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1. Introduct ion  

Let P be a second order elliptic operator defined in a smooth bounded domain 

f2 C_ R n, n >_ 2. Let W(x) be a positive function and denote by A0 the principal 

eigenvalue of  the Dirichlet generalized eigenvalue problem 

Pu = AW(x)u 
(1.1) 

u = 0 on 0~2. 

in Q, 

If  P is a self-adjoint operator it is well known that A0 is given by the classical 

(Rayleigh-Ritz) variational formula, namely 

A0= inf f l { ( P u ,  u ) }  (1.2) 
. ~ c ~ l  J ( W u ,  u) ' 

where (., .) denotes the L2(Q) inner product. 

In [6,7] Donsker and Varadhan generalized the variational formula (1.2) for 

general second order elliptic operators with C ~~ coefficients (see also [8,15]). 

Donsker and Varadhan proved that for W(x) = 1, A0 is given by 

(1.3) inf supj ?,/  l 
#EM uE~ 

where A/I = A/I(~) is the space of  all probability measures on (~, and D denotes 

the set of  all positive functions u 6 C ~ (E") for each of which there exist constants 

cl and c2 such that 0 < cl <_ u(x) _< c2 < oc for all x 6 E " .  The proof is based on 

strongly continuous semigroups theory and was motivated by a probability theory 
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point of view. 

Using the maximum principle Protter and Weinberger [16] proved that for a 

general second order elliptic operator, A0 is given by the variational formula 

(1.4) Ao = supinf  ( PW~)u } ' 
u>0 xEf~ 

The variational principles (1.2) and (1.4) can be modified to give a formula for a 

generalized eigenvalues problem with an indefinite weight function (see [2], [10] 

and Theorem 2.2). Using a test function, the Rayleigh quotient and (1.3) give an 

upper bound for A0 while (1.4) gives a lower bound. On the other hand Donsker 
and Varadhan [7] showed that the two variational principles are connected via a 

mini-max theorem. 
Suppose now that f2 is an unbounded domain or a domain with a nonsmooth 

boundary. Then, in general, a principal eigenvalue does not exist. Consider the 

one-parameter family of operators 

Ptu = P u -  tW(x)u in f2, 

where W E C~(V2), 0 < a < 1 and t E E. Let 

and define 

Cp(f2) = {u C C2(f2) I u > 0 and Pu = 0 in f2), 

(1.5) A0(e; w ,  - A0 = sup {t l ce , (n)  # 0) .  

It is easy to check that for a C ~ bounded domain the two definitions of A0 coincide. 
Moreover, it is well known that with A0 defined by (1.5) and under mild regularity 
conditions the variational principle (1.2) is valid for self-adjoini operators defined 

on general domains (see for example [1]). Notice that the Protter-Weinberger 
formula is also valid for elliptic operators in unbounded domains (see Remark 1 in 
[16], and Corollary 2.3). 

Another kind of variational formula for A0 was given by M. Schechter [18] for 

the one-parameter family of Schrrdinger operators 

(1.6) H t = - A + A - t W ( x )  inR ' ,  

where W(x) is a nonnegative function, A > 0 (A > 0 if n > 3) is fixed, and t E ~, 
(see also [ 19-21 ]). Schechter proved that 

~n 
f~ Gn0 (x, y)W(y)~(y)dy  

(1.7) (A0) -1 = inf sup 
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where GS~(x,y) is the minimal positive Green function of the operator P in f2. 

Schechter's proof is based on the special properties of GHo (x, y) . Notice that if  

W(x) is positive in ~2, one can formally derive (1.7) from the Protter-Weinberger 

formula (1.4) by substituting u(x) = fn G~(x, y)W (y)O(y)dy. 
In this paper we prove that all the above variational principles are valid for a 

general elliptic operator and an arbitrary domain f~ C_ I~ n. 

The outline of  this paper is as follows. In Section 2 we give some basic 

definitions, fix notations and recall some results. In Section 3 we prove that the 

Donsker-Varadhan formula is valid for the general case. In Section 4 we show 

that the Schechter formula (1.7) holds for the general case provided the operator 

P is subcritical in f2, namely P admits a positive minimal Green function in f2. 

