ∈ N | 1 ≤ j ≤ n}.

Readers may reasonable wonder whether Q(n) admits a simple, inductive de-
scription. However, results described at the end of Section 4 of this paper suggest
that such a hope is too optimistic.

Our principal result is a more detailed and precise version of the following
theorem.

Theorem A. P3(n) = Q(n) for all n ≥ 1.

Theorem A is a precise generalization of an aspect of the classical Perron-
Frobenius theory [7] of matrices with nonnegative entries. If M is a nonnegative
n × n matrix whose columns all sum to one (a column stochastic matrix) then
x 7→ Mx =: f(x) (x a column vector in Rn) determines an l1-norm nonexpansive
map of Kn to Kn with f(0) = 0. Perron-Frobenius theory (see [11] or Section 9 of
[16] for details) implies that, for each x ∈ Kn, there exists a periodic point ξx of
f of minimal period px = p with limk→∞ fkp(x) = ξx. Furthermore, the number
px is the order of some element of the symmetric group on n letters; and if p is
the order of an element of the symmetric group on n letters, then there exists a
column stochastic matrix M and a periodic point ξ of M of minimal period p.

We conclude this introduction with an outline of the paper. In Section 2 some
theorems and definitions from earlier papers are recalled and a few new results
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are given. In particular we define several different classes of maps in Rn: F1(n),
F2(n), F3(n), G1(n) and G2(n); and for each class of maps, we consider the integers
p for which there exists a map f in the class and a periodic point of the map of
minimal period p. Next we recall various elementary definitions concerning lattices
and lower semilattices in Rn. In Propositions 2.1 and 2.2 we begin the description
of an intimate connection between lattices and lower semilattices in Rn on the one
hand and admissible arrays and periodic points of maps f ∈ F3(n) on the other.

In Section 3 we prove Theorem 3.1, which is the basic result in this paper and
a generalization of Theorem A. The proof takes all of Section 3 and is carried out
in a sequence of eleven lemmas. We observe that for each p ∈ Q(n) there is a
“minimal” admissible array θ of period p. For each such array θ, we associate an
integral-preserving and order-preserving mapM(θ) := f : Kn → Kn and a periodic
point y = y(θ) of f of minimal period p. This is accomplished in Lemma 3.6 and
proves Theorem A. If θ = {θi : Z → Σ | i ∈ L} and θi has minimal period pi, the
remainder of the section is devoted to relating the structure of the lower semilattice
V generated by {f j(y)|j ≥ 0, y = y(θ), f = M(θ)} to the structure of θ. For
example, if pi is as above, we prove that there are irreducible elements zi ∈ V ,
i ∈ L, zi ≤ y = y(θ), such that zi is a periodic point of f of minimal period pi.

In Section 4 we derive some consequences of Theorem 3.1 and list some open
questions.

An appendix lists the elements of Q(n) for 1 ≤ n ≤ 50.

2. Background material: admissible arrays and lower semi-lattices

The cone Kn = {x ∈ Rn | xi ≥ 0, 1 ≤ i ≤ n} induces a partial ordering by x ≤ y
if and only if y − x ∈ Kn. We shall write x < y if x ≤ y and x 6= y. If y − x 6∈ Kn

we write x 6≤ y; and if x 6≤ y and y 6≤ x, we shall say that x and y are incomparable
or not comparable. A map f : D ⊂ Rn → Rn is order-preserving if f(x) ≤ f(y)
for all x, y ∈ D with x ≤ y. If fi(x) denotes the ith coordinate of f(x), then f is
called integral-preserving if

n∑
i=1

fi(x) =
n∑
i=1

xi for all x ∈ D;

and f will be termed sup-norm-decreasing if

‖f(x)‖∞ ≤ ‖x‖∞ for all x ∈ D.

We wish to define some refinements of F3(n).
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Definition 2.1. Define u = (1, 1, . . . , 1) ∈ Rn and consider the following condi-
tions on maps f : Kn → Kn:

(1) f(0) = 0,
(2) f is order-preserving,
(3) f is integral-preserving,
(4) f is nonexpansive with respect to the l1-norm,
(5) f(λu) = λu for all λ > 0,
(6) f is sup-norm-decreasing.

We define sets of maps Fj(n), 1 ≤ j ≤ 3, by

F1(n) =
{
f : Kn → Kn | f satisfies (1), (2), (3) and (5)

}
,

F2(n) =
{
f : Kn → Kn | f satisfies (1), (2) and (3)

}
,

and

F3(n) =
{
f : Kn → Kn | f satisfies (1) and (4)

}
.

A proposition of Crandall and Tartar [3] implies that if f : Kn → Kn is integral-
preserving, then it is order-preserving if and only if it is l1-norm nonexpansive.
Thus we see that

F1(n) ⊂ F2(n) ⊂ F3(n). (2.1)

If f : Kn → Kn is integral-preserving and order-preserving, one can easily check
that f satisfies (5) if and only if f is sup-norm-decreasing. Thus we have

F1(n) =
{
f : Kn → Kn | f satisfies (1), (2), (3) and (6)

}
.

Using this characterization of F1(n) and a result of Lin and Krengel [4], we see that
if f ∈ F1(n) and y ∈ Kn is a periodic point of f , then there is a permutation σ,
depending on f and y, such that f(y) = (yσ(1), yσ(2), . . . , yσ(n)).

Definition 2.2. We define sets of positive integers Pj(n), 1 ≤ j ≤ 3, by

Pj(n) =
{
p ≥ 1 | ∃f ∈ Fj(n) and a periodic point of f

of minimal period p
}
.

(2.2)

Our theorems will describe the sets Pj(n), 2 ≤ j ≤ 3, precisely and provide
considerable information about P1(n).

For x, y ∈ Rn, we shall denote by x∧ y and x∨ y the standard lattice operation
on Rn:

x ∧ y := z, zi = min{xi, yi} for 1 ≤ i ≤ n
x ∨ y := w, wi = max{xi, yi} for 1 ≤ i ≤ n.
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If B = {xj | 1 ≤ j ≤ k} is a finite set of points in Rn, we shall write in the obvious
notation x1 ∧x2 ∧ · · · ∧xk =

∧k
j=1 x

j =
∧
x∈B x and x1 ∨x2 ∨ · · · ∨xk =

∨k
j=1 x

j =∨
x∈B x. As usual, we define x+ = x∨0; and for a set A, |A| denotes the cardinality

of A. A subset V of Rn will be called a lower semilattice if x ∧ y ∈ V whenever
x ∈ V and y ∈ V ; V will be called a lattice if x ∧ y ∈ V and x ∨ y ∈ V whenever
x ∈ V and y ∈ V .

A set V ⊂ Rn will be called finite lower semilattice (respectively, finite lattice)
if V is a lower semilattice (lattice) and |V | < ∞. If A ⊂ Rn, there is a minimal
semilattice V ⊃ A and a minimal lattice W ⊃ A (minimal in the sense of set
inclusion); V will be called the lower semilattice generated by A and W the lattice
generated by A. Furthermore, (see [11, p. 954])

V =
{ ∧
z∈T

z | T ⊂ A, 1 ≤ |T | <∞
}

and

W =
{ ∨
w∈T

w | T ⊂ V, 1 ≤ |T | <∞
}
,

so V and W are finite if A is finite.
If V is a lattice (respectively, lower semilattice), a map h : V → V will be called

a lattice homomorphism (respectively, a lower semilattice homomorphism) if

h(x ∧ y) = h(x) ∧ h(y) and h(x ∨ y) = h(x) ∨ h(y) for all x, y ∈ V.

(respectively, h(x ∧ y) = h(x) ∧ h(y) for all x, y ∈ V ).

Definition 2.3. If f : D ⊂ Rn → Rn, we shall write f ∈ G1(n) (respectively,
f ∈ G2(n)) if and only if D is a lower semilattice (respectively, lattice), f(D) ⊂ D
and f is a lower semilattice homomorphism (respectively, a lattice homomorphism).

Definition 2.4. If p is a positive integer, we shall write p ∈ Q1(n) (respectively
p ∈ Q2(n)) if there exists a map f ∈ G1(n) (respectively f ∈ G2(n)) and a periodic
point ξ of f of minimal period p.

One of the authors [17] first observed that there is an intimate connection
between periodic points of maps f ∈ F3(n) and periodic points of lower semilattice
homomorphisms. The following proposition, which is essentially a special case of
Proposition 2.1 in [11] gives a refinement of the observation in [17]. In the result
below note that a norm ‖ · ‖ on Rn is called monotonic if ‖x‖ ≤ ‖y‖ whenever
0 ≤ x ≤ y; the norm is strictly monotonic if ‖x‖ < ‖y‖ whenever 0 ≤ x < y.

Proposition 2.1 (Compare Proposition 2.1 in [11]). Let ‖ · ‖ be a strictly mono-
tonic norm on Rn and suppose that f : Kn → Kn is nonexpansive with respect to
‖ · ‖ and f(0) = 0. Let {pi}∞i=1 be a given, strictly increasing sequence of positive
integers and define V by

V =
{
x ∈ Kn | lim

i→∞
fpi(x) = x

}
.
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Assume either (a) f is order-preserving or (b) ‖ · ‖ is the l1-norm. In case (a),
V is a closed set and a lattice, f(V ) ⊂ V , f is a lattice homomorphism on V and
f |V is an isometry. In case (b), V is a closed set and a lower semilattice, f is a
lower semilattice homomorphism on V and f |V is an isometry.

Proof. The continuity of f immediately implies that f(V ) ⊂ V . If x, y ∈ V , the
nonexpansiveness of f implies that

‖f(x)− f(y)‖ ≤ ‖x− y‖.

If strict inequality holds in the above inequality, the nonexpansiveness of f implies
that

‖fpi(x) − fpi(y)‖ ≤ ‖f(x)− f(y)‖ < ‖x− y‖,
which contradicts limi→∞ fpi(x) = x and limi→∞ fpi(y) = y. Thus f |V is an
isometry. In case (a), Proposition 2.1 of [11] implies that if x, y ∈ V , then f(x∧y) =
f(x) ∧ f(y) and f(x ∨ y) = f(x) ∨ f(y); and is follows easily that x ∧ y ∈ V and
x∨ y ∈ V and f : V → V is a lattice homomorphism. If y ∈ cloV and ε > 0, there
exists x ∈ V such that ‖x − y‖ < ε/2. The nonexpansiveness of f implies that
‖fpi(y)− fpi(x)‖ < ε/2 for all i; and since limi→∞ ‖fpi(x) − x‖ = 0, we conclude
that there exists i0 such that ‖fpi(y) − y‖ < ε for i ≥ i0. This shows that y ∈ V
and V is closed.

In case (b), the proofs that f(V ) ⊂ V , f |V is an isometry and V is closed remain
unchanged. To complete the proof, it suffices to show that f(x ∧ y) = f(x) ∧ f(y)
for all x, y ∈ V . An examination of the proof of Proposition 2.1 in [11] shows that
the same proof applies and proves that f(x∧ y) = f(x)∧ f(y) if we can prove that
for all j ≥ 1,

f j(x ∧ y) ≤ f j(x) and f j(x ∧ y) ≤ f j(y).

Because x, y ∈ Kn, the definition of the l1-norm gives

‖x− (x ∧ y)‖ = ‖x‖ − ‖x ∧ y‖.

The nonexpansiveness of f j implies that

‖f j(x) − f j(x ∧ y)‖ ≤ ‖x− (x ∧ y)‖ = ‖x‖ − ‖x ∧ y‖. (2.4)

Because f j is nonexpansive and f j(0) = 0, we see that ‖f j(x∧ y)‖ ≤ ‖x∧ y‖; and
because f |V is an isometry and f(0) = 0, we have ‖f j(x)‖ = ‖x‖ for all j ≥ 1.
Suppose, by way of contradiction, that f j(x ∧ y) 6≤ f j(x) for some j. Then there
exists i, 1 ≤ i ≤ n, with (

f j(x ∧ y)
)
i
>
(
f j(x)

)
i
.

It follows easily (using (2.4) also) that

‖f j(x)‖ − ‖f j(x ∧ y)‖ < ‖f j(x) − f j(x ∧ y)‖ ≤ ‖x‖ − ‖x ∧ y‖. (2.5)



148 R.D. Nussbaum, M. Scheutzow and S.M. Verduyn Lunel Sel. math., New ser.

Since ‖f j(x)‖ = ‖x‖, we conclude from (2.5) that

‖x ∧ y‖ < ‖f j(x ∧ y)‖,

which contradicts ‖f j(x ∧ y)‖ ≤ ‖x ∧ y‖. Thus we find that f j(x ∧ y) ≤ f j(x) for
all j ≥ 1, and the same proof shows that f j(x ∧ y) ≤ f j(y) for all j ≥ 1. �
Corollary 2.1. Let ‖ ·‖ and f be as in Proposition 2.1 and assume that f satisfies
either condition (a) or (b) of Proposition 2.1. For a fixed positive integer p, let
W = {x ∈ Kn | fp(x) = x}. In case (a) or case (b), W is a closed set, f(W ) ⊂W
and f | W is an isometry. In case (a), W is a lattice and f : W → W is a lattice
homomorphism. In case (b), W is a lower semilattice and f : W → W is a lower
semilattice homomorphism. If y ∈ W and Ay = {f j(y) | 0 ≤ j < p}, let Wy be
the lattice generated by Ay and let Vy be the lower semilattice generated by Ay. In
case (a), f(Wy) ⊂ Wy ⊂ W and f |Wy is a lattice homomorphism. In case (b),
f(Vy) ⊂ Vy and f |Vy is a lower semilattice homomorphism.

