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Abstract 

In this paper we begin a study of the differential-delay equation 

ex ' ( t )  = - x ( t )  + f ( x ( t -  r ) ) ,  r = r ( x ( t ) ) .  

We prove the existence of periodic solutions for 0 < e < e0, where e0 is an 
optimal positive number. We investigate regularity and monotonicity properties 
of solutions x ( t )  which are defined for all t and of associated functions like 
tl (t) = t - r ( x ( t ) ) .  We begin the development of a Poincard-Bendixson theory 
and phase-plane analysis for such equations. In a companion paper these 
results will be used to investigate the limiting profile and corresponding bound- 
ary layer phenomena for periodic solutions as e approaches zero. 

0. Introduction 

The scalar differential-delay equation 

ex ' ( t )  - - - x ( t )  + f ( x ( t -  1)) (0.1), 

has arisen in several different areas of science over the past fifteen years. We 
refer to the introduction of [34] for further details, but we note in passing 
that the equation arises in the study of an "optically bistable device" (see 
[7, 8, 17-20]) and in a variety of models for physiological processes or 
diseases (see [28-30, 51] for discussion of models which treat production of 
blood cells, respiration and cardiac arrythmias). The equation has appeared 
also in interesting recent work of LONGTIN [26] and LONGTIN & MILTON 
[23--25] on the so-called human pupil-light reflex. 

Over the past several years it has become apparent that there is a need for 
a theory of equations similar to (0.1), but containing delays that are func- 
tions of the state of the system. Among the first rigorous treatments of state- 
dependent delays are those in the pioneering work of DRIVER [9--12] concern- 
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ing models arising in classical electrodynamics (see also DRIVER & NORRIS 
[13]). Models leading to such equations have been introduced by MAcI~EY [27] 
and B~zam & MACl~EY [t] to describe commodity price fluctuations and by 
MACICEY & MIL~'ON [30] to describe the dynamics of blood cell production. 
Furthermore, discussions of the authors with A. LONGTIN, J. MILTON and 
M. MACKEY suggest that equations with state-dependent delay are of interest 
in theories of the pupil-light reflex. 

In this paper we study a variant of (0,1)~ in which the constant time lag 
is replaced by a time tag which depends on x(t) :  

ex ' ( t )  = - x ( t )  + f ( x ( t  - r ) ) ,  r = r ( x ( t ) ) .  (0.2)~ 

The given function r is such that r ( x ( t ) )  >_ 0 for all relevant t. As in [34], 
we are interested in solutions of (0.2)~ (usually periodic solutions) which 
oscillate about a steady-state constant solution c, and we normalize by looking 
for solutions which oscillate about zero. (Since c is typically not explicitly 
known, nontrivial problems may arise in normalizing c = 0. We refer the 
reader to [36] for a discussion of this point.) Assuming c = 0, we shall always 
suppose that r ( 0 ) =  1 and that f satisfies a negative feedback condition, 
x f ( x )  < 0 for x E [ -B,  A] and x * 0. We shall then seek slowly oscillating 
periodic solutions or SOP solutions of (0.2)~. Recall (cf. [34]) that a periodic 
solution x ( t )  of (0.2)e is called an SOP solution if there exist numbers ql > 1 
and q 2 > q l + l  such that x(0) =0 ,  x(ql) = 0 ,  x(q2) = 0 ,  x(t) < 0  for 
0 < t < q l , x ( t )  > 0 for ql < t < q2 and x ( t  + q2) = x ( t )  for all t. Of course, 
if x ( t )  is an SOP solution, for each fixed 1:, then x ( t  + 3) is also called an 
SOP solution. SOP solutions are called P2-solutions in references [35] and 
[47]. 

Our goal in this paper and in the sequel [38] is to prove existence of SOP 
solutions of (0.2)~, to establish theorems about the shape of general periodic 
solutions, and to study their limiting profile as e--* 0 +. We shall show that 
a variety of new mathematical phenomena arise which are not present in the 
constant time-lag case [3, 33-35, 47]. The simple example 

e x ' ( t )  = - x ( t )  - k x ( t  - r) ,  r = 1 + c x ( t ) ,  (0.3)~ 

with k > 1 and c > 0, illustrates some of the new phenomena. In [38] we shall 
prove that the limiting profile F as e ~ 0  + of SOP solutions x~(t)  of (0.3)e 
is given by a sawtooth function of period k + 1 : F is a straight line y = c-~x 
for -1 -<  x __ k, has vertical segments at x = - 1  and x = k, and is extended 
periodicall): This, of course, contrasts markedly with the constant time-lag 
case treated in [34]. There the limit is a step function with jumps at the in- 
tegers. 

For reasons of length we defer discussion of the limiting behavior of solu- 
tions of (0.2)e as e ~ 0  + to the subsequent paper [38]. Here we prove ex- 
istence of SOP solutions of (0.2) 8 (for e small enough) and discuss qualitative 
properties of SOP solutions and other solutions of (0.2)~. Our existence 
theorems for SOP solutions are essentially nonconstructive and provide little 
information about the shape of SOP solutions. Thus "regularity" theorems 
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concerning SOP solutions are philosophically akin to regularity theorems for 
weak solutions of  partial differential equations. The results we obtain, par- 
ticulary in Section 2 below, play a crucial role in [38]. 

This paper  is long and, in parts, technical, so we want to provide the reader 
with a detailed guide. For the most  1~rt we assume one of  two possible sets 
of  hypotheses, labelled H i  and H2 or H I '  and H 2 '  on f and r :  

H1. 

H2. 

H2'.  

HI ' .  

A and B are given positive real numbers and f : [ - B ,  A] ~ I -B ,  A] is a 
Lipschitz map with x f (x )  < 0 for all x E I - B ,  A], x 4= 0. 
For A and B as in H1, r : I - B ,  A] ~ R is a Lipschitz map with r (0)  = 1 
and r(u)>= 0 for all u ~ I - B ,  A]. 
B is a positive real number and r : [ - B ,  oo)~ ~ is a locally Lipschitz 
map  with r (0)  = 1, r(u) >= 0 for all u = - B ,  and r ( - B )  = 0. 
f : R ~ IR is a locally Lipschitzian map, and if B is as in H 2 '  and A = 
suP[ I f (u ) ]  : - B _  u < 0}, then uf(u) < 0 for all u E [ -B ,A] ,  u e~ O. 

The letters A and B are always constants as in H1 and H2 or H I '  and H2 ' .  
Notice that  the example in (0.3)~ satisfies H I '  and H2 ' ,  but not H1 and H2. 

With this background,  we can state part  of  the basic theorem in Section 1 
(see Theorem 1.1 in Section 1). 