As an application we show in Section 5 that for an operator which is formally 

self-adjoint, A0 > 0, if and only if the Birman-Schwinger  integral operator is a 

bounded L2 operator. 

It turns out that if $ is a positive supersolution of  the equation ( P -  AoW(x)) u = 0 

in f2, then O(x) is a minimizer of (1.7). It is natural to ask if  there exists a minimizer 

for (1.7) that satisfies the equation 

(1.8) ~ G~(x,y)W(y)O(y)dy = (Ao)-lO(x) for all x E f L  

It turns out that if P;~0 is critical in Q, the answer is yes (for the definition of  

criticality see Section 2). We conjecture that this is also true in the subcritical case. 

The conjecture turns out to be true for the special case of  the radial Schrrdinger 

operators in I~ n (Theorem 4.6). 

We conclude the paper in Section 6 where we prove a generalized Riemann-  

Lebesgue lemma. The lemma was proved first under more restrictive assumptions 

by Cantrell and Cosner [4,5]. This lemma has applications in population dynamics 

and refuge theory. 

For the sake of  brevity we shall omit some of  the proofs. In [12] we intend 

to give the details of  the proofs. Moreover, we shall present a functional analytic 

approach, give analogous results for general boundary conditions and discuss some 

more related results. 

Part of this paper was written when the first author was visiting the Institute of  

Advanced Studies in Mathematics at the Technion in January 1990. The first author 

would like to express his gratitude to the Technion for their hospitality. The second 

author would like to thank Professor Shmuel Agmon for valuable discussions. 
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2. Pre l iminar ie s  

We consider a second order elliptic operator P acting on functions u in a domain 

[~ C ]~n . We shall deal with an elliptic operator of  the form 

(2.1) 
n 

Pu = - aij(x)OiOju "}- 2 b i (x )Oiu  ''}- C(X)li, 
id= 1 i= 1 

where 0 i = O/OX i and x = ( x l , . . . , x , )  E ~. We assume that the coefficients of  P 

are real and HOlder continuous and that 

n 

(2.2) aij(x)~i~j > 7(x) Z {/2 
i,j= 1 i= 1 

for all x E ~2 and ~ E ~ n ,  where 7(x) is a positive continuous function. 

Let {~2k}ff=l be a sequence of  smooth bounded domains which exhaust fL Sup- 

pose that for all 1 < k the Dirichlet Green function G~k(x,y) of P exists and is 

positive. It is easy to see that {Ge ak (x, y)}ff=l is an increasing sequence of  functions 
which by the Harnack inequality converges for every x ,y  E f2 either to G~(x,y) ,  

the positive minimal Green funct ion of P in f2, or to infinity. Recall [13], that P 

is said to be a subcritical operator in f2 in the first case and critical in the second 

case. P is said to be supercritical in f2 if Cp(f2) = 0. It turns out [13, Corollary 4.3] 

that P is critical in f2 if and only if  P admits a ground state (in the sense of Agmon 

[1, Definition 5.1]) with an eigenvalue zero. 

In the sequel we shall always assume that A0 is defined by (1.5). Let x0 E f2 be 

fixed, we shall denote by/C the set of  all positive C 2 functions u in (2 such that 

u(xo) = 1. Consider the one-parameter family of  operators Pt = P - tW(x),  where 

t E ~ and W(x)  E C~(f2). Denote by S the set of  all t E 11~ such that Ce,(f2) ~ 0, and 

by S+, S_, So the set of t E ~ such that Pt is subcritical, supercritical and critical 

in f2 respectively. We have 

T h e o r e m  2.1 ([14]). S is a closed convex set and So c_ OS. Moreover, i f  

S 7~ 0 then S is bounded i f  and only i f  W changes its sign in f2 and S = ~ if  and 

only i f  W =_ O. 