Proof. In the notation of Proposition 2.1, let pi := ip and let V be as defined in
Proposition 2.1, so W ⊂ V . Continuity of f implies that W is closed, and it is
immediate that f(W ) ⊂ W . Proposition 2.1 implies that f |V is an isometry, so
f |W is an isometry. In case (a), Proposition 2.1 implies that f preserves the lattice
operations on V and hence on W . In particular, if x, z ∈W ,

fp(x ∨ z) = fp(x) ∨ fp(z) = x ∨ z and fp(x ∧ z) = fp(x) ∧ fp(z) = x ∧ z,

so W is closed under the lattice operations and W is a lattice. The same argument
shows that W is a lower semilattice in case (b) and f |W is a lower semilattice
homomorphism. Since Ay ⊂W and W is a lattice in case (a), Wy ⊂W in case (a)
and f |Wy preserves the lattice operations. Using this fact we see in case (a) that
f(Wy) is a lattice and that Ay = f(Ay) ⊂ f(Wy). Thus f(Wy) ∩Wy is a lattice
which contains Ay, and this contradicts the minimality of Wy unless f(Wy) = Wy.
Thus we conclude that f(Wy) = Wy. In case (b), essentially the same argument
shows that Vy is a lower semilattice, f(Vy) = Vy ⊂W and f |Vy is a lower semilattice
homomorphism. �

Proposition 2.1 and Corollary 2.1 show that P3(n) ⊂ Q1(n) and that lower
semilattices in Rn and periodic points of lower semilattice homomorphisms should
play an important role in our analysis. To describe the connection precisely, we
need to recall some standard definitions concerning lower semilattices.

If V ⊂ Rn is a finite lower semilattice and A ⊂ V , we say that A is “bounded
above in V ” if there exists b ∈ V such that a ≤ b for all a ∈ A, b is called an
“upper bound for A in V ”. If A is bounded above in V , then because V is a finite
lower semilattice, there exists β ∈ V such that β is an upper bound for A in V ,
and β ≤ b for all b ∈ V for which b is an upper bound for A in V . We shall write

β = sup
V

(A). (2.6)
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If V is a finite lower semilattice, A ⊂ V is bounded above and f : V → V is a
lower semilattice homomorphism such that fp(x) = x for all x ∈ V and some fixed
p ≥ 1, then it is easy to show (see [11], [15], [17]) that

f(sup
V

(A)) = sup
V

(f(A)). (2.7)

If V ⊂ Rn is a finite lower semilattice, x ∈ V and Ax := {y ∈ V : y < x}, we shall
say that x is irreducible in V or x is join-irreducible in V if Ax is empty or if

sup
V

(Ax) := z < x. (2.8)

If x is irreducible in a finite lower semilattice V in Rn and z := supV (Ax), we define

IV (x) = {j | 1 ≤ j ≤ n, zj < xj} (2.9)

and we define IV (x) = {j | 1 ≤ j ≤ n} if Ax is empty. If V is a finite lower
semilattice in Rn and f : V → V is a lower semilattice homomorphism and there
exists p ≥ 1 with fp(y) = y for all y ∈ V , then it follows easily from (2.7) that
f(x) is an irreducible element of V whenever x ∈ V is an irreducible element of V .
Furthermore (see [15], [17]) every element of V is a periodic point of f and the
minimal period px of any irreducible x ∈ V satisfies px ≤ n.

If W is a finite lower semilattice and x ∈ W , we define hW (x), the height of x
in W by

hW (x) = sup
{
k ≥ 0 | ∃y0, y1, . . . , yk ∈W with yk = x

and yj < yj+1 for 0 ≤ j < k
}
.

(2.10)

We define hW (x) = 0 if there does not exist u ∈W with u < x.
With these definitions we can now recall a basic result from [15]. In the state-

ment of the following proposition, recall that we have already defined admissible
arrays on n symbols in Section 1.

Proposition 2.2 (See Proposition 1.1 and 1.2 in [15]). Let W be a lower semi-
lattice in Rn and g : W → W a lower semilattice homomorphism. Assume that
ξ ∈ W is a periodic point of g of minimal period p, let A = {gj(ξ) | j ≥ 0} and
let V be the lower semilattice generated by A. Define f = g|V considered as a map
from V to V , so fp(x) = x for all x ∈ V . Then there exist elements yi ∈ V ,
1 ≤ i ≤ m, with the following properties:

(1) yi ≤ ξ for 1 ≤ i ≤ m.
(2) yi is an irreducible element of V , so yi is a periodic point of f of minimal

period pi, where 1 ≤ pi ≤ n.
(3) p = lcm

(
{pi | 1 ≤ i ≤ m}

)
, the least common multiple of p1, p2, . . . , pm.
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(4) hV (yi) ≤ hV (yi+1) for 1 ≤ i < m, where hV (·) is the height function on V
defined by eq. (2.10).

(5) For 1 ≤ i < j ≤ m, the sets {fk(yi) : k ≥ 0} and {fk(yj) : k ≥ 0} are
disjoint.

(6) For 1 ≤ i < j ≤ m, the elements yi and yj are not comparable.

If yi, 1 ≤ i ≤ m, are any elements of V which satisfy properties (1)–(6) above,
define L = {i ∈ N | 1 ≤ i ≤ m} with the standard ordering and Σ = {j ∈ N | 1 ≤
j ≤ n}. For 0 ≤ j < pi select aij ∈ IV

(
f j(yi)

)
, where IV (·) is defined by eq. (2.9).

Define θi : Z → Σ by θi(j) = aij for 0 ≤ j < pi and θi is periodic of period pi.
Then it follows that {θi : Z→ Σ | i ∈ L} = θ is an admissible array on n symbols,
θi has minimal period pi and θ has period p.

By using Proposition 2.1 and the remarks preceding it and recalling Defini-
tion 2.2 and 2.4, it is easy to prove (see [15]) that

P1(n) ⊂ P2(n) ⊂ P3(n) ⊂ Q1(n) ⊂ Q(n) (2.11)

and
P2(n) ⊂ Q2(n) ⊂ Q1(n) ⊂ Q(n). (2.12)

Now suppose that θ = {θi : Z→ Σ | i ∈ L} is an admissible array on n symbols
and that θi, i ∈ L, is periodic of minimal period pi. Our goal in the next section
is to associate to θ a map f = M(θ) ∈ F2(n) and a periodic point ξ = ξ(θ) of f of
minimal period p = lcm

(
{pi | i ∈ L}

)
. In conjunction with (2.11) and (2.12), this

will show that
P2(n) = P3(n) = Q2(n) = Q1(n) = Q(n), (2.13)

which is a sharpening of Theorem A. Furthermore, if A = {f j(ξ) | j ≥ 0} and V
is the lower semilattice generated by A, we shall prove that, under mild further
assumptions on θ, there exist elements yi ∈ V , 1 ≤ i ≤ m := |L|, which satisfy
properties (1), (2), (3), (5) and (6) of Proposition 2.2 and “in essence” also satisfy
property (4).

3. P2(n)=P3(n)=Q(n): the fundamental theorem

Suppose that L is a finite, totally ordered set with ordering ≺, that Σ is a set with
n elements, that {θi : Z→ Σ | i ∈ L} = θ is an admissible array on n symbols, and
that θi has period pi. Note that the definition of admissible array depends on the
ordering of L. If |L| = l and the elements of L are ordered by λ1 ≺ λ2 ≺ · · · ≺ λl,
we shall say that α, β ∈ L are adjacent if α = λi and β = λi+1 or α = λi+1 and
β = λi. If α ∈ L, we shall always denote by R(θα) the range of θα:

R(θα) =
{
j | j = θα(k), k ∈ Z

}
⊂ Σ. (3.1)
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An admissible array can be visualized as a semi-infinite array of elements of Σ, the
αth-row being the elements . . . , θα(0), θα(1), . . . , θα(k), . . . .

If m ∈ R(θα) and m = θα(j), we shall say that m+ := θα(j+1) is the immediate
successor of m in row α and m− := θα(j− 1) is the immediate predecessor of m in
row α. This notion is well-defined, for if m = θα(j1), then the properties of arrays
imply that j1 − j is a multiple of pα and θα(j1 − 1) = m− and θα(j1 + 1) = m+.

If L1 is a finite, totally ordered set with |L1| = |L|, ϕ : L1 → L is a one-one
order-preserving map of L1 onto L, Σ1 is a finite set with |Σ1| = |Σ|, ψ : Σ → Σ1
is a one-one map and θ′β := ψ ◦ θϕ(β) for β ∈ L1, then one easily checks that
{θ′β : Z→ Σ1 | β ∈ L1} is an admissible array on n symbols and that θ′β has minimal
period pϕ(β) := p′β. By virtue of this observation we can assume if desired that
L = {i ∈ N | 1 ≤ i ≤ l} with the usual ordering and that Σ = {j ∈ N | 1 ≤ j ≤ n}.

If {θi : Z→ Σ | i ∈ L} =: θ is an admissible array on n symbols and L1 ⊂ L is
a proper subset of L with the ordering inherited from L then {θi : Z→ Σ | i ∈ L1}
is an admissible array on n symbols and is called a proper subarray of θ. If θi
has minimal period pi for i ∈ L, we shall say that θ = {θi : Z → Σ | i ∈ L} is a
“minimal admissible array on n symbols” if, for every proper subset L1 ⊂ L,

lcm
(
{pi | i ∈ L1}

)
< lcm

(
{pi | i ∈ L}

)
. (3.2)

If θ is not a minimal admissible array on n symbols, it is clear that there exists a
proper subset L1 of L such that

lcm
(
{pi | i ∈ L1}

)
= lcm

(
{pi | i ∈ L}

)
(3.3)

and for every proper subset L2 of L1

lcm
(
{pi | i ∈ L2}

)
< lcm

(
{pi | i ∈ L1}

)
. (3.4)

Equations (3.3) and (3.4) imply that {θi : Z→ Σ | i ∈ L1} is a subarray of θ and
a minimal admissible array on n symbols whose period is the same as the period
of θ. Thus we see that

Q(n) =
{
p | p is the period of a minimal admissible array on n symbols

}
. (3.5)

If {θi : Z → Σ | i ∈ L} is a minimal admissible array on n symbols and if π(x)
denotes the number of primes q such that q ≤ x, one can prove that

|L| ≤ π(n/2− 1) + 1 for n 6= 5 and |L| ≤ 2 for n = 5.

Suppose that (L,≺) is a finite totally ordered set and {θi : Z→ Σ | i ∈ L} is an
admissible array on n symbols. If we denote by L′ the set L given a different total
ordering ≺′, it is not necessarily true that {θi : Z → Σ | i ∈ L′} is an admissible
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array. Suppose, however, that |L| = m and that the ordering on L is λi ≺ λi+1 for
1 ≤ i ≤ m. Suppose that there exists j, 1 ≤ j ≤ m, such that R(θλj )∩R(θλj+1) is
empty. Define a one-one map σ : {i ∈ N | 1 ≤ i ≤ m} → {i ∈ N | 1 ≤ i ≤ m} by
σ(i) = i for i 6∈ {j, j+1} and σ(j) = j+1 and σ(j+1) = j (σ is a row transposition)
and define a total ordering ≺′ on L by λσ(i) ≺′ λσ(i+1) for 1 ≤ i ≤ m. If L′ denotes
the set L with the total ordering ≺′, we claim that θ′ := {θλ : Z→ Σ | λ ∈ L′} is an
admissible array on n symbols. If m1 ≺′ m2 ≺′ · · · ≺′ mr+1 and θmi(si) = θmi+1(ti)
for 1 ≤ i ≤ r, we have to prove that

r∑
i=1

(si − ti) 6≡ 0 mod ρ, ρ := gcd(pm1 , pm2 , . . . , pmr+1). (3.6)

Because λj and λj+1 are adjacent with respect to ≺ and ≺′ and because the
intersection of R(θλj ) and R(θλj+1) is empty, at most one element of {λj , λj+1} is
an element of {mi | 1 ≤ i ≤ r + 1}. Using this fact one can see that m1 ≺ m2 ≺
· · · ≺ mr+1, and eq. (3.6) follows because θ is an admissible array.

Definition 3.1. Let θ and θ′ be defined as above. We shall say that θ and θ′ are
equivalent under an allowable row transposition. If θ = {θλ : Z→ Σ | λ ∈ L} and
θ̃ = {θλ : Z → Σ | λ ∈ L̃} are admissible arrays and L = L̃ as sets but L and L̃

possibly have different total orderings, we shall say that θ and θ̃ are equivalent if
L and L̃ have the same ordering or if one can go from θ to θ̃ by a finite sequence
of allowable row transpositions.