Theorem. Assume that f and r satisfy H1 and H2 or H I '  and H2' .  Assume that 
f is in C 1 near 0 and i f ( O ) = - k < - l .  Let v0,~ < v 0 < z ~ ,  be the unique 

solution of cos(vo) = - 1 / k  and define 4o = Vo/x/~ - 1. Then for each 4 > 4 0 
the equation 

x ' ( t )  = - 2 x ( t )  + 4 f ( x ( t -  r)),  r - -  r (x ( t ) )  (0.4)4 

has an SOP solution x~(t) such that - B  < x ~ ( t )  < A  for all t. 

In fact, we prove considerably more in Theorem 1.1. We actually prove that 
there is a global continuum of periodic solutions of  (0.4)z and that  these 
bifurcate f rom the zero solution at 4 = 40. Furthermore,  we show that if x 
is an SOP solution of (0.4)4 such that - B  < x ( t ) < A  for all t, if the 
minimal period of x(t)  is p(x,  ,~), and if p (0 ,  40) = 2n/Vo, then the map p 
is (in a precise sense given in Theorem 1.1) continuous. 

I f  f is an odd function and r is an even function, one expects special SOP 
solutions, called S-solutions or Pl-solutions, to (0.4) 4. A periodic solution 
x(t)  of  (0.4)4, normalized so that x ( 0 ) =  0, is called an S-solution or 
Pl-solution, if  there exists ql > 1 such that  x( t  + qa) = - x ( t )  for all t and 
x(t)  > 0 for 0 < t <  qa. The existence of  such solutions is discussed in 
Theorem 1.2, Remark 1.7, and Remark 1.8. 

The argument proving Theorem 1.1 is somewhat technical so it may be 
worthwhile to discuss the basic strategy of the proof.  We fix a large A > 0 
and consider (0.4)4 for 0 < 4 < A .  For R>__A(A+B) and M ~ s u p { r ( u ) :  
- B  _< u _A} ,  we define X =  C ( [ - M ,  0]) and define a compact ,  convex set 
CR C X of  Lipschitzian functions of  Lipschitz constant less than or equal to 
R. See (1.6). We then define a continuous map F:CR• (0, A ) ~ C R  and 
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F4 (~b) - F ( r  2). We prove that nonzero fixed points of  F4 are in one-one 
correspondence with SOP solutions x ( t )  of  (0.4)4 such that - B  < x ( t ) < A  
for all t. The fact that we can define such a continuous map F involves elemen- 
tary arguments and estimates. However, caution is necessary: it is precisely at 
this point that our approach may fail for variant equations. 

Much of  the literature for proving existence of  SOP solutions [16, 43, 45] 
emphasizes the role of  proving that 0 is an "attractive fixed poin t"  or "ejective 
fixed po in t"  of  F4. However, the central point of  all proofs is actually a 
calculation of  the fixed-point index of  F4 on certain relatively open sets in 
CR. Here, we use the trick of  homotoping the equation (0.4)4 to one with a 
constant time lag: 

x ' ( t )  = - 2 x ( t )  + , ~ f ( x ( t -  rs)), r s = (1 - s) + s r ( x ( t ) ) .  

This homotopy leads to a corresponding homotopy of  the map F4,s :CR ~ CR 
corresponding to r~, 0 _ s _< 1. We prove that this homotopy enables one to 
reduce the problem of  computing the fixed-point index of  F4 to the well- 
understood problem of  computing the fixed-point index when r (u)  is a con- 
stant. We suspect that this trick will prove useful for other problems concern- 
ing functional differential equations. 

We note in passing that certain of  the lemmas used in the proof  of  
Theorem 1.1 are of independent interest and play a role in our future work. 
Specifically, I_emma 1.5 establishes (under our usual assumptions on f and r) 
that there is a constant 0 > 0 such that (0.4)4 has no SOP solution for 
0 < 2 < 0. There is also a constant C, independent of  3~, such that the minimal 
period p of  any SOP solution x ( t )  of  (0.4)4 satisfies p = C. 

Section 2 of  this paper treats the problem of  understanding more precisely 
the appearance of  solutions (particularly SOP solutions) of  equation (0.4)4. 
Assume always that f and r satisfy H1 and H2 or H I '  and H2'.  The starting 
point of  our results is Proposition 2.1. Suppose that 71 and q __> 71 + t are given 
real numbers and that 0: [71, q] ~ ~ is a Lipschitz map such that 0(71)= 
O(q) = 0 and - B  <_ O(t) <_ A for 71 _< t __< q. Then there is a unique solution 
x ( t )  = x( t ,  O, 2) of  the equation 

x ' ( t )  = - 2 x ( t )  + 2 f ( x ( t -  r ) ) ,  r = r ( x ( t ) ) ,  t >_ q, (0.5)4 

x ] [71, q] = 0 ,  

and x ( t )  is defined for all t ____ q and satisfies - B  <=x(t) <=A for all t ____ q and 
rl(t) = t - r ( x ( t ) )  > 7t for all t _> q. If  O(t) > 0 for 71 < t < q and if we define 
q2 = q, then we let qj, j ___ 2, denote the consecutive zeros of  x ( t )  (allowing 
qj+l = 0o if [x(t)[ > 0 for t > q j ) .  Then qj+l - -  q j  > 1 for all j _> 1, and if 
rl(t) = t - r ( x ( t ) ) ,  then r/(t) > qj-1 for qj <= t < qj+l and j >= 2. 

The function r l ( t ) =  t -  r ( x ( t ) )  plays a crucial role in our theory of 
(0.4)4. If  x ( t )  is as above and K = { t > = q : x ' ( t ) = 0 } ,  we prove in Theo- 
rem 2.1 that the restriction rl/K of  r/ to K is a strictly increasing function on 
K. In fact, if a EK and t > c~, we prove that t/(t) > r/(ot). Note, however, that 
we do not prove in Theorem 2.1 that rl '(t) > 0 for all t-> q. 

Monotonicity properties of  periodic solutions x ( t )  of  (0.4)x play an im- 
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portant role in our theory. If r and d are positive numbers, we say that x( t )  
satisfies Property M between - d  and c if, roughly speaking, x( t )  has nice 
monotonicity properties on intervals J such that - d  < x( t )  < c for t E J. A 
precise definition is given in Section 2 below and in Section 3 of  [34]. In 
Theorem 2.2 we prove that, under certain conditions on f and under very mild 
assumptions on r, if x( t )  is an SOP solution of  (0.2), for any e > 0, then 
x( t )  satisfies Property M between - d  and c. The point is that the positive 
numbers c and d depend only on f ,  and are defined exactly as they are for 
the corresponding theorem in the constant time-lag case. See Theorem 3.1 in 
[34]. The lag r ( x ( t ) )  plays no role here. 