Suppose that the sign of  W(x) in f~ is not restricted, and denote 

(2.3) w + ( w _ )  = {xe e I W(x)> o(< o)}. 

Suppose that S r 0, we shall write S = [A_, A+] . Recall (see for example [3] p. 

92) that t E S if and only if  there exists a positive supersolution of  the equation 

Ptu = 0 in fL Thus one can use Theorem 2.1 to generalize the Protter-Weinberger 

variational principle (see [10] and the references therein). 
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Theorem 2.2 Suppose that u(x) E C2(~), U(X) > 0 in ~2 . Define 

(2.4) p+(u, W) = p+(u) = sup{t E IR [ etu >_ 0 on W+}, 
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(2.5) 

Then 

(2.6) 

p_ (u, W) - p-  (u) = inf {t E ]R I Ptu >_ 0 on W_ }. 

A+ = sup {p+(u) I u E C2(Q), u ~> O, p + ( u )  > p_(u )}  , 

(2.7) A_ : inf {p_(u) l u E C2(f2), u > 0, p+(u) >_ p_(u)}.  

Proof  It is easy to check that if  p+ (u) >_ p_ (u) then u is a positive superso- 

lution of  the equations Pp+(u)v = 0 and Pp_(u)V = 0 in f2. Hence A_ < p_ (u) < 

p+ (u) _< A+. Moreover, A+ (A_) is attained by any u E Cp~+ (f2) (Cp~_ (f})). [] 

IfW(x) is positive in f2, then for any positive function u(x) E C2(f2), p-  (u) = -oo,  

while 

p+(u)=in f (  P u }  
xE I2 W u  " 

Moveover, in this case we have A_ = -oo  and A+ = A0, where A0 is defined by 

(1.5). Hence Theorem 2.2 implies the Protter-Weinberger variational principle: 

Corollary 2.3 Suppose W(x) > 0 in fL Then 

(2.8) A0 : s u p i n e [  Pu } 

In Section 3 we shall use (2.8) and a mini-max theorem to derive a generalization 

of  the Donsker-Varadhan formula. 

3. The Donsker -Varadhan  principle 

In this section we shall prove that the Donsker-Varadhan variational principle 

holds for A0 (A0 is defined by (1.5)). We shall prove it for an elliptic operator P of  

the form considered in Section 2 which is defined on a general domain f2 C_ IR n and 

for a positive function W E C~(~2). 
Recall that A/I is the space of all probability measures on ~. Denote by A40(f~) 

the subset of  A/I which consists of  all measures with a compact support in ~. We 

have 
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T h e o r e m  3.1 Let P be an elliptic operator defined in a domain ~2 C_ I~ n, and 

let W(x) C C~(~2) be a positive function. Then 

(3.1) Ao= inf s u p [  Pu inf s u p [  Pu 
~,e~ ,E~C J ~ # ( d x )  = ,eS~o(a)uepc J W- - -~  l~(dx)" 

We sholll first prove the theorem for a bounded domain. Our proof is a modifica- 
tion which simplifies the proof in [7]. Moreover, it applies to a much wider class 
of operators. We have 

L e m m a  3 . 2  

Then 

(i) Let P be an elliptic operator defined in a C 1 bounded domain. 

(3.2) A0= inf s u p [  Pu W----~#(dx ) = inf I(#). 
#EA4 uEK , I  #E,M 

f~ 

(ii) Assume fur ther  that P is an operator with C I ' e ( Q )  coefficients. Let (~(x) and 

O(x) be the ground states with an eigenvalue zero o f  Pxo and P* respectively 
)~o 

(P* is the formal  adjoint o f  P). Assume also that fa  O(x)W(x)~(x)dx = 1. Then 

t~o =- O(x)W(x)~A(x)dx is the unique minimizer among all the smooth probability 

measures f o r  the variational formula  (3.2). 

P r o o f  o f  t he  L e m m a  (i) Denote by V the subspace 

v = {v c2(a)lv(xo) = o} .  