If L is a finite totally ordered set, Σ = {j ∈ N | 1 ≤ j ≤ n} and θ = {θλ : Z→
Σ | λ ∈ L} is an admissible array on n symbols, we next define certain natural
quantities associated to θ. If m ∈ Σ, we define L(m; θ) ⊂ L and ρ(m; θ) ∈ N ∪ {0}
by

L(m; θ) =
{
α ∈ L | m ∈ R(θα)

}
and ρ(m; θ) = |L(m; θ)|,

where R(θα) is given by eq. (3.1). We define ρ(m; θ) = 0 if L(m; θ) is empty. If
ρ(m; θ) ≥ 1, we can write

L(m; θ) :=
{
α(m, ν) ∈ L : 1 ≤ ν ≤ ρ(m; θ)

}
, (3.8)

where
α(m, 1) ≺ α(m, 2) ≺ · · · ≺ α(m, ρ), ρ := ρ(m; θ). (3.9)

Thus α(m, ν) is the index in L of the νth-row of θ in which m appears; and if
α 6∈ L(m; θ), m 6∈ R(θα). We define Γ(θ) ⊂ Σ× N and D(θ) ⊂ Kn by

Γ(θ) =
{

(m, ν) ∈ Σ× N : ρ(m) ≥ 1 and 1 ≤ ν ≤ ρ(m)
}

(3.10)

and
D(θ) =

{
x ∈ Kn | 0 ≤ xi ≤ ρ(i) for 1 ≤ i ≤ n

}
. (3.11)
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If (m, ν) ∈ Γ(θ), we define γ(m, ν) ∈ Σ to be the immediate successor of m in row
α(m, ν), i.e.,

γ(m, ν) = k = θα(j + 1), where m = θα(j) and α = α(m, ν). (3.12)

We extend γ to a map of Σ× N into Σ by defining

γ(m, ν) = m for (m, ν) 6∈ Γ(θ). (3.13)

If (m, ν) ∈ Σ× N, we define Mm,ν : Kn → R by

Mm,ν(x) :=
(
xm − (ν − 1)

)+ ∧ 1, x = (x1, x2, . . . , xn), (3.14)

so Mm,ν(x) is that fraction of xm which lies between ν − 1 and ν. For γ de-
fined by (3.12) and (3.13), we define f = M(θ), f : Kn → Kn, by f(x) =
(f1(x), f2(x), . . . , fn(x)), where

fk(x) =
∑

(m,ν), γ(m,ν)=k

Mm,ν(x). (3.15)

It is easy to prove that f = M(θ) ∈ F2(n). We prove a slightly more general fact.

Lemma 3.1. Let Σ = {j ∈ N | 1 ≤ j ≤ n} and suppose that γ : Σ × N → Σ is
a given map. For each (m, ν) ∈ Σ× N let amν be a nonnegative real number such
that

∑∞
ν=1 amν =∞. For (m, ν) ∈ Σ×N and x ∈ Kn, define Wm,ν : Kn → [0,∞)

by

Wm,ν(x) =
(
xm −

ν−1∑
j=1

amj
)+
∧ amν .

Define f : Kn → Kn by f(x) = (f1(x), f2(x), . . . , fn(x)), where

fk(x) :=
∑

γ(m,ν)=k

Wm,ν(x).

Then f is integral-preserving and order-preserving, so f ∈ F2(n).

Proof. The map x 7→ Wm,ν(x) is an order-preserving map, so x 7→ fk(x) is order-
preserving for 1 ≤ k ≤ n. This implies that f is order-preserving.

Notice that for any x = (x1, x2, . . . , xn) and m ∈ Σ

xm =
∞∑
ν=1

Wm,ν(x) and
n∑

m=1

xm =
∑

(m,ν)∈Σ×N
Wm,ν(x).
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It follows that
n∑
k=1

fk(x) =
n∑
k=1

∑
γ(m,ν)=k

Wm,ν(x)

=
∑

(m,ν)∈Σ×N
Wm,ν(x) =

n∑
m=1

xm,

so f is integral-preserving. �
If x = (x1, x2, . . . , xn) and xi denotes the volume of sand in a container of

infinite volume Ci, one can describe a simple physical sand-shifting procedure which
moves the sand around and leaves volume fk(x) in Ck, f as in Lemma 3.1: see
Example 2 in [14] for details. The map f = M(θ) corresponds to the case amν = 1
for all (m, ν) and γ is given by (3.12) and (3.13).

Lemma 3.2. Let L be a finite, totally ordered set with ordering λ1 ≺ λ2 ≺ · · · ≺ λl,
let Σ = {j ∈ N | 1 ≤ j ≤ n} and suppose that θ := {θλ : Z → Σ | λ ∈ L} is an
admissible array on n symbols. If σ : Σ → Σ is a one-one map, let θ̃ denote
the admissible array {σ ◦ θλ : Z → Σ | λ ∈ L} and define σ̂ : Rn → Rn by
σ̂(x) = (xσ(1), xσ(2), . . . , xσ(n)). If f = M(θ) and f̃ = M(θ̃), we have

σ̂ ◦ f̃ ◦ (σ̂)−1 = f. (3.16)

If θ and θ′ are equivalent admissible arrays on n symbols (see Definition 3.1), then

M(θ′) = M(θ). (3.17)

Proof. Let γ : Σ × N → Σ be a map determined by eq. (3.12) and eq. (3.13) for
the admissible array θ, and let γ̃ be the corresponding map for θ̃. One can easily
check that

γ̃
(
σ(m), ν

)
= σ

(
γ(m, ν)

)
.

If Mm,ν(y) is defined by eq. (3.14), one also easily sees that

Mσ(m),ν
(
σ̂−1(y)

)
= Mm,ν(y).

Using these two equations we see that

f̃σ(k)
(
σ̂−1(y)

)
=

∑
γ̃(σ(m),ν)=σ(k)

Mσ(m),ν
(
σ̂−1(y)

)
=

∑
γ(m,ν)=k

Mm,ν(y) = fk(y),
(3.18)

and eq. (3.18) is equivalent to the equation σ̂f̃(σ̂)−1 = f .
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Next suppose that θ and θ′ are equivalent admissible arrays on n symbols. To
prove thatM(θ) = M(θ′), it suffices to assume that θ and θ′ are equivalent under an
allowable row transposition, since the general case follows by repeated application
of this special case. Thus let L′ equal L as a set but with a different total ordering
≺′; the ordering ≺′ is the same as ≺ except that for some j, 1 ≤ j ≤ l, λj+1 ≺′ λj ,
and R(θλj ) ∩ R(θλj+1) is empty. It is easy to check (see (3.8), (3.10) and (3.11))
that L(m; θ) = L(m; θ′), Γ(θ) = Γ(θ′) and D(θ) = D(θ′). Because, for m ∈ Σ, m
is an element of at most one of R(θλj ) and R(θλj+1), one sees that (in the notation
of eq. (3.9))

α(m, 1) ≺′ α(m, 2) ≺′ · · · ≺′ α(m, ρ), ρ = ρ(m; θ). (3.19)

If γ′(m, ν) is defined by (3.12) and (3.13) for the admissible array θ′, it follows
from (3.19) that γ′(m, ν) = γ(m, ν) for all (m, ν) ∈ Σ× N, so M(θ) = M(θ′). �

With these preliminary results and definitions, we state our basic theorem,
which is a refinement of Theorem A.

Theorem 3.1. For n ≥ 1, let Q(n) be defined by eq. (1.6), Pj(n), 1 ≤ j ≤ 3, be
defined by Definition 2.2 and Qj(n), 1 ≤ j ≤ 2, be defined by Definition 2.4. Then
for all n ≥ 1 we have P1(n) ⊂ P2(n) and

P2(n) = P3(n) = Q2(n) = Q1(n) = Q(n). (3.20)

If L = {i ∈ N | 1 ≤ i ≤ l} with the usual total ordering and Σ = {j ∈ N | 1 ≤
j ≤ n}, suppose that θ := {θi : Z → Σ | i ∈ L} is a minimal admissible array on
n symbols and that θi is periodic of minimal period pi for i ∈ L. If f = M(θ) and
D = D(θ) are as in equations (3.11) and (3.15), then f : Kn → Kn is integral
preserving and order-preserving and f(D) ⊂ D. Furthermore, f has a periodic
point y ∈ D with the following properties:

(1) y has minimal period p = lcm
(
{pi : i ∈ L}

)
.

(2) If A = {f j(y) | j ≥ 0} and V is the lower semilattice generated by A, then
f(V ) ⊂ V , f : V → V is a lower semilattice homomorphism and fp(x) = x
for all x ∈ V .

(3) For each i ∈ L there exists an irreducible element zi ∈ V of V such that zi ≤
y and zi is a periodic point of f of minimal period pi. Furthermore, y =∨
i∈L z

i and the elements zi and zk are not comparable for 1 ≤ i < k ≤ l.
(4) If IV (·) is defined by eq. (2.9), IV (f j(zi)) = {θi(j)}.
(5) If i, k ∈ L and i < k and R(θi)∩R(θk) is nonempty, then hV (zi) < hV (zk),

where hV (·) is given by eq. (2.10) and R(θλ) by eq. (3.1).
(6) There exists a one-one map ϕ : L → L such that if L′ denotes L with the

new total ordering ϕ(1) ≺′ ϕ(2) ≺′ · · · ≺′ ϕ(l), then θ′ = {θi : Z → Σ |
i ∈ L′} is an admissible array on n symbols which is equivalent to θ and
hV (zϕ(i)) ≤ hV (zϕ(i+1)) for 1 ≤ i < l.
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Lemma 3.1 implies that f ∈ F2(n), so if we prove Property (1) in Theorem 3.1,
then eq. (3.5) and the remarks at the end of Section 2 imply that eq. (3.20) holds.
We already know that P1(n) ⊂ P2(n). Thus Property (1) already gives a refine-
ment of Theorem A. The remaining properties listed in Theorem 3.1 provide an
approximate converse to Proposition 2.2. Notice the assumption that θ is minimal
automatically implies that property (5) in Proposition 2.2 will be satisfied.

Property (6) of Theorem 3.1 implies that if we initially replace the minimal
admissible array θ with a total ordering ≺ on L by an appropriate equivalent
admissible array θ′ with total ordering ≺′ on L, then hV (zi) ≤ hV (zk) whenever
i ≺′ k. After relabelling, this corresponds to property (4) in Proposition 2.2.
Property (5) of Theorem 3.1 shows that if i < k then it is often true that hV (zi) <
hV (zk), but in general this inequality may fail if R(θi) ∩R(θk) is empty.

We shall now establish a sequence of lemmas which will cumulatively establish
Properties (1)–(6) of Theorem 3.1.

Lemma 3.3. Let L be a finite, totally ordered set with a total ordering ≺, let
Σ = {j ∈ N | 1 ≤ j ≤ n}, let θ = {θi : Z→ Σ | i ∈ L} be an admissible array on n
symbols, and write f = M(θ) and D = D(θ) (see eq. (3.11) and eq. (3.15)). Then
it follows that f(D) ⊂ D.

Proof. For a fixed k ∈ Σ and x ∈ D, we have to prove that 0 ≤ fk(x) ≤ ρ(k),
where ρ(k) := ρ(k; θ) is as in eq. (3.7). Because x ∈ D, we have that Mm,ν(x) = 0
for ν > ρ(m; θ), so, for Γ(θ) as in eq. (3.10),

fk(x) =
∑

(m,ν)∈Γ(θ), γ(m,ν)=k

Mm,ν(x).

Let L(k; θ) = {α(k, r) | 1 ≤ r ≤ ρ(k)} (see eq. (3.8) and eq. (3.9)). If (m, ν) ∈ Γ(θ)
and γ(m, ν) = k, there must exist r such that k is the immediate successor of m in
row α(k, r). If we write k = θα(jr) for α = α(k, r), then m = θα(jr−1) is uniquely
determined, and ν is also uniquely determined (row α(k, r) is the νth row of the
admissible array θ in which m appears). It follows that for each r, 1 ≤ r ≤ ρ(k),
there is at most one (m, ν) ∈ Γ(θ) such that k is the immediate successor of m
in row α(k, r). If we write Γk(θ) = {(m, ν) ∈ Γ(θ) | γ(m, ν) = k}, it follows that
|Γk(θ)| ≤ ρ(k) and

fk(x) =
∑

(m,ν)∈Γk(θ)

Mm,ν(x) ≤
∑

(m,ν)∈Γk(θ)

1 ≤ ρ(k),

so f(D) ⊂ D. �
The next lemma is not strictly necessary for the proof of Theorem 3.1. We

include the lemma because it sheds light on the nature of periodic points of f =
M(θ) and the dynamics of iterates of f .
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Lemma 3.4. Let Σ = {j ∈ N | 1 ≤ j ≤ n} and let γ : Σ×N→ Σ be a given map.
Define a map f : Kn → Kn by

fk(x) =
∑

γ(m,ν)=k

Mm,ν(x) for k = 1, 2, . . . , n,

where f(x) = (f1(x), f2(x), . . . , fn(x)) and Mm,ν(x) is given by eq. (3.14). Then
f is integral-preserving and order-preserving, and for every x ∈ Kn there exists
j = jx ∈ N such that f j(x) := ξ is a periodic point of f .

Proof. We already know (Lemma 3.1) that f is integral-preserving and order-
preserving. For each r ∈ R, let [r] denote the greatest integer m ≤ r; and for
x ∈ Kn, x = (x1, x2, . . . , xn), define

Fract(x) =
{
xi − [xi] | xi − [xi] > 0

}
and N(x) =

∣∣{i | xi − [xi] > 0
}∣∣.

We claim that N(f(x)) ≤ N(x). To see this, let µ = N(x) and let

Sk =
{

(m, ν) | γ(m, ν) = k
}
.

Exactly µ of the ordered pairs (m, ν) satisfy 0 < Mm,ν(x) < 1, and Mm,ν(x) = 0
or Mm,ν(x) = 1 for all other (m, ν). It follows that if any set Sk, 1 ≤ k ≤ n,
contains more than one ordered pair (m, ν) with 0 < Mm,ν(x) < 1, then there
are at most (µ − 2) sets Sk which contain at least one ordered pair (m, ν) with
0 < Mm,ν(x) < 1. Thus N(f(x)) < N(x) unless each set Sk contains at most one
ordered pair (m, ν) with 0 < Mm,ν(x) < 1, in which case N(f(x)) = N(x). Since
0 ≤ N(f j(x)) ≤ n for all j ≥ 0, there must exist j1 ≥ 0, dependent on x, such that
N(f j(x)) is constant for all j ≥ j1. By the remarks above,

Fract
(
f j(x)

)
= Fract

(
fk(x)

)
for all j, k ≥ j1.