One important special case of  Theorem 2.2 should be noted (see Remark 2.1 
below). Suppose that f and r satisfy H1 and H2 or H I '  and H2 '  and that 
f i s  in C 1 on ( - B , A )  with f ' ( 0 )  = - k  < - 1 .  Assume that [ f ( f ( u ) ) ]  > ]u] 
for - B < u < A  and u : # 0  and that f ' ( u ) < O  for - B < u < A .  Then, if 
x~(t) is an SOP solution of  (0.2)~, there are exactly two values of  t such that 
xs = 0 on each half-open interval of  length equal to the period of p. We 
do not know, for general r, whether the same theorem is true without the 
assumption that [ f ( f ( u ) ) [  > [u[ for u ~ ( - B , A ) ,  u :# 0. 

The idea of  integer-valued Lyapunov functions has played a useful role in 
studying differential-delay equations with a single constant time lag (see 
[31, 32]): Given a function y( t )  associated in a natural way with a problem, 
one tries to prove that N( t ) ,  the number of  zeros of  y(s )  on (t - 1, t], is 
a decreasing function on Z =  {t : y ( t ) =  0}. The remainder of  Section 2 in- 
volves the extension of this idea to the nonconstant time-lag case. Here we 
try to count the number of zeros of  some function y(s )  on the interval 
(~/(t), t], for t ~ Z = {t ]y( t )  = 0}. However, many serious technical problems 
arise which are not present in the constant time-lag case. For example, in con- 
trast to the constant time-lag case (see [42]), if f and r are real-analytic, it 
is not known whether an SOP solution of (0.2)~ is necessarily real-analytic. 

The above-mentioned integer-valued Lyapunov functions play a crucial role 
in Theorem 2.3 and Corollaries 2.2 and 2.3. Suppose that f and r satisfy H1 
and H2 or H I '  and H2 '  and that f ( u )  satisfies a mild nondegeneracy condi- 
tion on [ - B ,  A] (see Definition 2.1). Assume that x( t )  satisfies (0.4)~ for all 
t ~ ~, x is not identically zero, and - B  < x( t )  < A for all t. Then it is proved 
in Corollary 2.2 that K =  {t E R : x ' ( t )  = 0} has no accumulation points and 
that there does not exist t such that x ' ( r l J ( t ) ) = 0  for all j>__ 0, where 
rl(t) = t - r ( x ( t ) )  and rlJ(t) = rl(rlJ-l( t )) .  Furthermore, if f ' ( u )  < 0 for 
- B  < u < A ,  there exists T such that if x ' ( t )  = 0 and t __> T, then x"( t )  ~ O. 
In Corollary 2.3, we prove, without the assumption that f ' ( u ) <  0 for 
- B  < u < A ,  that there exists T1 such that if x ( t ) =  0 and t__> T1, then 

x ' ( t )  ~ O. Of course, if x( t )  is periodic, we conclude that if x( t )  = 0, then 
x ' ( t )  ~ 0 and if x ' ( t )  = 0, then x"( t )  #: O. 

As we have already noted, the function rl(t) = t - r ( x ( t ) )  plays an impor- 
tant role in our theory. Suppose t h a t f a n d  r satisfy H1 and H2 or H I '  and H2 '  
and that r is in C 2 on [ - B ,  A]. Assume that x( t )  satisfies (0.4)~ for all real t 
and - B  <__ x( t )  <= A for all t. Assume that there is a constant D _> 0 such that 

r"(u)  <=D(r ' (u))  2 for - B < _ u < _ A  
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and ~ > D .  I t  is a special case of  Theorem2.5  that  if  t / ' ( p ) >  0, then 
t / ' ( t )  > 0 for all t _> p. The question of  finding optimal conditions which en- 
sure that t / ' ( t )  > 0 for all t remains open. However, numerical studies suggest 
that, in general, one may have t / ' ( t )  < 0 for some t, even if x ( t )  is an SOP 
solution of  (0.4)z and ~ is large. 

I f  one knows that  r / ' ( t ) >  0 for all t, where x ( t )  is as above (see 
Theorem 2.5), then one can refine Theorem 2.3 and Corollary 2.2 con- 
siderably. Thus suppose that  f and r satisfy H1 and H2 or H I '  and H 2 '  and 
that f and r are in C 1 on ( - B , A )  with f ' ( u )  < 0 for - B  < u < A .  Assume 
that x ( t )  is a periodic solution of  (0.2)~, - B  < x ( t )  < A for all t and x ( t )  
is not identically zero. Assume that t / ' ( t ) > 0  for all t, where t / ( t ) =  
t - r ( x ( t ) ) .  Let qj, j ~ 7/, denote the consecutive zeros of  x ( t ) .  I f  p is the 
minimal period of  x ( t ) ,  we must  have that  q j + N - - q j  = P  for some even in- 
teger N. However, it is a special case of  Theorem 2.6 that in fact N -- 2. Fur- 
thermore, for each j E 77 there is a unique number  t such that  qj < t < qj+l 
and x ' ( t )  = 0. In the constant time-lag case r (u )  - 1 this result has been ob- 
tained earlier by SErI~ & MALLET-PARET in an unpublished work. 

The reader should note that  the latter half  of  Section 2 and, in particular, 
Theorem 2.6, represents a first step in developing a kind of Poincar6-Bendix- 
son theory and phase-plane analysis for equation (0.4)~. Related earlier work 
can be found in [21, 22, 32, 39, 48]. In future work, we hope to show that  
these ideas can be pushed much further. 

The fact that  under the hypotheses of  Theorem 2.6 the equation x ' ( t )  = 0 
has precisely one solution t such that  qj < t < qj+l may seem unremarkable 
and "obvious" .  However, even if r (u )  is a constant, this is not the case: I f  
f is not monotone ,  it is proved in [34] and [47] that the equation x ' ( t )  = 0 
may have many solutions on [qj, qj+l]. On the other hand,  if x ( t )  is an SOP 
solution of  the equation 

x ' ( t )  = ) ~ f ( x ( t  - r ) ) ,  r = r ( x ( t ) ) ,  ~ > O, 

and x f ( x )  < 0 for all x * 0, it is relatively easy to prove that  x ' ( t )  = 0 has 
a unique solution on any interval (qj,  qj+l) ,  where qj and qj+l are successive 
zeros of  x ( t ) .  