Then the right hand side of (3.2) is equivalent to 

(3.3) 

Consider the function 

inf s u p [  p(ev) 
ueM veV aa W(x)e v I~(dx). 

laP(e 
v) 

(3.4) f ( v ,  #) = W(x)eV #(dx) 

defined on C2(~)) x At. Using the observation of H. Berestyki and R L. Lions (see 
also [7,11,14]),  we  see that for any 0 < t < 1 and vl, v2 E C2(D) 

(3.5) f ( t v l  + (1 - t)v2, #) = tf(vl,/_t) + (1 - t)f(v2, I-t) 

+t(1 - t) f expZ(Vl - v2) ~ aij(x)Oi(exp(v2 - Vl))Oj(exp(vz - Vl))l~(dx). 
i,j= 1 
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Therefore, as in [7] if we impose the C2-topology thenf(v, / t )  is a continuous strictly 

concave function of  v for each fixed/t,  and for each fixed v it is a continuous linear 
function o f / t .  Since /t varies on a compact set (in the weak* topology),  the 

mini-max theorem of Sion [22] applies and we have 

inf supf(v , / t )  = sup inf f(v,/t) 
rEAd vEV vEV #EArl 

= sup inf #(dx) = sup inf = )~o, 

where the last equality follows from Corollary 2.3. 
(ii) Define g(v) = f(v,/to), w h e r e f  is defined by (3.4) and v belongs to the convex 

hull of  C2(f2) U {log~b}. A direct computation shows that v0 = log4) is a critical 

point o f g  and g(vo) -- A0. Since g(v) is strictly concave it follows that l(/t0) = A0. 

Define #t = (1 - 0 / t 0  + t#t where/ t l  E A~ is a probability measure with a smooth 
density and 0 < t < 1. It follows from the explicit formula of  l(/t) (see [7, Lemma 
3.3]) that l(/tt) is strictly convex at t = O. Since A0 < l(/t) (see (3.9) below), it 

follows that/to is the unique smooth minimizer. [] 

R e m a r k  3.3 (i) The second part of  the lemma was proved also by Y. Kifer 
using probabilistic methods [9, Proposition 3.1 ]. Kifer also shows that/to is the 

invariant measure of  a certain Markov process. 
(ii) Since the second part of  the lemma implies A0 >_ in fu~a  I(/t) and it is clear 

that A0 < l(/t) for al l / t  E M (see (3.9) below), we see that the second part of  the 
lemma provides us also an alternative proof of  the Donsker-Varadhan principle. 

P r o o f  o f  T h e o r e m  3.1 Denoting A~0 k) = A0(f2k), we see that 

inf sup [ W---~/t(dx) < inf sup / ~ e u  Pu 
UE.X4 uEK: J --  ue~ao(~),eic .. ,..,. #(dx) 

(3.7) f~ 
_< inf s u p / ~ P u  < A~ok). 

~ o ~ . ~ :  J vv ~x)u u(dx) 
f~ 

Since ~0 k) ~ A0 as k ~ oc it follows that 

(3.8) ~e~ainf uelcsuP[a W----~/t(Pu dr) < 
~2 

inf sup/PWTx)u/t(dx)<_AO. 
/~E.,~10(12) uE K 

~2 

On the other hand, by Corollary 2.3 we have 

(3.9) A ~  Pu } u e p c x e a  ~ -< uepcsupfPw~x)/t(ax) 

~2 
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for any # E .A/L Therefore, 

(3.10) A0 _< 
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inf sup / ~ P u  'dx' 
,uE.~,t uEh: . /  w~x,  lu / t [  

) .  

Combining (3.8) and (3.10) we obtain (3.1). [] 

L e m m a  4.1 SupposethatPisasubcrit icaloperatorinf2andW(x) >_ 0, W E 

C~(f2). Assume that t E S+ and denote by Gta(x,y) the Green function of  the 

operator 

(4.1) P, = P - tW(x) 

Then G~(x, y) satisfies the resolvent equation 

(4.2) 

P r o o f  See [ 14, the first part of the proof of Theorem 2.1 (ii)]. [] 

in f~. 