Because ‖f j(x)‖1 = ‖x‖1 for all j ≥ 1 and Fract
(
f j(x)

)
is fixed for j ≥ j1,

f j(x) ∈ Γ for all j ≥ j1, where Γ is a finite set. Thus there must exist j1 ≤ j < k
with fk(x) = f j(x), so f j(x) is a periodic point of period k − j. �

In the generality of Lemma 3.4 it is unclear how to determine in terms of γ
whether one has a periodic point ξ of f of some specified minimal period p. To
treat this problem we shall have to exploit the fact that our γ arises from an
admissible array θ by means of eq. (3.12).

If x ∈ D(θ), we have 0 ≤ xm ≤ ρ(m; θ) for m ∈ Σ. In general if r is a
nonnegative real and 0 ≤ r ≤ ρ(m; θ) (where θ = {θi : Z → Σ | i ∈ L} is an
admissible array on n symbols), we can write r uniquely as

r =
∑
λ∈L

rλ, (3.21)
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where 0 ≤ rλ ≤ 1 for λ ∈ L, and the numbers rλ are uniquely determined by (3.21)
and the conditions

(a) rλ = 0 if m 6∈ R(θλ);
(b) rλ = 1 if there exists λ′ ∈ L, λ ≺ λ′, with rλ′ > 0.

If L = {j ∈ N | 1 ≤ j ≤ l} with a total ordering ≺ (not necessarily the standard
ordering) and r1, r2, . . . , rl are obtained as above from r, we shall write

Cm(r) = (r1, r2, . . . , rl). (3.22)

Note that Cm(r) depends on m, r and θ and in particular depends on the ordering
on L. In this notation, given x = (x1, x2, . . . , xn) ∈ D(θ), we shall write

(xm,1, xm,2, . . . , xm,l) = Cm(xm); (3.23)

and if f = M(θ), f(x) = (f1(x), f2(x), . . . , fn(x)), x ∈ D(θ) and xm,λ are as in
eq. (3.23) one can see that

fk(x) =
∑
∗
xm,λ, (3.24)

where the summation in (3.24) is taken over all (m,λ) ∈ Σ × L such that there
exists j, depending on (m,λ), with m = θλ(j) and k = θλ(j + 1).

The following lemma provides a crucial step in finding an appropriate periodic
point y ∈ D(θ) of f = M(θ).

Lemma 3.5. Let L = {i ∈ N | 1 ≤ i ≤ l} with a total ordering ≺ (not necessarily
the standard ordering) and Σ = {j ∈ N | 1 ≤ j ≤ n} and suppose that θ = {θi :
Z → Σ | i ∈ L} is an admissible array on n symbols and that θλ is periodic of
minimal period pλ, λ ∈ L. For each λ ∈ L let cλ be a fixed real number with
0 < cλ < 1. Then, for µ ∈ Z, m ∈ Σ and λ ∈ L there exist real numbers yµm,λ
which are uniquely defined by the following properties:

(1) yµm,λ = cλ if θλ(µ) = m.
(2) yµm,λ = 1 if m = θλ(j) for some j and there exist ν ∈ Z and λ′ ∈ L, λ ≺ λ′,

such that
yµ+ν
θλ(j+ν),λ′ > 0.

(3) yµm,λ = 0 if neither the conditions of (1) nor of (2) are satisfied.

Proof. Without loss of generality we can assume that the ordering ≺ on L is the
usual ordering <. We construct numbers yµm,λ which satisfy (1), (2) and (3) by
backward induction on λ ∈ L, starting with λ = l. If λ = l, condition (2) cannot
hold and we define

yµm,l = cl if θl(µ) = m and yµm,l = 0 otherwise.
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Assume, by way of induction, that numbers yµm,λ have been defined for all µ ∈ Z,
m ∈ Σ and λ > λ1, λ ∈ L, in such a way that conditions (1), (2) and (3) above are
satisfied. In order to define yµ1

m1,λ1
, it suffices to prove that if

θλ1(µ1) = m1, (3.25)

then condition (2) cannot hold. We shall assume that condition (2) and eq. (3.25)
both hold (for µ = µ1, m = m1 and λ = λ1), and we shall obtain a contradiction.
If condition (2) holds, there exist ν1 ∈ Z, λ2 > λ1, λ2 ∈ L and j1 with

θλ1(j1) = m1 = θλ1(µ1) (3.26)

and

yµ1+ν1
θλ1(j1+ν1),λ2

> 0. (3.27)

We define µ2 = µ1 + ν1 and m2 = θλ1(j1 + ν1). Equation (3.27) and the induction
hypothesis imply that either

θλ2(µ1 + ν1) = θλ1(j1 + ν1) = m2

or (the condition (2) case) there exist j2 and ν2 in Z and λ3 > λ2, λ3 ∈ L, with

θλ2(j2 + ν1) = θλ1(j1 + ν1) (3.28)

and
yµ2+ν2
θλ2(j2+ν1+ν2),λ3

= yµ1+ν1+ν2
θλ2(j2+ν1+ν2),λ3

> 0. (3.29)

We define µ3 = µ2 +ν2 = µ1 +ν1 +ν2 and m3 = θλ2(j2 +ν1 +ν2). By the inductive
hypothesis, either

θλ2(j2 + ν1 + ν2) = θλ3(µ1 + ν1 + ν2) (3.30)

or there exist j3 and ν3 in Z and λ4 > λ3, λ4 ∈ L, with

θλ3(j3 + ν1 + ν2) = θλ2(j2 + ν1 + ν2) (3.31)

and
yµ3+ν3
θλ3(j3+ν1+ν2+ν3),λ4

= yµ1+ν1+ν2+ν3
θλ3(j3+ν1+ν2+ν3),λ4

> 0. (3.32)

Continuing in this way we obtain λ1 < λ2 < λ3 < · · ·λk ≤ l, and so we must
eventually fall into the case of condition (1) of the lemma. Thus, for some k ≥ 1
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and sequence λ1 < λ2 < · · ·λk+1 ≤ l, we eventually obtain the following set of
(k + 1) equations:

θλ1(j1) = θλ1(µ1) := m1 (3.33)

θλs

(
js +

s−1∑
i=1

νi
)

= θλs−1

(
js−1 +

s−1∑
i=1

νi
)

:= ms, 2 ≤ s ≤ k
(3.34)

θλk+1

(
µ1 +

k∑
i=1

νi
)

= θλk

(
jk +

k∑
i=1

νi
)

:= mk+1. (3.35)

We define ρ = gcd(pλ1 , . . . , pλk+1) and use equations (3.34) and (3.35) and the
definition of admissible arrays to conclude that

k∑
s=2

[(
js +

s−1∑
i=1

νi
)
−
(
js−1 +

s−1∑
i=1

νi
)]

+

[(
µ1 +

k∑
i=1

νi
)
−
(
jk +

k∑
i=1

νi
)]

= µ1 − j1

and
µ1 − j1 6≡ 0 mod ρ.

However, eq. (3.33) implies that µ1−j1 ≡ 0 mod pλ1 , and this contradicts the last
equation and completes the proof. �
Remark 3.1. An examination of the proof of Lemma 3.5 shows that (for yµm,λ as in
Lemma 3.5) yµm,λ = 1 if and only if there exist k ≥ 1, elements λ := λ1, λ2, . . . , λk+1

of L with λ1 < λ2 < · · · < λk+1 and integers j1, j2, . . . , jk and ν1, ν2, . . . , νk such
that

m = θλ(j1) (3.36)

θλs

(
js +

s−1∑
i=1

νi
)

= θλs−1

(
js−1 +

s−1∑
i=1

νi
)

:= ms, 2 ≤ s ≤ k
(3.37)

θλk+1

(
µ+

k∑
i=1

νi
)

= θλk

(
jk +

k∑
i=1

νi
)

:= mk+1. (3.38)

Alternatively, if we define

ν̃s :=
s−1∑
i=1

νi for 2 ≤ s ≤ k + 1,
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we see that yµm,λ = 1 if and only if there exist k ≥ 1, elements λ1 < λ2 < · · · < λk+1

of L and integers j1, j2, . . . , jk and ν̃2, ν̃3, . . . , ν̃k+1 such that

m = θλ1(j1) (3.39)

θλs(js + ν̃s) = θλs−1(js−1 + ν̃s) := ms, 2 ≤ s ≤ k (3.40)

θλk+1(µ+ ν̃k+1) = θλk
(
jk + ν̃k+1

)
:= mk+1. (3.41)

Remark 3.2. In the notation of Lemma 3.5, suppose that L′ denotes L with a
different total ordering ≺′ and that θ′ = {θi : Z → Σ | i ∈ L′} is an admissible
array on n symbols and θ′ is equivalent to θ. One can construct numbers ηµm,λ
which satisfy the analogues of properties (1), (2) and (3) of Lemma 3.5:

(1)′ ηµm,λ = cλ if θλ(µ) = m.
(2)′ ηµm,λ = 1 if m = θλ(j) for some j and there exist ν ∈ Z and λ′ ∈ L′, λ ≺′ λ′,

such that
ηµ+ν
θλ(j+ν),λ′ > 0.

(3)′ ηµm,λ = 0 if neither the conditions of (1)′ nor of (2)′ are satisfied.

Notice that these conditions are almost identical to conditions (1)–(3), except that
we have λ ≺′ λ′ in condition (2)′ instead of λ ≺ λ′. It is a simple fact that for all
µ ∈ Z, m ∈ Σ and λ ∈ L

ηµm,λ = yµm,λ.

We shall need this fact and the fact that M(θ) = M(θ′) later.
For the remainder of this section we shall denote by yµm,λ (µ ∈ Z, m ∈ Σ and

λ ∈ L) numbers which are defined as in Lemma 3.5.

Lemma 3.6. Let assumptions and notation be as in Lemma 3.5 and let yµm,λ
(µ ∈ Z, m ∈ Σ and λ ∈ L) be numbers as defined in Lemma 3.5. Define

yµm :=
∑
λ∈L

yµm,λ and yµ = (yµ1 , y
µ
2 , . . . , y

µ
n).

Then we have
(1) 0 ≤ yµm,λ ≤ 1 for all µ ∈ Z, m ∈ Σ and λ ∈ L.
(2) yµm,λ = 0 if m 6∈ R(θλ), the range of θλ.
(3) If yµm,λ′ > 0 for some λ′ ∈ L, then yµm,λ = 1 for all λ ∈ L such that λ < λ′

and m ∈ R(θλ).
(4) In the notation of eq. (3.23), (yµm,1, y

µ
m,2, . . . , y

µ
m,l) = Cm(yµm) for all µ ∈ Z,

m ∈ Σ.
(5) For all µ, ν and j ∈ Z and λ ∈ L we have yµθλ(j),λ = yµ+ν

θλ(j+ν),λ.

(6) f(yµ) = yµ+1 for all µ ∈ Z and y0 is a periodic point of f of minimal period
p = lcm

(
{pλ : λ ∈ L}

)
.
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Proof. Property (1) is immediate from Lemma 3.5. If m 6∈ R(θλ), then neither
condition (1) nor condition (2) of Lemma 3.5 can be satisfied, so condition (3) of
Lemma 3.5 applies and yµm,λ = 0. This proves property (2). Property (3) is a direct
consequence of condition (2) of Lemma 3.5: take ν = 0. Properties (1),(2) and (3)
and the equation yµm =

∑
λ∈L y

µ
m,λ imply property (4).

It suffices to prove property (5) for the case ν = 1, since the general case follows
by repeated applications of this case. If θλ(µ) = θλ(j), then µ − j ≡ 0 mod pλ.
It follows that (µ + 1) − (j + 1) ≡ 0 mod pλ, so θλ(µ + 1) = θλ(j + 1). Thus if
yµθλ(j),λ = cλ, it follows that yµ+1

θλ(j+1),λ = cλ. The same argument shows that if

yµ+1
θλ(j+1),λ = cλ, then yµθλ(j),λ = cλ, so yµ+1

θλ(j+1),λ = cλ if and only if yµθλ(j),λ = cλ.
We know that yµθλ(j),λ = 1 if and only if there exists ν ∈ Z and λ′ > λ with

yµ+ν
θλ(j+ν),λ′ > 0. But then we have

yµ+1+ν1
θλ(j+1+ν1),λ′ > 0,

where ν1 = ν − 1, so yµ+1
θλ(j+1),λ = 1. The converse follows similarly, so yµθλ(j),λ = 1

if and only if yµ+1
θλ(j+1),λ = 1. Since 0 is the only other possible value of yµθλ(j),λ and

yµ+1
θλ(j+1),λ, we see that

yµθλ(j),λ = yµ+1
θλ(j+1),λ.

Properties (4) and (5) and eq. (3.24) now imply that(
f(yµ)

)
k

=
∑
∗
yµm,λ =

∑
∗
yµ+1
θλ(j+1),λ

=
∑

λ∈L, k∈R(θλ)

yµ+1
k,λ = yµ+1

k ,
(3.42)

where it is understood that the summation
∑
∗ is taken over (m,λ) ∈ Σ× L such

that there exists j = j(m,λ) with θλ(j) = m and θλ(j+1) = k. Thus f(yµ) = yµ+1.
If m = θλ(j) for some j, property (5) implies that

yµ+pλ
θλ(j+pλ),λ = yµ+pλ

m,λ = yµm,λ.

If m 6∈ R(θλ), 0 = yµ+pλ
m,λ = yµm,λ; so in all cases, yµ+pλ

m,λ = yµm,λ. If p = lcm
(
{pλ |

λ ∈ L}
)
, it follows that yµ+p

m,λ = yµm,λ for all µ ∈ Z, λ ∈ L, m ∈ Σ. It follows that
yµ+p
m = yµm and yµ+p = yµ for all µ ∈ Z, m ∈ Σ. Since f(yµ) = yµ+1, we see that
fp(y0) = yp = y0 and y0 has period p.