1. Existence of slowly oscillating periodic solutions 

In this section we prove the existence of  slowly oscillating periodic solutions 
of  equations of  the form 

ex ' ( t )  = - x ( t )  + f ( x ( t  - r ) ) ,  r = r ( x ( t ) )  (1.1)e 

or, equivalently, 

x ' ( t )  = - 2 x ( t )  + )L f ( x ( t  - r ) ) ,  r = r ( x ( t ) ) .  (1.2)z 

Recall (see [34]) that  a periodic solution of (1.1)e, normalized so that  
x (0)  = 0, is called an SOP solution if there exist numbers ql > 1 and q2 > 
ql + 1, such that  x ( t )  > 0 for 0 < t < ql, x ( t )  < 0 for ql < t < q2, and 
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x ( t  + q2) = x ( t )  for all t. Of  course, if  x( t )  is a SOP solution and r is a fixed 
real, then y( t )  = x ( t  + r) is also called an SOP solution. Much of  what we 
say extends to equations of  the form 

x ' ( t )  = g ( x ( t ) ,  x ( t  - r ) ) ,  r = r ( x ( t ) ) ,  

but for simplicity we restrict attention to (1.2)4. 
We begin by discussing the initial value problem for (t.2)4. If, in the 

following, we were to assume that r(u)  > 0 for all relevant values o f  u, then 
the argument could be reduced to standard results about ordinary differential 
equations. However, with little additional work, we can treat the case r(u)  >= O, 
and we take this approach. 

Proposition 1.1. Let A and - B  be real numbers with - B < A  and let 
f : [ - B ,  A] ~ [ - B ,  A] be a Lipschitz map. Let r : I - B ,  A] --* P. be a Lipschitz map 
such that r (u)  >= 0 for - B  < u <_A, and select M >_ sup{r(u)  : - B  ___ u _A}. 
Let 4~: [ - M,  0] ~ [-B,A] be a Lipschitz map. Then, i f 2  > O, there exists a unique 
Lipschitz function x : [ - M ,  oo) ~ R, such that x ] [ - M ,  0] = 6, - B  <= x( t )  <__ A 
for all t, x is continuously differentiable on [0, oo) and x ( t )  satisfies (1.2)~ for 
all t ~ O .  l f  x ( t )  < A  for some to>__O, then x ( t )  < A  for all t>=to; and if  
x(to) > - B  for some to >- 0, then x ( t )  > - B  for all t >= t o. 

Proof.  Fix a number T > 0, let R be a Lipschitz constant for 4~, and assume 
R = )~ (A + B). Let X = C [ - M ,  T] be the Banach space of  continuous maps 
y : [ - M , T ] ~ R  in the sup norm. Define J = [ - M , T ]  and C = I y E X : y  l 
[ - M ,  0] = ~b, - B  __< y (t) _< A for all t E J and l Y (t) - y (s) i < R It - s I for all 
t, s E J}. It is easy to see that C is a closed, bounded convex subset of  X, and 
the Ascoli-Arzel& theorem implies that C is compact. 

Define a map F :  C-~ X by 

(Fx) (t) = ~b(t) for - M  ~ t <_ 0, (1.3) 

t 

(Fx) ( t )  = e - a t S ( 0 )  + e - ; ' t j 2 e ~ S f ( x ( s - r ( x ( s ) ) ) )  ds, O<_t<_ T. 
0 

We leave it to the reader to prove that i fxE  Cis a fixed point o f F ( s o  F(x)  = x ) ,  
then x I I - M ,  0] = ~ and x( t )  satisfies:(1.2)4 on [0, T]. I f  we can prove that 
F is continuous and F(C)  E C, the Schauder fixed-point theorem implies that 
F has a fixed point. 

To prove continuity of  F :  C ~ X ,  i/suppose that  xj E C for j > 1 and 
I l x j -  x tl~ ~ 0 .  Let K 1 be a Lipschitz constant for f and K2 a Lipschitz con- 
stant for r, and for notational convenience write p~ (s) = r (xj (s)) ,  p (s) = r (x (s)).  
Then we obtain for 0 _< t _< T, 

t 

t (Fx/) (t) - (Fx) (t) I <__ e -4t .f )~eZ~ [I f ( x / ( s  - p / ( s ) ) )  -- f ( x ( s  - p f l s ) ) )  1 
0 

+ t f ( x ( s  - p j ( s ) ) )  - f ( x ( s  -- p ( s ) ) )  l] ds 
t 

< e -4t J ;teiS[KlllX/- xt!oo + glRg2tlx  j -xllo~] ds 
0 

= [1 - e7 -~'t] [KI + KIK2R] l[x/-xHo~. 
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We conclude that  

}[ f ( x j )  -F(x)11~ -< [1 - e  -4T] [K t q -KIK2R ] ]]xj - x]lr , 

so F is actually Lipschitzian on C with Lipschitz constant [ 1 -  e -aT] 
[K1 + KIK2R]. 

It  remains to prove that  F(C) C C. I f  x ~ C and p(s)  = r (x ( s ) ) ,  we have 
for 0__ t_< T, 

t 

(Fx) (t) <= e-4tA + e-'~t ~ ~e4SA ds = A ,  
o 

t 

(Fx) (t) >= - e - 4 t B  + e-4t ~ Ae4S(-B) ds = - B .  
0 

To prove that  F(x)  is Lipschitzian with Lipschitz constant R, it suffices to 
prove that  I(Fx)'(t)  I <- R for 0 __ t _< T However, we have 

t 

(Fx) ' ( t )  = -2e-~t~b(0)  - 2e zt ~ ~e4S f ( x ( s  - p(s)  ) ) ds + ) . f ( x (  t - p(t)  ) ) 
0 

N &e-4tB + ,~ (1 - e -zt) B + L4 = 3~ (A + B) ~_ R. 

A similar argument  shows that  

(Fx)'(t)  => - ~ ( A  + B) =>-R, 

which gives the desired estimate. 
I t  follows that  for each integer T = n => 1, there exists a Lipschitz function 

xn(t) with Lipschitz constant R, for which - B  <= x , ( t )  <__ A for - M _ <  t _< n, 
xn] I - M ,  0] = q~, and xn satisfies (1.2)4 on [0, n]. By using the Cantor  
diagonalization procedure and the Ascoli-Arzel~t theorem, one can see that  
there exists a subsequence x,~(t) which converges uniformly to a continuous 
function x(t)  on any compact  interval I - M ,  T]. I t  is not hard to see that  
- B  __<x(t )<A for all t>__-M,x] [ - M ,  0] = 4) and x satisfies (1.2)4 for 
t _ 0 .  

It  remains to prove the uniqueness of  the solution x( t )  above. I f  y(t)  is 
a second such solution, define 

~ = s u p { t > _ O : x ( s )  = y ( s )  for O<_s<_t}. 