G~ (x, y) = G~(x, y) + t / G~(x, z)W(z)G~ (z, y)dz. 

We also have (see Theorem 2.1 and Equation (2.12) in [ 14]) 

L e m m a  4.2 Under the hypotheses of  Lemma 4.1, assume that u E Cp,(f2) 

where t > 0 and t E S. Then for every x E ~2 

(4.3) t / G~(x, z)W(z)u(z)dz < u(x). 

[2 

Moreovel, if t = A0 and A0 E So then 

(4.4) A0 / G~(x, z)W(z)u(z)dz = u(x), x C f2, 

12 

where u is a ground state of  the equation (P - AoW(x)u = 0 in f2. 

Using the Riesz decomposition theorem, Lemma 4.1 and Lemma 4.2 we have 

4. T h e  S c h e c h t e r  p r i n c i p l e  

Suppose now that P is subcritical in ~, and W(x) is a nonnegative H61der 

continuous function in 9t (W may vanish in ~).  In this section we show that the 

variational principle (1.7) holds in the general case. First we need to prove some 

lemmas. 
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C o r o l l a r y  4.3 Let u be a positive supersolution of  the equation Ptv = 0 in 

~2, where t is a positive number. Then u satisfies" inequality (4.3). Moreover, either 

we have a strict inequality in (4.3)for every x E f2, or we have an equality in (4.3) 

for  all x E f2. 

P r o o f  There remains to prove the last statement of  the corollary. One can 

easily check that if u is a positive supersolution of  the equation P~v = 0 in f2, then 

w(x) = u(x) - t ,f G~(x, z)w(z)u(z)dz is a nonnegative supersolution of the equation 

Pv = 0 in ~2. Hence, either w(x) is strictly positive or identically zero. Notice that 

i f u  satisfies an equality in (4.3) then u E Cp,(f2). [] 

Denote C+(f2) = {o E C(f2)]4~ > 0}. The next theorem is the generalization of  

the Schechter variational formula. 

T h e o r e m  4.4 Suppose that P is subcritical in f2 C_ R ~, and let W(x) E 

CO(f~), W ~ 0 be a nonnegativefunction. Then 

(i) ,~0 = ~o(P, W, f2) is given by 

(4.5) 

(ii) I f  o is a positive supersolution o f  the equation PAou = 0 in f2, then 6(x) is a 

minimizer of  (4.5). 

(iii) l f  o is a minimizer of  (4.5) then v(x) = J~z G~(x, y)W(y)O(y)dy is a positive 

supersolution of  the equation P~ou = 0 in ~. Moreovel, the minimizer is unique i f  

and only i f  Ao E So. 

P r o o f  (i) Denote the right hand side of  (4.5) by u and notice that )~0 _> 0. It 

follows from Lemma 4.2 that (~0)-l > v. Suppose that u < (A0) -1, then for c > 0 

small enough there exists a continuous positive function 0r such that 

(4.6) supl(o~(x))-~fGa(x,y)W(y)o~(y)dy}=a-l=(ao+~) -1 <(AO) -1 
.tEl2 1, 

I2 

Consider the function v~(x) = faG~(x'y)W(Y)~ Then v~ is a positive 

supersolution of  the equation (P - AW(x))u = 0 in f~, which is a contradiction of 

the definition of  A0. 

(ii) Follows directly from Corollary 4.3 and (4.5). 

(iii) It is easy to check that v(x) is a positive supersolution of  PAou -- 0 in f2. 

Recall that A0 E So if and only if, up to a positive factor, there is only one positive 

supersolution of  P~ou = 0 in f2 (this supersolution is in fact the ground state). 