It remains to show that p is the minimal period of y0, i.e., f j(y0) 6= y0 for
0 < j < p. Let µ be the minimal positive integer such that yµ = y0. For any given
λ ∈ L it suffices to show that pλ|µ. Thus take a fixed λ ∈ L and define m = θλ(0).
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For any ν ∈ Z, properties (2) and (3) of our lemma imply that there is at most
one λ′ ∈ L with 0 < yνm,λ′ < 1. It follows that y0

m equals cλ plus an integer, so
y0
m = yµm is not an integer. Because we have

yµm =
∑
λ′∈L

yµm,λ′ = y0
m =

∑
λ′∈L

y0
m,λ′ ,

our previous remarks imply that there exists exactly one λ′ := λ1 ∈ L with θλ1(µ) =
m and 0 < yµm,λ1

< 1. By using property (2) and (3), we easily see that yµm < y0
m

if λ1 < λ and yµm > y0
m if λ1 > λ, so the only possibility is that λ1 = λ. However,

if λ1 = λ, θλ(µ) = θλ(0); and since θλ has minimal period pλ, we conclude that
pλ|µ, which completes the proof. �
Remark 3.3. Lemma 3.6 proves that if θ is an admissible array on n symbols
and f = M(θ), then f has a periodic point y ∈ D(θ) of minimal period equal to
the period of θ. As already remarked, this proves eq. (3.20) and condition (1) of
Theorem 3.1. Note that the assumption that θ is minimal is not actually needed
to prove condition (1) of Theorem 3.1. Because f = M(θ) ∈ F2(n), condition (2)
of Theorem 3.1 follows from general remarks in Section 2.

Remark 3.4. The points yµ, µ ∈ Z, constructed in Lemma 3.6 depend on the
particular admissible array θ. If θ′ is an equivalent admissible array, we obtain
corresponding points wµ, µ ∈ Z. However, by using Remark 3.2 we see that
wµ = yµ for all µ, and we have already noted (Lemma 3.2) that M(θ) = M(θ′).

For the remainder of this section yµm and yµ will be as defined in Lemma 3.6.
We shall write A = {yµ : µ ∈ Z}, the periodic orbit of y0 under f , and shall denote
by V the lower semilattice generated by A.

To proceed further, we shall need a technical lemma in which, for the first time,
the assumption that the admissible array θ is minimal plays a role.

Lemma 3.7. Let assumptions and notation by as in Lemma 3.5 and suppose in
addition that θ is minimal and p := lcm({pλ | λ ∈ L}) > 1. Minimality implies
that for each i ∈ L, there exists a prime number mi and a positive integer αi such
that mαi

i |pi but mαi
i 6 |pj for j ∈ L, j 6= i. With this choice of mi, we define qi by

qi = lcm
({

pj | j ∈ L, j 6= i
}
∪
{
pi
mi

})
(3.43)

and note that qi < p. For a fixed i ∈ L and m ∈ Σ, we define S̃ = {µ ∈ Z | yµm,i =
1}. Then it follows that

S̃ + τqi = S̃ for all τ ∈ Z.

Proof. If m 6∈ R(θi), we know that yµm,i = 0 for all µ ∈ Z, S̃ is empty, and the
lemma is trivially true. Thus we assume that there exists j1 ∈ Z with θi(j1) = m,
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and we define λ1 = i. If µ ∈ S̃, then by Remark 3.1 there exist k ≥ 1, elements
λ1 < λ2 < · · · < λk+1 of L and integers j1, j2, . . . , jk and ν̃2, ν̃3, . . . , ν̃k+1 such
that equations (3.39)–(3.40) are satisfied. These numbers depend on µ. Define
q = gcd(pλ1 , pλ2 , . . . , pλk+1), so q|qi. If τ ∈ Z, there exist integers A1, A2, . . . , Ak+1
with

τq = A1pλ1 +A2pλ2 + · · ·+Ak+1pλk+1 .

Define µ′ = µ+ τq, j′s = js +
∑s
t=1Atpλt for 1 ≤ s ≤ k and ν̃′s = ν̃s −

∑s−1
t=1 Atpλt

for 2 ≤ s ≤ k+ 1. Observe that m = θλ1(j′1); and if we substitute µ′ for µ, j′s for js
(1 ≤ s ≤ k) and ν̃′s for ν̃s for 2 ≤ s ≤ k + 1, we see that equation (3.40) and (3.41)
are satisfied. It follows from Remark 3.1 that yµ

′

m,λ = 1, i.e., µ+τq ∈ S̃ for all τ ∈ Z.
Since q|qi, we conclude that µ + tqi ∈ S̃ for all t ∈ Z, so S̃ + tqi ⊂ S̃ for all t ∈ Z.
If µ ∈ S̃ and t ∈ Z, it follows that (µ − tqi) ∈ S̃, so µ = (µ − tqi) + tqi ∈ S̃ + tqi.
This shows that S̃ ⊂ S̃ + tqi, so S̃ + tqi = S̃ for all t ∈ Z. �

Remark 3.2 implies that if we replace θ in Lemma 3.7 by an equivalent admissible
array θ′ and define a corresponding set S̃′, then S̃′ = S̃.

We now construct the elements zi, i ∈ L, of Theorem 3.1 and begin to establish
their properties.

Lemma 3.8. Let L = {1, 2, . . . , l} with a total ordering ≺, let Σ = {j ∈ N | 1 ≤
j ≤ n} and suppose that θ := {θλ : Z → Σ | λ ∈ L} is a minimal admissible
array on n symbols and that θλ has minimal period pλ for λ ∈ L. Define p =
lcm({pλ | λ ∈ L}) and let mi, αi and qi be as in Lemma 3.7. Let yµm,λ, yµm and yµ

be as in Lemma 3.5 and 3.6 and define V to be the lower semilattice generated by
{yµ | 0 ≤ µ < p}. For i ∈ L define Si and S̃i by

Si =
{
µ ∈ Z | yµm,i ≥ y0

m,i, m = θi(0)
}

S̃i =
{
µ ∈ Z | yµm,i = 1,m = θi(0)

}
.

Define zi ∈ V by
zi =

∧
µ∈Si

yµ.

Then zi is an irreducible element of V and a periodic point of f := M(θ) of minimal
period pi. Furthermore, for all j ∈ Z we have

IV
(
f j(zi)

)
= {θi(j)}.

Proof. By applying property (5) of Lemma 3.6 we see that if µ ∈ Si, then µ+ tpi ∈
Si for all t ∈ Z and hence that Si + tpi = Si for all t ∈ Z. Because y0

m,i = ci,
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m = θi(0), yµm,i ≥ y0
m,i if and only if either (a) yµm,i = ci or (b) yµm,i = 1; and we

know that yµm,i = ci if and only if µ = tpi for some t ∈ Z. Thus we can write

Si = S̃i ∪
{
tpi | t ∈ Z

}
,

and no element of S̃i is an integral multiple of pi. Because we have, for all µ ∈ Z,
that

yµm =
∑
λ∈L

yµm,λ, m = θi(0),

we derive from Lemma 3.6 that µ ∈ Si if and only if yµm ≥ y0
m.

We know (see Section 2) that f = M(θ) is a lower semilattice homomorphism
on V and in fact a lattice homomorphism on the lattice generated by V . Thus we
obtain

fpi(zi) =
∧
µ∈Si

fpi(yµ) =
∧
µ∈Si

yµ+pi

=
∧

ν∈Si+pi

yν =
∧
ν∈Si

yν

= zi.

Thus zi is a periodic point of f of minimal period γ, where γ|pi. Assume, by way
of contradiction, that γ 6= pi. For t ∈ Z we have

f tγ(zi) =
∧
µ∈Si

f tγ(yµ) =
∧

ν∈Si+tγ
yν = zi.

It follows from this equation that yνm ≥ zim = y0
m, m = θi(0), for all ν ∈ Si+tγ, i.e.,

Si + tγ ⊂ Si. Because Si + tγ ⊂ Si for all t ∈ Z, we derive that Si + tγ = Si for all
t ∈ Z. In particular, 0 +γ = γ ∈ Si; and since we assume that γ is a proper divisor
of pi, γ ∈ S̃i. Lemma 3.7 implies that γ + tqi ∈ S̃i for all t ∈ Z, so γ + qi ∈ Si and
(γ+ qi) + (−γ) ∈ Si− γ ⊂ Si, i.e., qi ∈ Si. In the notation of Lemma 3.7, we know
that mαi

i |pi but mαi
i 6 |qi, so qi 6∈ {tpi | t ∈ Z}. It follows that qi ∈ S̃i. However,

Lemma 3.7 now implies that qi − qi = 0 ∈ S̃i, a contradiction; and we conclude
that zi has minimal period pi.

We must show that zi is irreducible in V . If ζ ∈ V and ζ < zi, we first claim
that ζm, the mth-coordinate of ζ (where m = θi(0)), satisfies ζm < zim. Recall that
there exists a set J ⊂ {µ | 0 ≤ µ < p} such that ζ =

∧
µ∈J y

µ. If ζm ≥ zim, then
yµm ≥ zim = y0

m for all µ ∈ J . This implies that J ⊂ Si and that ζ ≥ zi =
∧
µ∈Si y

µ,
a contradiction. Since ζm < zim, there exists µ ∈ J with µ 6∈ Si. For this µ we have
yµm,i = 0, which implies, using Lemma 3.6, that

ζm ≤ yµm ≤ y0
m − ci = zim − ci, m = θi(0). (3.44)
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Unfortunately, (3.44) is insufficient to prove that zi is irreducible in V . It
remains to find w ∈ V such that ζ ≤ w ∧ zi < zi for all ζ ∈ V with ζ < zi. We
define

w := yqi = fqi(y0).

In the notation of Lemma 3.5 and 3.6 we have for 1 ≤ j ≤ n

wj := yqij =
l∑

λ=1

yqij,λ.

If λ ∈ L and λ 6= i, we know that pλ|qi, so property (5) of Lemma 3.6 implies that,
for λ 6= i, yqij,λ = y0

j,λ. It follows that

wj =
l∑

λ=1

yqij,λ =
∑
λ6=i

y0
j,λ + yqij,i and

y0
j =

∑
λ6=i

y0
j,λ + y0

j,i.

(3.45)

Lemma 3.7 implies that yqij,i = 1 if and only if y0
j,i = 1. If θi(0) = m = j, so

0 < y0
m,i := ci < 1, this implies that yqim,i 6= 1. Since qi is not an integral multiple

of pi, it follows that yqim,i = 0 and eq. (3.45) implies that

wm < y0
m. (3.46)

If j = θi(qi), the same argument shows that

y0
θi(qi) < wθi(qi). (3.47)

Finally, if j 6= θi(qi) and j 6= θi(0), then neither yqij,i nor y0
j,i can equal ci and

hence each equals 0 or 1. Because yqij,i = 1 if and only if y0
j,i = 1, we conclude that

yqij,i = y0
j,i if j 6= θi(qi) and j 6= θi(0). Using eq. (3.45) it follows that, for j 6= θi(qi)

and j 6= θi(0),
wj = y0

j . (3.48)

In the case of eq. (3.46), eq. (3.45) actually implies that

wm = y0
m − ci. (3.49)

Combining these equations, we see that (w∧ zi)j = wj ∧ zij = zij for j 6= i (because
zi ≤ y0) and (w ∧ zi)m = wm = y0

m − ci. If ζ ∈ V and ζ < zi, we have already
seen that ζm ≤ y0

m − ci, so ζ ≤ w ∧ zi < zi, which proves that zi is irreducible
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in V . Since m = θi(0) is the only coordinate j for which (w ∧ zi)j < zij , we have
also proved that

IV (zi) = {θi(0)}.

Since zi is irreducible in V we know (see Section 2) that for ν ∈ Z, fν(zi) is
irreducible in V . Essentially the same reasoning as above shows that

IV
(
fν(zi)

)
= {θi(ν)}.

To see this, fix ν ∈ Z and write u = fqi
(
fν(y0)

)
= yν+qi . The same reasoning as

above shows that uj = yνj for j 6= θi(ν) and j 6= θi(ν + qi),

uθi(ν) + ci = yνθi(ν) and uθi(ν+qi) = yνθi(ν+qi) + ci.

It follows as before that if ζ ∈ V , ζ < fν(zi), then ζ ≤ u ∧ fν(zi) < fν(zi). Since
θi(ν) is the only coordinate in which u∧ fν(zi) is less than fν(zi), we also see that

IV (fν(zi)) = {θi(ν)},

which completes the proof. �
Remark 3.5. If the admissible array θ in Lemma 3.8 is replaced by an equivalent
admissible array θ′, we see by virtue of Remarks 3.2 and 3.4 that the sets Si and S̃i
and the irreducible elements zi remain unchanged. We shall need this observation
later in the proof of Lemma 3.11.

It remains to prove, under assumptions of Lemma 3.8 that
∨
i∈L z

i = y and
that zi and zk are not comparable for i, k ∈ L with i 6= k.

Lemma 3.9. Let notation and assumptions be as in Lemma 3.8. If i and k are
unequal elements of L, then zi and zk are not comparable; and we have

y =
∨
i∈L

zi. (3.50)

Proof. We begin by proving eq. (3.50). By construction, we know that zi ≤ y for
i ∈ L and that zi =

∧
µ∈Si y

µ, where Si is defined in Lemma 3.8. Thus, to prove
eq. (3.50), we must prove that for each m with 1 ≤ m ≤ n, there exists t ∈ L such
that yµm ≥ y0

m := ym for all µ ∈ St, so ztm ≥ ym. If y0
m − [y0

m], the fractional part
of y0

m, is strictly positive, we know that there exists i ∈ L with m = θi(0); and if
we take t := i, the definition of Si implies that yµm ≥ y0

m for all µ ∈ St.
Thus we take a fixed m, 1 ≤ m ≤ n, and assume that y0

m − [y0
m] = 0. If

y0
m = 0, eq. (3.50) is satisfied in the mth-coordinate, and there is nothing to prove.