I f  1: <0% by replacing x( t )  by xl( t )  = x ( t - - r )  we can assume that  r = 0. I f  
T > 0 is chosen sufficiently small, our  previous remarks show that  F is a con- 
traction mapping  on C and hence x ( t ) = y ( t )  on [0, T]. I t  follows that  
x(s)  = y(s)  for 0 <_ s <_ T + T, which contradicts the choice of  v. 

I f  X(to) < A  for some to >_- 0, we have for t >__ to, 

t 

x(t)  = X(to) e -4(t-t~ + e -4(t-t~ ~ ;.eX(S-t~ f ( x ( s  - r(x(s)  ) ) ) ds 
t o 

t 

<__ X(to) e-4(t-to ) + e -4(t-t0) I 2e~(S-t0)A ds 
to 

= [x(t0) - -A]e  -4(t-t~ + A  < A .  

A similar argument  applies if  x ( t  o) > - B .  [] 
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Remark LL The argument in Proposition t . I  applies to classes of  equations 
more general than (1.2)z. However, note that the uniqueness part of  the argu- 
ment fails if  r is only continuous, although a slight variant of the proof here 
still yields existence. 

Remark L2. Suppose that Cj: [ - M ,  01-~ [ - B , A ]  is a sequence of  Lipschitz 
functions all of  which have Lipschitz constant R and suppose that II 8j - ~ II ~ 0 
for some ff ~ C ( [ - M ,  0]). Assume that 2 i is a sequence of  positive reals and 
that ;~j-~ 2 > 0. Assume that xj:  I - M ,  co) -+ [ - B , A ]  is a Lipschitz map, that 
x ~ ! [ - M ,  01 = 8j, and that 

x / ( t )  = - ~ j x f l t )  + ) j ( x ( t  - r (x f l t ) ) ) )  for t >__ 0. 

(Here f and r are as in Proposition 1.1.) Let x : [ - M ,  oo] -~[ -B ,A]  be a 
Lipschitz map with x I [ - M ,  0] = 4~ and 

x ' ( t )  = - 2 x ( t )  + ~. f (x( t  - r (x ( t ) ) ) )  for t _ 0. 

Then we assert that for any compact interval [ - M ,  T], xj(t)  ~ x ( t )  uniformly 
in t 6 [ - M ,  T]. 

To prove this, we suppose not;  so by taking a subsequence we can assume 
that for some ~ > 0 and all j => ~, 

llxj-xlI  = sup Ix/t) -x( t ) t  
- M~t<-T  

If  R1 => R and Rt >- )~j(A + B) for all j __> I, then each x] is Lipschitzian with 
Lipschitz constant R~. Thus the Ascoli-Arzel~ theorem implies that by taking 
a further subsequence, which we again label (x]), we can assume that 
[[x j -y[[=-~0 for some continuous map y. It is easy to see that y satisfies 
(1.2)z and y] I - M ,  0] = r this contradicts the uniqueness of  solutions of the 
initial value problem for (1.2)~. 

In [38] we consider examples like 

ex'(t)  = - x ( t )  - kx(t  - r), r = 1 + cx(t) ,  

where e > 0, k > 1, and c > 0. The function f ( x )  = - k x  does not leave any 
nontrivial bounded interval [ - B , A ]  invariant, so Proposition 1.1 does not  
directly apply. Nevertheless, a simple trick allows us to use Proposition 1.1. 

Corollary 1.1. Let f :  R ~ R be a locally Lipschitzian function such that x f ( x )  < 0 
for all x * O. Let r: [R ~ ~ be a locally Lipschitzian map and assume there are 
numbers BE (0, oo) and A E (0, oD] such that r(--B) = 0  and r(u) >=0 for 
- B  <= u < A1 and such that r(Ai) = 0 i f  A 1 < o< Define A2 = max{f(u)  I - B  <_ 
u = 0 }  and A = m i n ( A t , A 2 ) .  I f  M>--_max{r(u):-B<_u<_A},  )~>0 ,  and 
q~: [--M, 0 ] ~  [--B,A] is a Lipschitz map, there is a unique Lipschitz map 
x : [ - M ,  oo)-~ [ -B,  A ], continuously differentiabte on [0, oo), with x I [ - M  , 0] = q~ 
and 

x ' ( t )  = - 2 x ( t )  + 2 f ( x ( t -  r ) ) ,  r = r ( x ( t ) ) ,  for t >_ O. 
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Proof .  Definef ' (u)  = f ( u )  for u = - B  and f ' (u)  = f ( - B )  for u =< - B .  Similarly, 
define f (u )  = r (u )  for - B  < u <_ A1, P(u) -- 0 for u r I - B ,  Ax]. Define - B  
by 

- B  = min (min{f (u ) ]  0 _< u ___ A2}, - B ) .  

Our hypotheses imply that f ( [ - B ,  A2]) C [ - B ,  A2], so Proposition 1.1 im- 
plies that there is a Lipschitz map x : [ - M ,  o o ) ~  [ - B ,  A2], in C 1 on [0, c0), 
such that x l [ - M ,  0] = 6 and 

x ' ( t )  = - 2 x ( t )  + 2 f ( x ( t  - ~)) ,  ~ = ~ ( x ( t ) ) ,  for t __> 0. 

It suffices to prove that - B < x ( t ) < _ A  for all t > 0 .  We know that 
- B < = x ( O )  <=A. If  x (0)  = - B ,  we have 

x'(0) 

Thus there exists a ~ > 0 with 
time t > 0 with x ( t )  = - B ,  we 
but (1.2)~ implies that 

= 2B + ) , f ( - B )  > 0. 

x ( t )  > - B  for 0 < t = &  If r > 0 i s  the first 
obtain a contradiction: necessarily x'(z-) _<__ 0, 

x ' ( z )  = )~B + 2 f ( - B )  > 0. 

Thus x ( t )  > - B  for all t > 0. 
If  A = A2, Proposition 1.1 implies that x ( t )  < A for all t = 0. Thus, we 

assume that A = A 1. However, in this case, the exact argument used above 
shows that x ( t )  < A1 for all t > 0. [] 

Remark L3. Because the proof  of Corollary 1.1 involves a simple reduction to 
Proposition 1.1, the obvious analogue of  Remark 1.2 holds for Corollary 1.1. 