Therefore, the last statement of the theorem follows from part (ii). [] 
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It follows from Lemma 4.2 that if A0 E So then the minimizer satisfies equality 

(4.4). It is natural to raise the following conjecture: 

Conjecture 4.5 There exists u E Ce~o (f2) that satisfies 

(4.4) Ao / G~(x, z)W(z)u(z)dz = u(x), x E a. 

f~ 

In other words, we ask whether there exists u E Ce~ o (f2) which is a potential, 

in the sense of potential theory, with respect to the operator P in [2. Notice 

that equality (4.4) can hold also for A r A0. For example, consider the operator 

P = - A  + 1 in R n and let W = 1, then equality (4.4) holds for every 0 < A < 1 = A0 

and u ~ cp~ (~). 
Conjecture 4.5 turns out to be true for the special case where P is a radial 

Schr6dinger operator in I1~ n, n > 3 and W(x) = W(r), where r = Ixl. More 

precisely, we consider the one-parameter family of  operators 

(4.7) Pt = - A  + V(r) - tW(r) in I~ n, 

where W, V E C~(R+), W _> 0 and t E IR. We have 

Theorem 4.6 Let Pt be the operator in (4.7). Assume that Po is subcritical 
in I~ n, and W >_ O. Denote G(x, y) = G~o(X, y). Suppose that A0 > 0 and let 
u E Cp~ o (I~n). Then 

A0 / G(x, z)W(z)u(z)dz = u(x), x E R n. 

f~ 

Remark 4.7 (i) If  A0 E S+ (P and [2 are general) then one can find a minimizer 

of  (4.5) which is not a supersolution ofP~o u -- 0 in f2. For example, one can take 

any function r that satisfies 

GP~o(x, YO) - Ge(x, yo) < ~(x) < Ge~o(x, yo ) in Q. 

(ii) Comparing the Protter-Weinberger variational principle (2.8) with (4.5), we 

have to remember  that if we want to estimate A0 using (2.8) we need to find a �9 

positive supersolution of  Ptu -- 0 in f~ (t ~ A0), which in general is not easy to 

find. On the other hand, in order to use (4.5) we need to know the minimal Green 

function of  P in f~ which is also, in general, not known. Notice that we could derive 

(4.5) from (2.8) for W(x) > 0, provided we know that for positive supersolutions 

the integral in (4.5) is finite. 
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We can now derive the analog of  the Donsker-Varadhan principle using (4.5) 

instead of  (2.8). 

T h e o r e m  4.8 Let P be a subcritical operator in fl, and let W(x) E C~ be a 
nonnegative function. Then 

(4.8) 

=suPuE~0,~,~,eC+,~)inf {f(~(x))-z{fG~(x.y)W(y)cb(y)dy}~(dx,}. 

The proof of  the theorem is almost the same as the proofs of  Theorem 3.1 and 

Lemma 3.2, hence we shall only outline the proof. 

P r o o f  As in the proof of  Theorem 3.1 it is enough to prove the theorem for a 

smooth bounded domain. Using the H61der inequality we see that the functional 

(4.9) f~(v) = log / G~(x, y)W(y) exp(v(y))dy - v(x) 
I2 

is convex for every x E f2. Therefore, exp(fx(v)) is also a convex functional. It 

follows that the function 

(4.10) 

I2 f~ 

defined on C(f2) • .A4 is a lower semicontinuous (see [17], p. 356, Example 1) and 

convex function of  v and for each fixed #, and for each fixed v it is a continuous 

linear function of/~. Since ~ varies on a compact set (in the weak* topology), the 

mini-max theorem of  Sion ([22], see also [11 ]) applies and we have 

(4.11) 

uEA~ r 

= s u p  inf f ( v , # ) =  inf supf(v, /z)  
,~EC vEC(fl) vEC(f~)/~E.M 

= inf~Ec+(~) {sup/{(qb(x))-~/G~(x'y)W(Y)fb(y)dy} p(dx) 
12 r 

:info c+,o, / sup {,o,x,,-, / o ,x, 
g~ 

where the last equality follows from Theorem 4.4. [] 
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R e m a r k  4.9 (i) Let /~(x) be a continuous nondecreasing convex function 

defined on 2, then by replacing exp o log with/3 o log in (4.10) and using the same 

technique as in the proof of  the theorem we obtain 
(4.12) 

g o ( - l o g A 0 ) = s u p {  inf /flolog{~-~(-(-~fG~(x,y)W(y)~(y)dy}#(dx)}. 
~ A a  ~c+(12 )  12 12 

(ii) If  f2 CC ~n one can derive Theorem 4.8 directly from the Donsker-Varadhan 

principle [12]. 