Otherwise, we define i ∈ L such that y0
m,i = 1 and y0

m,j = 0 for j ∈ L and j > i.
For notational convenience, write i = i1 and select j1 ∈ Z with θi1(j1) = m. Using
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equations (3.39)–(3.41) in Remark 3.1, we see that there exist k ≥ 1, elements
i := i1 < i2 < · · · < ik+1 of L, and integers j1, j2, . . . , jk and ν2, ν3, . . . , vk+1 such
that

m = θi1(j1), (3.51)

θis(js + νs) = θis−1(js−1 + νs), 2 ≤ s ≤ k, (3.52)

θik+1(νk+1) = θik(jk + νk+1). (3.53)

We define t = ik+1, and we must prove that if µ ∈ St, i.e., if yµθt(0),t > 0, then
yµm,i1 = 1. Thus select a fixed µ ∈ St, define ν′s = νs + µ for 2 ≤ s ≤ k + 1 and
j′s = js − µ for 1 ≤ s ≤ k. Equations (3.51)–(3.53) become

m′1 = θi1(j′1) = θi1(j1 − µ), (3.54)

θis(j
′
s + ν′s) = θis−1(j′s−1 + ν′s) := m′s, 2 ≤ s ≤ k, (3.55)

θik+1(−µ+ ν′k+1) = θik(j′k + ν′k+1) := m′k+1. (3.56)

The assumption that µ ∈ Sk, t := ik+1, and eq. (3.56) imply that

0 < y0
θt(−µ),t = y

ν′k+1

θt(−µ+ν′k+1),t = y
ν′k+1

θik (j′k+ν′k+1),ik+1
.

By Lemma 3.5 we conclude that

1 = y
ν′k+1

θik (j′k+ν′k+1),ik
= y

ν′k
θik (j′k+ν′k),ik

= y
ν′k
m′k,ik

.

Assume that for some s, 2 ≤ s ≤ k, we have proved that

1 = y
ν′s
m′s,is

= y
ν′s
θis(j′s+ν′s),is

.

Equation (3.55) then implies that

1 = y
ν′s
θis−1(j′s−1+ν′s),is

,

so Lemma 3.5 implies that (defining ν1 = −µ and ν′1 = 0)

1 = y
ν′s
θis−1(j′s−1+ν′s),is−1

= y
ν′s−1

θis−1(j′s−1+ν′s−1),is−1
= y

ν′s−1
m′s−1,is−1

. (3.57)

It follows by induction that (3.57) is satisfied for 2 ≤ s ≤ k and that

1 = y
ν′1
m′1,i1

:= yν1+µ
θi1(j1+ν1),i1

= yµθi1(j1),i1
= yµm,i1 . (3.58)
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Equation (3.58) is the desired result and completes the proof of eq. (3.50).
It remains to prove that zi and zk are not comparable for 1 ≤ i < k ≤ l.

Suppose not. Then eq. (3.50) implies that there is a proper subset L1 of L such
that

y =
∨
i∈L1

zi. (3.59)

If q is a positive integer, the results of Section 2 imply that

fq(y) =
∨
i∈L1

fq(zi). (3.60)

If we define q = lcm
(
{pi | i ∈ L1}

)
, eq. (3.60) implies that y is a periodic point of

f of period q. Because the admissible array is minimal, q < p := lcm
(
{pi | i ∈ L}

)
,

and we have already proved that y is a periodic point of f of minimal period p.
We have obtained a contradiction, so the proof of the lemma is complete. �

Note that Lemma 3.8 and 3.9 together establish properties (3) and (4) of The-
orem 3.1, so it only remains to prove properties (5) and (6).

Lemma 3.10. Let hypotheses and notation be as in Lemma 3.8. If i, k ∈ L and
i < k and R(θi) ∩R(θk) is nonempty, then hV (zi) < hV (zk).

Proof. We first claim that there exists γ ∈ Z such that

Sk ⊂ S̃i + γ. (3.61)

Because we assume that R(θi) ∩ R(θk) is nonempty, there exist s, t ∈ Z with
θk(t) = θi(s). If ν ∈ Sk, then by definition we have yνθk(0),k > 0. Using Lemmas 3.5
and 3.6 we deduce that yν+t

θk(t),k > 0, so yν+t
θk(s),k > 0 and yν+t

θk(s),i = 1 and yν+t−s
θk(0),i = 1.

The final inequality shows that ν+ (t− s) ∈ S̃i, which implies that eq. (3.61) holds
with γ = s− t.

Using eq. (3.61) and the definitions of zk and zi we see that

f−γ(zk) =
∧

ν∈Sk−γ
yν ≥

∧
µ∈S̃i

yµ.

By definition we have that yµθi(0),i = 1 for all µ ∈ S̃i, so yµθi(0) > y0
θi(0) for all µ ∈ S̃i

and ∧
µ∈S̃i

yµ >
∧
µ∈Si

yµ = zi.

We conclude that
f−γ(zk) > zi,
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from which we easily derive that

hV
(
f−γ(zk)

)
> hV (zi). (3.62)

Finally recall that for any x ∈ V and m ∈ Z, we have

hV
(
fm(x)

)
= hV (x),

so we derive from (3.62) that

hV (zk) > hV (zi),

which completes the proof. �
We can now complete the proof of Theorem 3.1 by proving property (6) of

Theorem 3.1.

Lemma 3.11. Let notation and assumptions be as in Lemma 3.8. There exists a
total ordering ≺′ on L such that if L′ denotes L with the total ordering ≺′, then
θ′ = {θi : Z → Σ | i ∈ L′} is an admissible array equivalent to θ and all i, k ∈ L′
with i ≺′ k we have hV (zi) ≤ hV (zk).

Proof. Suppose that ≺′ is any total ordering of L such that if L′ denotes the set
L with this total ordering, then θ′ = {θi : Z → Σ | i ∈ L′} is an admissible
array equivalent to θ. (Call such a total ordering “allowable”.) By Remark 3.5, the
irreducible elements ζi which one obtains from the construction in Lemma 3.8 when
one starts with θ′ satisfy ζi = zi. Once we know this, we can apply Lemma 3.10 to
the array θ′ and conclude that if i, k ∈ L′, i ≺′ k and R(θi) ∩ R(θk) is nonempty,
then hV (zi) < hV (zk).

For each allowable ordering ≺′ on L, we define an integer N(L,≺′) by

N(L,≺′) =
∣∣∣{(i, j) ∈ L× L : i ≺′ j and hV (zi) ≤ hV (zj)

}∣∣∣. (3.63)

If there exists an allowable total ordering ≺′ for which hV (zi) ≤ hV (zk) for all
(i, j) ∈ L× L with i ≺′ j, we are done. Thus we assume, by way of contradiction,
that such a total ordering does not exist; and we select a particular total ordering
≺′ as above such that

N(L,≺′) = max
{
N(L,≺′′) |≺′′ is an allowable total ordering on L

}
.

By assumption, there exist i, j ∈ L with i ≺′ j and hV (zi) > hV (zj). There exist
elements i := i1 ≺′ i2 ≺′ i3 ≺′ · · · ≺′ ik := j in L such that all other elements λ of L
satisfy λ ≺′ i1 or ik ≺′ λ. There must exist s, 1 ≤ s ≤ k, with hV (zis) > hV (zis+1),
or we contradict hV (zi) > hV (zj). Lemma 3.10 and the remarks at the beginning
of the proof imply that R(θis)∩R(θis+1) is empty. We define a new total ordering
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≺′′ on L by defining is+1 ≺′′ is and λ ≺′′ µ if and only if λ ≺′ µ unless λ = is
and µ = is+1. The definition of equivalent admissible arrays implies that ≺′′ is
allowable, and eq. (3.63) implies

N(L,≺′′) = N(L,≺′) + 1.

This contradicts the maximality of N(L,≺′) and completes the proof. �
Lemmas 3.1–3.11 provide a complete proof of Theorem 3.1 in the case that

p > 1, where p is the period of the minimal admissible array θ. However, if p = 1,
y := y0 is a fixed point of f = M(θ), V = {y0}, z1 = y, and the theorem is trivial.

4. Consequences of the main theorem and open questions

Instead of considering l1-norm nonexpansive maps f : Kn → Kn with f(0) = 0
and defining P3(n), we can consider l1-norm nonexpansive maps f : Rn → Rn and
define R(n), an analogue of P3(n):

R(n) :=
{
p ∈ N | ∃f : Rn → Rn such that f is l1-norm nonexpansive

and f has a periodic point of minimal period p
}
.

The following theorem is essentially proved in Example 3, Section 1 of [14] and is
closely related to an observation in [18].

Theorem 4.1. If R(n) is defined as above and Q(n) by eq. (1.6), we have

R(n) ⊂ Q(2n).

Proof. It is proved in [14] that R(n) ⊂ P3(2n), and Theorem 3.1 implies that
P3(2n) = Q(2n). �

It seems unlikely that R(n) = Q(2n) in general. For example, if n = 3, it is
proved in [16] that

Q(6) = {j ∈ N | 1 ≤ j ≤ 6} ∪ {12},

and one can prove that {j ∈ N | 1 ≤ j ≤ 6} ⊂ R(n). However, we conjecture that
12 6∈ R(3).

Question 4.1. Can one characterize R(n) precisely by number theoretic and com-
binatorial constraints analogous to Theorem 3.1?

Remark 4.1. One can ask a question which is superficially related to Question 4.1
but is actually very different. Consider maps f : Df → Df ⊂ Rn such that f is
l1-norm nonexpansive. Note that even if Df is finite, such a map may not have an
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l1-norm nonexpansive extension F : Rn → Rn. Define R̃(n) to be the set of positive
integers p such that there exists an l1-norm nonexpansive map f : Df → Df which
has a periodic point of minimal period p. For n ≥ 3, one expects R̃(n) to be strictly
larger than R(n). Can one characterize R̃(n) precisely by number theoretical and
combinatorial constraints? An upper bound of n!22n for elements of R̃(n) has been
obtained by Misiurewicz [8], but this estimate is probably far from sharp.

Our next theorem is a combination of Theorem 1.1 of [11] and Theorem 3.1.

Theorem 4.2. Let ‖ · ‖ be a strictly monotonic norm on Rn and suppose that
f : Kn → Kn is order-preserving, nonexpansive with respect to ‖ · ‖ and satisfies
f(0) = 0. For every x ∈ Kn there exists a periodic point ηx ∈ Kn of f of minimal
period px and

lim
k→∞

fkpx(x) = ηx.

The integer px satisfies px ∈ Q(n).

Proof. The existence of ηx and px is proved in Theorem 1.1 of [11]. Writing y = ηx
and p = px, y is a periodic point of f of minimal period p; and if A = {f j(y) :
0 ≤ j < p} and V denotes the lattice generated by A, then Proposition 2.1 implies
that f |V is a lattice homomorphism of V onto V and fp(x) = x for all x ∈ V . It
follows that p ∈ Q2(n) = Q(n). �

For a fixed strictly monotonic norm ‖ · ‖, it is unknown exactly what integers
px can arise for maps f satisfying the conditions of Theorem 4.2.

Question 4.2. For a fixed strictly monotonic norm ‖ · ‖ on Rn, let H(Kn, ‖ · ‖)
denote the set of maps f : Kn → Kn such that f(0) = 0, f is order-preserving and
f is nonexpansive with respect to ‖·‖. Let T1(n) = {p ∈ N | ∃f ∈ H(Kn, ‖·‖) and a
periodic point y of f of minimal period p}, so T1(n) ⊂ Q(n). Can one characterize
T1(n) in terms of number theoretic and combinatorial constraints?

For each n ≥ 1, let S(n) be a set of positive integers and assume that 1 ∈ S(1).
An important role in [16] is played by collections {S(n) : n ≥ 1} which satisfy
so-called “rule A” and “rule B”, as defined in Section 8 of [16].

Definition 4.1. We shall say that {S(n) | n ≥ 1} satisfies rule A if for all pos-
itive integers m1 and m2 and all integers pj ∈ S(mj), j = 1, 2, it is true that
lcm(p1, p2) ∈ S(m1 +m2).

Because we assume that 1 ∈ S(1), rule A implies that S(n) ⊂ S(n+ 1) for all
n ≥ 1.

Definition 4.2. We shall say that {S(n) | n ≥ 1} satisfies rule B if whenever m
and r are positive integers and pj ∈ S(m) for 1 ≤ j ≤ r, then rlcm(p1, p2, . . . , pr) ∈
S(rm).

One can define a smallest possible collection of positive integers {P (n) | n ≥ 1}
such that P (1) = {1} and {P (n) | n ≥ 1} satisfies rule A and rule B.
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Definition 4.3. We define inductively a collection of positive integers P (n) for
n ≥ 1 by P (1) = {1} and, for n > 1, p ∈ P (n) if and only if either

(A) p = lcm(p1, p2), where pj ∈ P (nj) for j = 1, 2, and n = n1 + n2 or
(B) p = rlcm(p1, p2, . . . , pr), where r > 1, m ≥ 1, pi ∈ P (m) for 1 ≤ i ≤ r and

n = rm.

One easily checks that {P (n) | n ≥ 1} as defined in Definition 4.3 does satisfy
rules A and B. One can also easily prove that P (n) contains the set of all positive
orders of the elements of the symmetric group on n letters, i.e.,

P (n) ⊃
{

lcm(m1,m2, . . . ,mt) | mi ≥ 1,
t∑
i=1

mi = n, t ≥ 1
}
, (4.1)

but in general P (n) is significantly larger than the right hand side of (4.1), eg. 12 ∈
P (6).