Remark 1.4. Let notation be as in Corollary 1.1 and suppose that R > 0, where 
R is a Lipschitz constant for qS. There exists a number B,  = B , ( R ) ,  
0 < B,  < B, such that if r : [ - M ,  0] ~ [ - B , ,  A] and x ( t )  is the solution of  
(1.2)~ with x [ [ - M ,  0] = ~b, then - B ,  < x ( t )  <= A for all t > 0. To prove this 
it suffices to prove that if x ( r )  = - B ,  for some r >__ 0, then x ' ( z )  > 0. The 
number R arises in estimating 

] f ( x ( v -  r))  - f ( x ( v ) ) l ,  r = r(x(r) ) .  

Details are left to the reader. 
Under the hypotheses of  Proposition 1.1, we shall write x ( t )  = x ( t ;  4~, ~) 

for the unique solution of  (1.2)z with x [ [q - M, q] = q~. Here q ~ [R and r 
are given and - B  <__ x ( t )  <__A for all t__> q - M. 

Lemma 1.1. Assume that 2 > 0 and that hypotheses HI and H2 are satisfied or 
that H I '  and H2'  are satisfied. Select M >  sup{ r (u )  : - B  <_ u <_A} and let 
4~: [ - M ,  0 ] - + [ - B , A ]  be a Lipschitz map with oh(0) = 0 ,  4~(to) > O  for  some 
to E [ - 1 ,  01 and 4~(t) > 0 for  all t ~ [ - 1 ,  0]. I f  x ( t )  = x ( t ;  ~, 2) ,  define qo = 
q0(0, 2) by 

qo = s u p l t : x ( s )  = 0 for  0 < s <<- t}. 
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Define ql = qa (ok, 2 ) by 

qa(q~, 2)  = inf{t > qo:x( t ;  ok, 2) = 01 

and ql = 00 if x ( t )  < 0 for all t > qo. 
I f  qk = qk ( 4~, 2) is finite, define 

qk+l(~b, 2)  = in f [ t  > qk :x ( t ;  4~, 2)  = 0} 

and qk+l = Co if  x ( t )  * 0 for all t > qk. Then qo < 1, ql - q o  > 1 and qk+l - q k  > 1 
for all k such that qk < Co. I f  qk = Co for some k, then lira x (t; ~b, 2)  = 0. 

t--~ O0 

Proof .  We first assert tha t  qo < 1. For if qo => 1, then x ( t )  = 0 for 0 _< t < 1, 
f rom which we derive that  x ' ( t )  = 0 for 0 ___ t < 1, t/(t) = t - 1 for 0 < t < 1, 
and 

x ' ( t )  = - 2 f ( x ( t -  1)) = - ~ . f ( r  1)), 0 _< t-< 1. 

However, this last equat ion implies that  r  = 0 for - 1  < s _ O, contrary  to 
our  assumptions.  

We next assert tha t  there exists 6 > 0 such that  x ( t )  < 0 on (q0, qo + ~]. 
By definit ion o f  qo, there exists t j -~q~  such that  x( t j )  < O. On  the other  
hand,  if we define t l (s)  = s -  r ( x ( s ) )  and t > q0, then 

t 

e~'(t-q~ = I 2e~'(s-q~ ds. (1.4) 
qo 

Since r / ( q o ) =  q o - 1  < O, if t =  q o +  6 and if 6 is sufficiently small, it 
follows that  x ( r l ( s ) )  >_ 0 for qo - s __< t, and the r ight-hand side o f  (1.4) is a 
decreasing funct ion o f  t for qo -< t <__ qo + ~. Since the left-hand side o f  (1.4) 
is negative at points  t j ~ q ~ ,  we must  have x ( t )  < 0 for qo < t __< qo + 6. 

It follows that  ql > q0. 
ql - q0 - 1, we have 

x'(q~) 

and we must  have x ' ( q l )  = 0. 
cont inuous)  tha t  t / ' (q l )  exists 

- 1  ___ r/(t) < t/(ql ) = ql - 1 =< q0 for ql - 6 _< t < ql. 

For this range o f  t, we obtain f rom (1.2)4 that  

We know in general tha t  x ' ( q l ) = > 0 .  I f  

= 2 f ( x ( q l  - 1)) __< O, 

We conclude (even th rough  r is only Lipschitz 
and ~?'(ql) = 1, so there exists 6 > 0 with 

ql 

- eX( t -q l )x ( t )  = j 2e~(S-ql) f (x(r l (S)))  ds. (1.5) 
t 

The r ight -hand side o f  (1.5) is less than  or equal to zero, while the left-hand 
side is positive, a contradict ion.  

I f  q k + l = C ~  and q k <  Co for some even k , x ( t )  < 0  for  t > q k  and 

x ' ( t )  = > - L x ( t )  for t ___ qk + M,  

which implies tha t  l i m x ( t )  = 0. The p roo f  is similar for odd  k. 
t---~Oo 
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The proof  that qk+~-qk  > 1 is essentially the same as the proof  that 
ql - q o  > i and is left to the reader. D 

Lemma 1.2. Let f and r be continuous maps of R to ~ with r locally Lipschitzian, 
r(O) =1  and f ( O ) = 0 .  For a given M>=I and for a given q~lR,  let 
0 : [ q - M ,  q] ~ R be a Lipschitzian function. Assume that there exists 71 ~ [q - M ,  q] 
with q -  ~ >= 1 and 4) ( q ) = 49(Ct) = O. If  )~ > O, assume that there exists a Lip- 
schitz .function x ( t ) ,  defined for all t >_ q - M, C t for t >= q, and satisfying 

x ' ( t )  = - L x ( t )  + )~f(x( t  - r ) ) ,  r = r ( x ( t ) ) ,  t >__ q, 

x] [ q - M ,  q] = 6. 

Then tl (t) = t - r (x (t))  satisfies I7 (t) > 7t for all t > q. In particular, if  assump- 
tions are as in Lemma L1, then tl(t) > qj- t  for t >= qj. 

Proof.  I f  q = / i  + I, then x ' (q )  = 0 and it is easy to show that r/~_(q) is 
, ) defined and r/+(q = 1 (because r is Lipschitzian). It follows in this case that 

there exists 5 > 0 such that t/(t) > ~ for q < t < q + & Of  course, the same 
is true if  q - ~ > 1. We shall prove Lemma t.2 by contradiction; so assume the 
temma iS false and define r by 

z = inf[ t  > q : t / ( t )  = g/}, 

It follows that 

x'(T) = - ~ x ( ~ ) .  

Since q - ?/=> 1, we must have x(v)  ~ 0; otherwise ~1(~) = ~ - 1 > ~. It  
follows from the equation for x ' ( z )  and the assumption x(q)  = 0 that there 
exists a number s, q < s < r, with x(s)  = x ( r ) .  The choice of  s implies that 

~ ( s )  < ~ ( ~ )  = ~. 