The next Theorem shows that/~0 = O(x)W(x)~(x)dx is again an extremal mea- 

sure. 

T h e o r e m  4.10 Let P be a subcritical operator with C l,~((2) coefficients defined 
on a C 1 bounded domain and let W(x) E C~((2) be a nonnegative function. Let 
4(x) and O(x) be the ground states with an eigenvalue zero of Pxo and (P~o)* 
respectively. Assume also that 

(4.13) / O(x)W(x)f)(x)dx = 1. 

12 

Then 
(4.14) (Ao)-'=u icnf12){/,(x)W(x)~{/G,(x,y)W(y)u(y)dy}dx }. 

Moreover, if u is a minimizer of(4.14) then u(x) = f)(x) for all x E supp W. 

R e m a r k  4.11 (i) In the general case the integral in (4.13) may be infinite. 

(ii) The theorem is the analog of  Lemma 3.2 (ii) (for the Donsker-Varadhan 

principle) and of  Theorem 2.3 in [11] (for matrices). The proof is basically the 

same as the proof of  Lemma 3.2 (ii). 
(iii) The measure #0 = ~9(x)W(x)f)(x)dx appears naturally in the context of  

positive solutions. For other examples see Lemma 3.2 and [9,14,15]. 
(iv) If  P is a subcritical operator with C 1 ,~(f)) coefficients in a smooth bounded 

domain f2 and if  W E C~(f)) is a nonzero nonnegative function, then all the other 

assumptions of  Theorem 4.10 are satisfied and the theorem holds. Therefore, as 

in Remark 3.3, and under the regularity assumption of  the coefficients one can use 

Theorem 4.10 to obtain an alternative proof for Theorem 4.8. We leave the details 

to the reader. 
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5 .  T h e  s y m m e t r i c  c a s e  

In this section we shall assume that P is formally self-adjoint. Therefore, the 

positive minimal Green function G~(x, y), if it exists, is a symmetric function in 
the two variables x and y. Moreover, we can consider P as a symmetric operator 

in L2(f2) with a domain 79(P) = C~(f2) and let/3 be its Friedrichs extension. Then 

it is well known that 

(5.1) )to = A0(P, 1, ~2) = info'(/3) 

and 

(5.2) )tr162 = )t~ (P, 1, f2) - sup{)t0(P, 1, f2 \ f~k)} = inf~ress(/3), 
k>0 

where ~r(/3) and ~rr are the spectrum and the essential spectrum of /3  (see for 

example [1]). 
In this section we shall discuss some further properties of  )t0(P, W, ~2), where 

P is formal self-adjoint, W is a nonnegative function and f2 C_ ~n. First we shall 
show the connection between the boundedness of  the Birman-Schwinger  integral 

operator, as an operator in L2, and the positiveness of  )t0. 

T h e o r e m  5.1 Let P be a formal self-adjoint subcritical operator in f2, and 
let W E C~(f2) be a nonzero nonnegative function. 

Then A0 = A0(P, W, f2) > 0 if and only if the integral operator 

(5.3) Tf(x) = / K(x, y)f(y)dy 
12 

is a bounded operator on L2(f2), where 

(5.4) K(x,y) = w'/Z(x)G~(x,y)W'/Z(y) 

is the Birman-Schwinger kernel. Moreover, 

(5.5) [[Tll 2 = (Ao) -2  = inf  sup{(u(x))-lT2u(x)}. 
uEC+(f~) xE~ 

The proof  is based on Theorem 4.4 and the Schechter generalization of  the Schur 

test [ 19, Theorem 3 and Equation (12) therein]. 