The significance of rules A and B for our questions is indicated by the following
result, which is essentially proved in Section 3 of [10] and Section 8 of [16].

Corollary 4.1. The collection {P1(n) | n ≥ 1} satisfies rule A and rule B. The
collection {Q(n) | n ≥ 1} satisfies rule A and rule B.

Proof. The fact that {P1(n) | n ≥ 1} satisfies rule A and rule B is proved in
Section 3 of [10] (though stated in different terminology). The fact that {P2(n) |
n ≥ 1} satisfies rule A and rule B is proved in Section 8 of [16], and it follows from
Theorem 3.1 that {Q(n) | n ≥ 1} satisfies rule A and rule B. �

One can prove directly, without the aid of Theorem 3.1, that {Q(n) | n ≥ 1}
satisfies rule A and rule B, but the proof is not trivial. It is not obvious how to
prove geometrically, without the use of Theorem 3.1, that {P3(n) | n ≥ 1} satisfies
rule A and rule B.

It follows from Corollary 4.1 that P (n) ⊂ P1(n) ⊂ Q(n) for all n ≥ 1, and
indeed it is proved in Theorem 6.3 of [16] that P (n) = Q(n) for 1 ≤ n ≤ 50. Thus
we have

P (n) = P1(n) = P2(n) = P3(n) = Q1(n) = Q2(n) = Q(n), 1 ≤ n ≤ 50. (4.2)

One might conjecture from eq. (4.2) that P (n) = Q(n) for all n ≥ 1, but it
is proved in Theorem 7.10 of [16] that this is false and in fact almost certainly
P (n) 6= Q(n) for infinitely many n. A special case of Theorem 7.10 of [16] is the
following result.

Theorem 4.3. Suppose that λ4 and λ1 := λ4 + 2 are prime numbers with λ4 ≥ 11
and λ4 6= 41. Then it follows that

q := 23 × 72 × λ1 × λ4 ∈ Q(56 + 2λ4) and q ∈ P (57 + 2λ4)
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but q 6∈ P (56 + 2λ4). In particular, q = 56056 ∈ Q(78) and q ∈ P (79), but
q 6∈ P (78).

The results of Section 7 in [16] leave open the question whether P1(n) = Q(n)
for all n ≥ 1.

Question 4.3. Is it true that P1(n) = Q(n) for all n ≥ 1? If not, can one describe
P1(n) precisely in terms of number theoretical and combinatorial constraints?

Appendix Numerical data

If p ∈ P2(n) and q|p it is observed in [16] that q ∈ P2(n), and since P2(n) = Q(n),
the same property holds for Q(n). We define an element p ∈ Q(n) to be “maximal”
if mp 6∈ Q(n) for all m > 1, m ∈ N. It follows easily that Q(n) is the set of all
divisors of maximal elements of Q(n).

The results in the following tables are all obtained in [16], and the reader is
directed to [16] for further details. Note that the following table shows that Q(n)
is unequal to the set of orders of elements of the symmetric group on n letters for
n = 6 and 8 ≤ n ≤ 50. A later paper by S.V.L and R.D.N. will prove that Q(n) is
unequal to this set of orders for all n ≥ 8.

n maximal elements of Q(n)
1 [1]
2 [2]
3 [2, 3]
4 [3, 4]
5 [4, 5, 6]
6 [5, 12]
7 [7, 10, 12]
8 [7, 10, 15, 24]
9 [14, 15, 18, 20, 24]
10 [14, 18, 21, 24, 40, 60]
11 [11, 18, 21, 24, 28, 40, 60]
12 [11, 28, 35, 36, 42, 120]
13 [13, 22, 35, 36, 84, 120]
14 [13, 22, 33, 36, 90, 120, 140, 168]
15 [26, 33, 44, 105, 120, 140, 168, 180]
16 [26, 39, 44, 55, 66, 126, 140, 180, 210, 240, 336]
17 [17, 39, 52, 55, 72, 126, 132, 180, 240, 280, 336, 420]
18 [17, 52, 65, 77, 78, 110, 132, 144, 240, 252, 280, 336, 360, 420]
19 [19, 34, 65, 77, 110, 144, 156, 165, 240, 252, 264, 336, 360, 840]
20 [19, 34, 51, 91, 130, 154, 156, 165, 198, 220, 252, 264, 720, 1680]
21 [38, 51, 68, 91, 130, 154, 195, 198, 231, 264, 312, 440, 660, 720, 1260, 1680]
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22 [38, 57, 68, 85, 102, 182, 195, 234, 260, 312, 396, 462, 504, 528, 616, 720,
880, 1260, 1320, 1680]

23 [23, 57, 76, 85, 182, 204, 234, 273, 312, 385, 396, 462, 504, 520, 528, 616,
720, 780, 880, 1260, 1320, 1680]

24 [23, 76, 95, 114, 119, 143, 170, 204, 234, 273, 312, 364, 520, 616, 720, 770,
780, 792, 924, 1680, 2520, 2640]

25 [46, 95, 119, 143, 170, 228, 255, 300, 364, 408, 455, 468, 546, 720, 792, 990,
1008, 1540, 1560, 1680, 1848, 2520, 2640]

26 [46, 69, 133, 190, 228, 238, 255, 300, 306, 340, 408, 572, 720, 792, 910, 936,
1008, 1155, 1540, 1680, 1848, 1980, 2184, 2520, 2640, 3120]

27 [69, 92, 133, 190, 238, 285, 300, 306, 357, 408, 429, 456, 572, 680, 792, 936,
1020, 1080, 1170, 1386, 1512, 1820, 1980, 2184, 2310, 2640, 3080, 3120,
3696, 3780, 5040]

28 [92, 115, 138, 187, 266, 285, 300, 306, 342, 357, 380, 408, 456, 476, 572,
680, 792, 858, 936, 1020, 1080, 1365, 1386, 1512, 1980, 2340, 2640, 3120,
3640, 3696, 3780, 4368, 5040, 9240]

29 [29, 115, 187, 266, 276, 300, 342, 399, 456, 476, 595, 612, 714, 715, 760,
936, 1080, 1140, 1512, 1584, 1638, 1716, 2040, 2340, 2640, 2730, 2772,
3120, 3640, 3696, 3780, 3960, 4368, 5040, 6160, 9240]

30 [29, 161, 209, 221, 230, 276, 300, 342, 374, 399, 456, 532, 595, 612, 715,
760, 1140, 1144, 1428, 1584, 1638, 1716, 2040, 2640, 2772, 3120, 3640,
3696, 3960, 4368, 4680, 5040, 5460, 6160, 7560, 9240]

31 [31, 58, 161, 209, 221, 230, 300, 345, 374, 532, 552, 561, 612, 665, 684,
798, 1001, 1144, 1530, 1716, 1872, 2040, 2280, 2380, 2856, 2860, 3120,
3276, 4368, 4680, 5040, 5544, 7560, 7920, 10920, 18480]

32 [31, 58, 87, 247, 322, 345, 414, 418, 442, 460, 552, 561, 665, 684, 748,
1001, 1596, 1785, 1872, 2040, 2100, 2280, 2380, 2856, 2860, 3060, 3276,
3432, 4290, 4680, 5544, 6240, 7560, 7920, 8736, 10080, 10920, 13860, 36960]

33 [62, 87, 116, 247, 322, 414, 418, 442, 483, 552, 600, 627, 663, 684, 748,
920, 935, 1122, 1380, 1710, 2100, 2142, 2280, 2380, 2574, 2660, 2860, 3060,
3192, 3432, 3570, 4004, 4080, 4290, 5712, 6240, 6552, 7560, 7920, 8316,
8736, 9360, 10080, 11880, 21840, 27720, 36960]

34 [62, 93, 116, 145, 174, 253, 414, 483, 494, 552, 600, 627, 644, 836, 900,
920, 1326, 1380, 1768, 1870, 1995, 2100, 2280, 2448, 2574, 2660, 3003, 3192,
3420, 3432, 4004, 4284, 4488, 5720, 6120, 6240, 6552, 7560, 7920, 8160,
8316, 8580, 8736, 9360, 9520, 10080, 11424, 11880, 14280, 16380, 21840,
27720, 36960]

35 [93, 124, 145, 253, 348, 494, 600, 644, 741, 805, 828, 836, 900, 966,
1045, 1105, 1254, 1309, 1326, 1768, 1870, 2100, 2394, 2448, 2660, 2760,
3420, 3990, 4284, 4488, 4560, 5148, 6006, 6120, 6240, 6384, 6552, 6864,
7560, 7920, 8008, 8160, 8316, 8736, 9360, 9520, 10080, 11424, 11440, 11880,
14280, 16380, 17160, 21840, 27720, 36960]
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36 [124, 155, 186, 203, 290, 299, 323, 348, 506, 600, 741, 805, 828, 900,
988, 1045, 1368, 1768, 1932, 2100, 2210, 2394, 2508, 2618, 2652, 2760,
2805, 3300, 3420, 3740, 4488, 4560, 4896, 5148, 5320, 6384, 6864, 7560,
7980, 8008, 8160, 8568, 9520, 10010, 10080, 11424, 11440, 11880, 12012,
12240, 14280, 15840, 17160, 18720, 22176, 32760, 36960, 41580, 43680,
55440]

37 [37, 155, 203, 290, 299, 323, 372, 435, 506, 600, 696, 759, 828, 900, 988,
1235, 1463, 1482, 1547, 2070, 2090, 2100, 2210, 2508, 2618, 2736, 2760,
3220, 3300, 3366, 3740, 3864, 4488, 4560, 4788, 4896, 5304, 5320, 5610, 6384,
6840, 7560, 7980, 8160, 8568, 10010, 10080, 10296, 11424, 11880, 12240,
13104, 15840, 18720, 22176, 24024, 28560, 32760, 34320, 36960, 41580,
43680, 55440]

38 [37, 217, 310, 372, 406, 435, 522, 580, 598, 600, 696, 759, 900, 1012,
1292, 1547, 2100, 2415, 2470, 2760, 2926, 3220, 3300, 3315, 3366, 3864,
3900, 3927, 4140, 4180, 4420, 4896, 5236, 5304, 5472, 5928, 6270, 7480,
7560, 8160, 8568, 8976, 9120, 9576, 10032, 10080, 10296, 11220, 11424,
11880, 12240, 12768, 12870, 13104, 13680, 15840, 16632, 18720, 20020,
21420, 22176, 24024, 28560, 31920, 32760, 34320, 36960, 41580, 43680,
55440]

39 [74, 217, 310, 406, 465, 522, 598, 609, 696, 744, 897, 900, 969, 1012,
1160, 1265, 1292, 1518, 1729, 1740, 2470, 2898, 2926, 3094, 3220,
3300, 3762, 3900, 3978, 4140, 4180, 4200, 4830, 4896, 5304, 5472,
5520, 5928, 6270, 6630, 6732, 7560, 7728, 7854, 8568, 8840, 8976,
9120, 9576, 10032, 10080, 10472, 11880, 12240, 12768, 13104, 13680,
14040, 14960, 15444, 15840, 16632, 18720, 21420, 22176, 22440, 30030,
31920, 32760, 34320, 36036, 36960, 40040, 41580, 43680, 48048, 49140,
51480, 55440, 57120]

40 [74, 111, 319, 391, 434, 465, 522, 558, 609, 620, 696, 744, 812, 897, 900,
1160, 1196, 1265, 1292, 1656, 1740, 1938, 2898, 3036, 3300, 3458, 3705,
3900, 3978, 4140, 4200, 4389, 4940, 5304, 5520, 5852, 5928, 6188, 6440,
6545, 6732, 7524, 7728, 8360, 8568, 8840, 8976, 9282, 9576, 9660, 10032,
10472, 12540, 13260, 14040, 14960, 15444, 15708, 19656, 21420, 22440,
23940, 24480, 27360, 30030, 34320, 36036, 40040, 48048, 49140, 51480,
57120, 63840, 83160, 110880, 131040]

41 [41, 111, 148, 319, 391, 434, 558, 651, 744, 812, 1015, 1044, 1196, 1218,
1240, 1495, 1615, 1771, 1794, 1860, 2431, 2530, 3036, 3300, 3312, 3458,
3480, 3876, 3900, 3978, 4446, 4940, 5304, 5520, 5796, 5928, 6300, 6440,
7410, 7524, 7728, 8280, 8400, 8778, 8840, 9282, 9576, 9660, 10032,
11704, 12376, 13090, 13260, 13464, 14040, 15444, 16720, 17136, 19656,
23940, 24480, 25080, 27360, 31416, 34320, 36036, 42840, 44880, 48048,
49140, 51480, 57120, 63840, 83160, 110880, 120120, 131040]
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42 [41, 148, 185, 222, 341, 377, 437, 558, 638, 651, 744, 782, 868, 1015,
1044, 1240, 1495, 1615, 1771, 1800, 1860, 2431, 2436, 2530, 2584, 3300,
3312, 3480, 3588, 3795, 3876, 3900, 4446, 5100, 5187, 5520, 5796, 6072,
6300, 6916, 7315, 7524, 7728, 7735, 7956, 8280, 8400, 9282, 9880, 10032,
10608, 11704, 11856, 12376, 13464, 14820, 15444, 16720, 16830, 17136,
17556, 19320, 20592, 24480, 25080, 26180, 26520, 27360, 31416, 34320,
38610, 42840, 44880, 47880, 48048, 51480, 57120, 63840, 72072, 80080,
83160, 98280, 110880, 120120, 131040, 180180]