We know from our  previous remarks that  there exists t, q < t < s, with 
~/(t) > ~/. We conclude that there exists a number r 1 , q < rl < s, with t/(-ri) =~/. 
Since q < r t  < ~, we have a contradiction. D 

Lemma 1.2 shows that the initial value problem for (l.2)z is well-defined 
i f f  and r are as in Proposition 1.1, x t[ ~, q] = ~b, 4) is Lipschitzian, 4)(q) = 
4)(?/) = 0  and q - ~ >  I. 

I f  M > = s u p [ r ( u ) : - B < _ u < _ A }  (where r satisfies H2 or H2'),  we shall 
work in the Banach space X=  C ( [ - M ,  0]) o f  continuous maps if:  [ - M ,  0]-~ rR 
with 

11 tt = s u p { l r  l : - M < _  t -< 01. 

We shall always use the letter M as above, i.e., M => s u p [ r ( u ) "  - B  _< u _<A}. 
I f  R is a given positive number and A is as in HI  or H i ' ,  we define Ce C X 
by 

C e = i g ~ e X : O < e ) ( t )  <_A for - - M < t < 0 ,  ~b(0) = 0 ,  

and 4~ is Lipschitz continuous with Lipschitz constant R}. (1.6) 
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Of course, Ce also depends on A and M, but we do not indicate this de- 
pendence. We define UR by 

UR = {q~ ~ C~: q~(t) > 0 for some t~ [ - 1 ,  0]}. (1.7) 

It is clear that Ce is a closed, bounded convex subset of X, and the Ascoli- 
Arzel~ theorem implies that CR is compact. The set UR is a relatively open 
subset of CR. 

Assume now that f and r satisfy H1 and H2 or H I '  and H2',  that A is 
a given positive number and that R __> A (A + B), where A and B are as in H1 
and H2 or H I '  and H2'.  Then for 0 < 2 = A  we can define a map 
Fz:CR-* Ce thus: Define Fx(q~)= 0 if i f [ I - l ,  0] is identically zero or if 
qe(~b, 2) =co. If  ~EUR,  q2(~b, 2 ) < o o ,  and q2(q~,2)-ql(~b,  2 ) < M ,  write 
x( t )  = x ( t ;  ~b, 2) and define Fx(q~) = g/~ UR, where g/(s) =x(q2 + s) for 
q l - q e  <-_ s <__ 0, and ~,(s) =0  for -M<_s<_ql -q2 .  If  qe(~b, 2 ) -q l (q5  , 2) =>M 
and q2(~,2)  <co, define Fx(~b) = ~ UR, where gz(s) = x ( q 2 + s )  for 
-M_< s _< 0. By using Lemma 1.2, we see that if ~b E UR and Fz(~b) = ~b, the 
corresponding solution x( t )  = x(t;  ~, 2), considered as defined on [0, oo), ex- 
tends to an SOP solution of (1.2)4 defined for all tE ~ and of period 
q2(~b, 2). Thus our problem is to find further conditions which ensure that 
F~ has a fixed point in UR. 

As a preliminary technical problem, we must prove that (4~, 2)f i  CR• 
(0, A] ~Fz(~b) fi Cg is continuous. We shall also write F(~b, 2) = Fz(4~). The 
argument for continuity of F is straightforward but tedious. We begin with a 
lemma. 

I.emma 1.3. Assume that f and r satisfy H1 and H2 or H I '  and H2'. Let A be 
a positive number, let J = (0, A], and let R be such that A (A + B) <= R. I f  
(~b, 2) E UR• (see (1.6)) is such that q2(~b, 2) <co (see Lemma L1) and 
/f (4~k, 2~)E Cg• k>= 1, is a sequence which converges to (ok, 2),  then 
ql(qSk, 2k) -+ql(~b, 2) and q2(~bk, 2k) ~ qz(~b, 2). Ifo~ and rl are given positive 
numbers, there exists T =  T(rl, ~) > 0 such that if  (ok, 2) ~ CR• and 2 >= ot 
and q2(~b, 2) ~> 2T, then liE(C, 2)[[ __< t/. 

Proof. For notational convenience, write xk(t) = x ( t ;  4~k, 2~), x( t )  =X(t;  ~b, 2), 
qlk = ql(gbk, 2k),  ql = q l (q  ~, 2 ) ,  q2k = q2(~k, 2k), and q2 = q2(q ~, 2). Lem- 
ma 1.1 implies that qo = qo(4~, 2) < 1, q0k = qo(~bk, 2~) < 1, qlk -- qok > 1, 
and q l - q o >  1. It follows that q l k > l  and q l >  1 for all k = l  and 
x(1) < 0. Continuous dependence on initial data (see Remark 1.2) implies that 
given any positive number 12 and any number T with q2 < T <  q3(~b, 2), there 
exists k(12, T) with 

sup{[xk(t) - x ( t ) [  :1 <_ t<_ T}<12 for 

For a given positive number 0 < min(  1 , T -  qe), we 
12) that x(t)<=-12 for l<_t<_q1-O,x(t)>__12 for 
that x( t )  <= -12 for q2 + 0 _< t _< T For k _ k(12, T), it follows that Xk(t ) ~ 0 
for 1 _ t_< T and tqt - t[ __> 0 or [qe - t[ _ 0 and that xk(t) has a zero on 

k _> k(12, T). 

can assume (by reducing 
q l + 0 - < t - - - q 2 - / 9 ,  and 
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[ql -- 0, ql + 01 and  on [q2 - 0, q2 + 0]. I t  follows by using L e m m a  1.1 tha t  
I q~ - ql [ < 0 and  I q2k - q21 < 0 for  k sufficiently large. 

I t  remains  to prove the last pa r t  o f  the l emma.  I f  q2 = q 2 ( G  2)  => 2T, 
then  either ql = q l ( G  j-) - T or q2 - ql ~ T. I f  qz - ql - T >  2M, then  x( t )  
is decreasing on [ q 2 -  M, q2] and  for  t => ql + M we have 

x ' ( t )  < - 2 x ( t )  < - o t x ( t )  

x ( t )  <_ x(ql  + M) exp(e~(q  1 + M -  t))  __<A exp (o t (q  1 + M -  t ) ) .  

I t  follows tha t  

sup{x( t )  : q2 - M <_ t _< q2} -< x(q2 - M )  <= A exp (o~(q I - q2 + 2M))  

= A exp ( o ~ ( 2 M -  r ) ) .  

Obviously,  for  T_>_ T(r/, c~) this implies tha t  

IlFx(+)l[ 5- ~. 