From the proof of  Theorem 5.1 follows 
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C o r o l l a r y  5.2 Suppose A0 = 0. Then T is an unbounded operator on 

Lp(ft), 1 < p < oo, where T is defined by (5.3) and (5.4). 

The next theorem provided us with a sufficient condition for the invariance of  

the infimum of C'ess(P) (see also Theorem 5.1 in [20]). Since the theorem holds 
also for nonsymmetric operators, we shall state the theorem in terms of  Aoo (Ao~ is 
de fned  by (5.2)). 

T h e o r e m  5.3 Suppose that P is an elliptic operator of  the form (2:1) and 

that P is defined on ~2. Assume also that Aoo = O. Consider the two-parameter 

family of  operators 

(5.6) P , . s u  ( P -  t W + s ) u ,  t ,s 6IR 

where W 6 C~(f~) is a nonnegative function. Suppose that for some so > 0 

(5.7) lim A0(P + so, Wk, f2) = oo ,  
k~oo 

where 

f O, x 6 f~k, (5,8) Wk(x) 
I W(x), x e O \ 

Then 

(5.9) Ar162 (P - W, 1, f2) = Ar162 (P, 1, f2) = O. 

R e m a r k  5.4 Suppose that A0(P, 1, f~) = 0, and let W > 0. Theorem 2.1 implies 
that the function 

(5.10) A0(s) -- A0(P + s, W, f/), s > 0, 

is a nondecreasing concave function. It follows that Theorems 4.1 and 4.2 in [20] 
hold also in the general case and can be derived directly from these properties of  

A0. 
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6. The R i e m a n n - L e b e s g u e  l e m m a  

In this section we derive from the Donsker-Varadhan principle a generalized 
Riemannian-Lebesgue lemma which has applications in population dynamics and 

refuge theory [4,5]. We have 

Theorem 6.1 Let P be a subcritical elliptic operator with H61der continuous 
coefficients which is defined in f~ CC ~n. L e t  {mj}j~=l C L~(~2) O Ca(O) be a 
sequence of functions such that Ilmjll  <__ M .  Denote 

(6.1) A~ = Ao(mj) = sup{t E ~lde-tmj(f~) # 0}. 

Then A0(rnj) --, ~ as j --* oo if and only if 

(6.2) li m s u p f  rnj(x)#(dx) <_ 0 
j~cx~ 

12 

for all probability measures I~ in f~ with density in Li ( ~ ). 

P r o o f  We shall give here the proof of  only one part of  the theorem. Suppose 

that A0(rnj) ~ oo a s j  --, o~. By the Donsker-Varadhan formula we have 

(6.3, inf { s u p (  /P-~Uul~(dx)}-AJo/mj(x)Iz(dx)}>O. 
#EJVl uE/C I, 12 

Let / t  be fixed, then 

(6.4) l(tz) = sup / P-~Uull(dx)> A j f mj(x)#(dx). 
12 12 

From the explicit formula for 10t ) [7], Lemma 3.3] it follows that l(~t) is finite if 

/z is sufficiently smooth. Therefore 

(6.5) l(#)/)~Jo >_ /mj(x)l~(dx), 
f~ 

and as j ~ ~ we obtain (6.2). Note that in the proof  of  this part we have not used 

the boundedness of  f~ and {mj]. [] 
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E x a m p l e  6 . 2  (i) Let P be an elliptic operator in ~n with constant coeff icients  

and define mj(x) = mo(x+je l ) ,  where mo E ~;~(E"),el = ( 1 , 0  . . . . .  0) a n d j  > 0. 

Then A0(mj) = A0(m0), but l i m j _ ~  f~ mj(x)p(dx) = 0 for all probability measures  

/t in E" with density in Ll(//~"). Therefore,  one  part o f  Theorem 6.1 is not valid if 

is an unbounded domain.  
II  

(ii) LOt Py  = - y  , f~ = (0, 7r) and mi(x) = sinjx.  It fo l l ows  from the classical  

R i e m a n n - L e b e s g u e  l e m m a  that A0(mi) ---" c~ as j ---- ~z,. 
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