43 [43, 82, 185, 341, 377, 437, 444, 638, 782, 868, 957, 1044, 1085, 1116,
1173, 1302, 2093, 2261, 2584, 2610, 2717, 2990, 3480, 3542, 3588, 3600,
3720, 3795, 3876, 3900, 4060, 4446, 4554, 4872, 5060, 5100, 5796, 6072,
6300, 6460, 6916, 8400, 9724, 10374, 11704, 11856, 13464, 14630, 15048,
15120, 15444, 15470, 15912, 16560, 17556, 19635, 20592, 23100, 24480,
26180, 27360, 29640, 31416, 33660, 34272, 37128, 38610, 38640, 44880,
47880, 50160, 51480, 53040, 57120, 63840, 68640, 72072, 80080, 83160,
85680, 96096, 98280, 110880, 120120, 131040, 180180]

44 [43, 82, 123, 259, 370, 403, 444, 682, 754, 874, 957, 1085, 1116, 1173,
1276, 1564, 2093, 2261, 2604, 2717, 2990, 3045, 3480, 3542, 3600, 3720,
3900, 4060, 4485, 4554, 4872, 5100, 5220, 5313, 5700, 6072, 6300, 6460,
6600, 7176, 7293, 7752, 8400, 8645, 8892, 9690, 9724, 10120, 11856, 15048,
15120, 15180, 15912, 16560, 18360, 18810, 19152, 20748, 23100, 23562,
24480, 25704, 27360, 28980, 29260, 29640, 30940, 34272, 37128, 38640,
39780, 47880, 53040, 57120, 62832, 63840, 64260, 67320, 70224, 77220,
78540, 83160, 85680, 89760, 96096, 98280, 100320, 104720, 110880,
131040, 144144, 160160, 180180, 205920, 240240]

45 [86, 123, 164, 259, 370, 403, 555, 682, 754, 874, 888, 1023, 1116, 1131,
1276, 1311, 1564, 1595, 1914, 1955, 2346, 2790, 3600, 3654, 3720, 4060,
4186, 4340, 4485, 5100, 5208, 5220, 5382, 5700, 5814, 5980, 6090, 6460,
6600, 6960, 7176, 7752, 8400, 9044, 9108, 9690, 9744, 9900, 10626, 10868,
11592, 12144, 12600, 14168, 14586, 15048, 15120, 15912, 16560, 17290,
17784, 18360, 19448, 20240, 23100, 24480, 25704, 26928, 27300, 27360,
28980, 29260, 30360, 34272, 37620, 38304, 38640, 39780, 41496, 43890,
46410, 47124, 53040, 57120, 59280, 61880, 63840, 64260, 67320, 70224,
74256, 77220, 83160, 85680, 89760, 95760, 98280, 100320, 104720, 110880,
125664, 131040, 144144, 157080, 180180, 205920, 480480]

46 [86, 129, 164, 205, 246, 493, 518, 555, 666, 740, 806, 888, 1023, 1131,
1364, 1508, 1595, 2088, 2622, 3255, 3496, 3600, 3654, 3720, 3828,
3910, 4340, 5100, 5208, 5220, 5580, 5700, 5814, 6600, 6783, 6960,
7752, 7800, 8120, 8151, 8372, 8400, 9044, 9384, 9744, 9900, 10764,
10868, 12155, 12180, 12558, 12600, 12920, 14352, 15048, 15120, 15912,
17710, 17784, 18216, 18360, 19380, 19448, 20520, 21252, 22230, 23100,
23184, 23920, 24288, 24480, 25704, 26334, 26928, 27300, 27360, 27846,
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28336, 28728, 29172, 33120, 34272, 34580, 35880, 37620, 38304, 39780,
40480, 41496, 43890, 46410, 47124, 53040, 57120, 57960, 58520, 59280,
60720, 61880, 63840, 64260, 67320, 70224, 71820, 74256, 77280, 83160,
85680, 89760, 95760, 98280, 100320, 104720, 108108, 110880, 125664,
131040, 144144, 154440, 157080, 205920, 360360, 480480]

47 [47, 129, 172, 205, 492, 493, 518, 666, 777, 806, 888, 1209, 1364, 1480,
1508, 1705, 1885, 2046, 2185, 2220, 2233, 2262, 2622, 2737, 3190,
3289, 3496, 3553, 3600, 3828, 3906, 3910, 4176, 4340, 5100, 5580,
5700, 6510, 6960, 7308, 7440, 7752, 7800, 8120, 8372, 8400, 9044,
9384, 9744, 9900, 10416, 10440, 10764, 10868, 11628, 11700, 12180,
12558, 12600, 12920, 13200, 13566, 14352, 15120, 16302, 17710, 17784,
18216, 19380, 20520, 21252, 23184, 23920, 24288, 24310, 25935, 27300,
28336, 28728, 30096, 31824, 33120, 35880, 37620, 40480, 44460, 46200,
52668, 53856, 55692, 57960, 58344, 59280, 60720, 69160, 70224, 71820,
77280, 79560, 82992, 83160, 89760, 94248, 98280, 100320, 106080,
108108, 110880, 123760, 125664, 128520, 131040, 134640, 144144,
148512, 154440, 171360, 175560, 185640, 191520, 205920, 314160,
360360, 480480]

48 [47, 172, 215, 258, 287, 407, 410, 492, 527, 551, 666, 777, 888, 986,
1036, 1209, 1480, 1612, 1705, 1885, 2220, 2232, 2233, 3190, 3496,
3553, 3600, 3906, 4092, 4176, 4370, 4524, 4785, 5100, 5244, 5474,
5580, 5700, 5865, 6578, 6900, 6960, 7308, 7440, 7656, 7800, 7820,
8400, 8680, 9384, 9744, 9900, 10416, 10440, 10465, 10764, 11628,
11700, 12558, 12600, 13020, 13200, 14352, 16744, 17784, 18088, 20520,
21736, 22610, 22770, 23920, 24360, 27132, 27170, 27300, 28336, 28728,
31122, 31824, 32604, 33120, 34034, 35420, 35880, 36432, 38760, 42504,
44460, 46200, 48620, 51870, 52668, 53856, 55692, 58344, 59280, 69160,
70224, 71820, 77280, 79560, 82992, 100320, 106080, 108108, 110880,
115920, 117040, 121440, 123760, 128520, 131040, 134640, 148512,
150480, 154440, 166320, 171360, 175560, 185640, 188496, 191520,
196560, 205920, 270270, 480480, 628320, 720720]

49 [94, 215, 287, 407, 410, 516, 527, 551, 615, 984, 986, 1036, 1295, 1332,
1479, 1554, 1612, 2015, 2387, 2418, 2639, 2940, 3059, 3410, 3600,
3770, 4092, 4199, 4370, 4440, 4464, 4466, 4524, 4785, 5474, 5700,
5742, 6380, 6900, 7038, 7308, 7440, 7656, 7800, 7812, 7820, 8400,
8680, 9384, 10416, 10488, 11160, 11628, 11700, 11730, 12600, 13020,
13156, 13200, 14212, 18088, 19800, 20880, 20930, 21528, 22610, 27132,
27170, 27300, 31122, 33120, 34034, 35420, 35700, 36432, 38760, 42900,
45540, 46200, 48620, 48720, 50232, 53130, 53856, 58344, 59280, 60192,
63648, 65208, 69160, 71760, 72930, 77280, 82992, 85008, 88920, 100320,
103740, 105336, 106080, 110880, 111384, 115920, 121440, 123760,
128520, 131040, 134640, 140448, 143640, 148512, 150480, 154440,
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159120, 166320, 171360, 185640, 188496, 191520, 196560, 205920,
235620, 288288, 351120, 480480, 540540, 628320, 720720]

50 [94, 141, 301, 430, 481, 516, 574, 589, 615, 738, 814, 820, 984, 1054,
1102, 1295, 1332, 1479, 1972, 2015, 2387, 2639, 2940, 3059, 3108,
3410, 3770, 4199, 4440, 4464, 4466, 4836, 5115, 5655, 5742, 6555,
6699, 7038, 7440, 7656, 7812, 8184, 8211, 8740, 9048, 9867, 10416,
10488, 10659, 10948, 11160, 11400, 11628, 12760, 13156, 13800, 14212,
15600, 15640, 18768, 19019, 19140, 20400, 20880, 21528, 23400, 23460,
24840, 26040, 26400, 26910, 29070, 31878, 33120, 34776, 35568, 36432,
36540, 39600, 41860, 43758, 45220, 45540, 46368, 48720, 50232, 50400,
53130, 53856, 54264, 54340, 54600, 59280, 60192, 62244, 63648, 65208,
68068, 70840, 71400, 71760, 72930, 77280, 77520, 82992, 85008, 85800,
86940, 88920, 92400, 97240, 100320, 105336, 106080, 110880, 111384,
115920, 116688, 121440, 128520, 131040, 134640, 140448, 141372,
143640, 148512, 150480, 154440, 159120, 166320, 171360, 188496,
191520, 196560, 201960, 205920, 207480, 288288, 351120, 371280,
471240, 480480, 540540, 628320, 720720]

The following list contains the factorizations of the maximal elements for Q(42).

Q[42] = [ 41, 22 × 37, 5× 37, 2× 3× 37, 11× 31, 13× 29, 19× 23, 2× 32 × 31,
2× 11× 29, 3× 7× 31, 23 × 3× 31, 2× 17× 23, 22 × 7× 31, 5× 7× 29,
22 × 32 × 29, 23 × 5× 31, 5× 13× 23, 5× 17× 19, 7× 11× 23,
23 × 32 × 52, 22 × 3× 5× 31, 11× 13× 17, 22 × 3× 7× 29,
2× 5× 11× 23, 23 × 17× 19, 22 × 3× 52 × 11, 24 × 32 × 23,
23 × 3× 5× 29, 22 × 3× 13× 23, 3× 5× 11× 23, 22 × 3× 17× 19,
22 × 3× 52 × 13, 2× 32 × 13× 19, 22 × 3× 52 × 17, 3× 7× 13× 19,
24 × 3× 5× 23, 22 × 32 × 7× 23, 23 × 3× 11× 23, 22 × 32 × 52 × 7,
22 × 7× 13× 19, 5× 7× 11× 19, 22 × 32 × 11× 19, 24 × 3× 7× 23,
5× 7× 13× 17, 22 × 32 × 13× 17, 23 × 32 × 5× 23, 24 × 3× 52 × 7,
2× 3× 7× 13× 17, 23 × 5× 13× 19, 24 × 3× 11× 19, 24 × 3× 13× 17,
23 × 7× 11× 19, 24 × 3× 13× 19, 23 × 7× 13× 17, 23 × 32 × 11× 17,
22 × 3× 5× 13× 19, 22 × 33 × 11× 13, 24 × 5× 11× 19,
2× 32 × 5× 11× 17, 24 × 32 × 7× 17, 22 × 3× 7× 11× 19,
23 × 3× 5× 7× 23, 24 × 32 × 11× 13, 25 × 32 × 5× 17,
23 × 3× 5× 11× 19, 22 × 5× 7× 11× 17, 23 × 3× 5× 13× 17,
25 × 32 × 5× 19, 23 × 3× 7× 11× 17, 24 × 3× 5× 11× 13,
2× 33 × 5× 11× 13, 23 × 32 × 5× 7× 17, 24 × 3× 5× 11× 17,
23 × 32 × 5× 7× 19, 24 × 3× 7× 11× 13, 23 × 32 × 5× 11× 13,
25 × 3× 5× 7× 17, 25 × 3× 5× 7× 19, 23 × 32 × 7× 11× 13,
24 × 5× 7× 11× 13, 23 × 33 × 5× 7× 11, 23 × 33 × 5× 713,
25 × 32 × 5× 7× 11, 23 × 3× 5× 7× 11× 13, 25 × 32 × 5× 7× 13,
22 × 32 × 5× 7× 11× 13]
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We conclude with a table containing the factorization of the largest element of
Q(n) for 1 ≤ n ≤ 50.

n largest element of Q(n)
1 1
2 2
3 3
4 22

5 2× 3
6 22 × 3
7 22 × 3
8 23 × 3
9 23 × 3
10 22 × 3× 5
11 22 × 3× 5
12 23 × 3× 5
13 23 × 3× 5
14 23 × 3× 7
15 22 × 32 × 5
16 24 × 3× 7
17 22 × 3× 5× 7
18 22 × 3× 5× 7
19 23 × 3× 5× 7
20 24 × 3× 5× 7
21 24 × 3× 5× 7
22 24 × 3× 5× 7
23 24 × 3× 5× 7
24 24 × 3× 5× 11
25 24 × 3× 5× 11

n largest element of Q(n)
26 24 × 3× 5× 13
27 24 × 32 × 5× 7
28 23 × 3× 5× 7× 11
29 23 × 3× 5× 7× 11
30 23 × 3× 5× 7× 11
31 24 × 3× 5× 7× 11
32 25 × 3× 5× 7× 11
33 25 × 3× 5× 7× 11
34 25 × 3× 5× 7× 11
35 25 × 3× 5× 7× 11
36 24 × 32 × 5× 7× 11
37 24 × 32 × 5× 7× 11
38 24 × 32 × 5× 7× 11
39 25 × 3× 5× 7× 17
40 25 × 32 × 5× 7× 13
41 25 × 32 × 5× 7× 13
42 22 × 32 × 5× 7× 11× 13
43 22 × 32 × 5× 7× 11× 13
44 24 × 3× 5× 7× 11× 13
45 25 × 3× 5× 7× 11× 13
46 25 × 3× 5× 7× 11× 13
47 25 × 3× 5× 7× 11× 13
48 24 × 32 × 5× 7× 11× 13
49 24 × 32 × 5× 7× 11× 13
50 24 × 32 × 5× 7× 11× 13
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