I f  q~ __> T > 2M and 01 is a given posit ive number ,  an a rgument  like tha t  
above shows tha t  

sup{Ix( t )  [ : ql -- M _< t _ ql} <- /71 

if  T >__ T ( th ,  o~). I t  follows by cont inuous  dependence  tha t  if  t/1 is sufficiently 
small  and  a < X - A,  then  

suP{IX(t)]  : ql ~ t < ql q- M} _-_N r/. (1.8) 

I f  q2 > ql + M, then  x( t )  is decreasing on [qi + M, q2]; it follows f rom (I .8)  
tha t  

sup{x( t )  : ql <= t = < qz} < 11, 

which completes  the proof .  [] 

L e m m a  1.4. Assume that f and r satisfy H1 and H2 or H I '  and H 2 ' .  Let A be 
a positive number, let J =  (O,A] and select R > = A ( A + B ) .  Then the map 
F: CR x J  ~ CR is continuous. 

Proof .  Suppose  tha t  ( G  3~) ~ CRXJ, tha t  (q~k, J'k) E CRxJ  is a sequence with 
(0k, ~k) ~ (q~, 2-), and  tha t  the no ta t ion  is as in the p r o o f  of  L e m m a  1.3. I f  
d) E UR and q2(q~, ).) < o% L e m m a  1.3 implies tha t  q l k ~ q l  and  q2k~q2. Note  
also tha t  x k and x are Lipschi tz  m a p s  with Lipschi tz  cons tant  R on the inter- 
val i - M ,  oo). Using these facts one can prove tha t  

l im [[F(~bk, )-k) - F(q~, ~)[[ = 0. 
k---~ oo 

The  s t ra ight forward details are left to the reader. 
I f  q~E UR and q 2 ( 0 , 2 ) = c ~  (so F ( G ) . )  = 0 ) ,  then  by cont inuous  

dependence  on initial da ta  one can prove as in L e m m a  1.3 tha t  for  each real 
T >  O, q2(Ok, 2k) -_ T for  all sufficiently large k. But  then,  for  any given 
r / >  0, L e m m a  1.3 implies tha t  for  all sufficiently large k, 

IIF(q~k, j-k) -- F(~o, 2)II --< t/. 
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Finally, it remains to consider the case that ~ ~ CRkUR and x ( t )  = 0 for 
all t = > - I .  Take r / >  0 and select T such that I[F(q~k, )~k)It < r/ for  all k such 
that qz(4~k, 2k) >-_ T. By continuous dependence on initial data, there exists k0 
(dependent on r/ and T) such that if k__> k0, sup [xk(t)[ < 1/. It follows 

O<_t<_T 

that if k _>_/c o and q2k -> T or q2~ --< T, ]l F(~b~, 2k) It < t/. 
Thus we have proved continuity of  F at (4~, 2) in all cases. [] 

Remark LS. In our original approach to this work, we used a modified version 
of  CR, namely, 

~ n = t ~ X : - B < _ 6 ( t ) < _ _ A  for -M<_t<_O, q~(0 )=0 ,  4~(t)_>-0 for 

- 1  _< t _ 0 and ~b is Lipschitzian with Lipschitz constant R}. 

We also defined Qe by 

Un ={~bE dR: 0 ( t )  > 0  for some tE [--1, 0]}. 

If  we follow standard notation and write xt for the function xt(s) = x ( t  + s), 
- M <  s < 0, it is natural to define /?(~b, ,~) =xq2 if q2 = q2(O, ,~) < co, and 

to define /~(~, 2 ) =  0 if qz(6, 2 ) = c o  or ~ ~ CR\UR. One can prove that 
: I  Ua x J  is continuous, and nonzero fixed points of/~z give SOP solutions of  
(l.2)z. However, if M is large, f need not be continuous on ~R- Originally, 
we circumvented this difficulty by working with /? only on ~7 R, but Lem- 
ma 1.2 allows us to use F and avoid some technical difficulties. 

We also need a lemma establishing an upper bound on the period of  SOP 
solutions of  (1.2)~ for all 2 > 0 and proving that (1.2)~ has no SOP solution 
for 2 > 0 and 2 small. This lemma extends Lemmas 1.4 and 1.5 in [34] to 
the case that r(u) is not constant. 

Lemma 1.5. Suppose that A and B are positive reals (allowing A = co or B = co) 
and that f :  ( - B ,  A ) -~  ~ is a Lipschitz map ~4th Lipschitz constant K. Assume 
that u f  ( u) < 0 for all u ~ ( - B ,  A ), u ~ 0 and that r: ( - B , A  ) ~  ~ is a tocaUy 
Lipschitzian map with r(O) = I, r(u) >=0 for all uE ( - B , A )  and 

M =  sup{r(u)  : - B  < u <A}  <co. 

Assume x ( t )  is a SOP solution of (1.2):~ for some 2 > 0 and that - B  < x ( t )  < A 
for all t. I f  fi > 0 is chosen so that 

[1 - e-~M] K < 1, 

it follows that 2 >_ 5. Furthermore, i f  p is the minimal period of x ( t ) ,  thence is 
a number Po = Po (K, M) >_ p. In fact, p must satisfy 

K 2 >= exp [f i( lp _ 2M)]. 

Proof.  We can assume x(~/1) = 0 = x ( 0 )  = x ( q l )  =x(qz) ,  x( t )  > 0 on (~/t, 0),  
x( t )  < 0 on (0, ql),  and x ( t )  > 0 on (qI, q:); so q2 is the period of  x(t) .  
For convenience we write rl(s) = s -  r ( x ( s ) ) .  Equation (1.2)~ gives 

t 

x ( t )  = e -zt j 2eZSf(x(rl(s)))  as. (t.9) 
0 
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If we recall (see L e m m a l . 2 )  that t/(s)__>qt for 0 _ s < _ q x ,  that f i s  Lip- 
schitzian with Lipschitz constant K, and that uf(u)< 0 for u ~ ( -B,A) ,  
u ~ 0, then we obtain from (1.9) that 

Ix(t) I __< K(1 - e -At) (~lSUPoX(t)) for 0 _< t _< ql. (1.10) 

For convenience we write (~ =xl[~ll, O] and let H 8 II denote the sup norm of  ~b. 
Thus (1.10) gives 

Ix(t)l ___g(1 - e-Z')H~[I, O<t<_q,. (1.11) 

If  q l -  M, then (1.11) implies that 

sup Ix(t)[ ___ g(1  - e-ZM) tl~ll. 0.12) 
O<-t<--ql 

If  ql > M, we know that x(t) is increasing on [M, q~], so inequality (1.12) re- 
mains valid for ql > M. 

If  we let x I [0, qd take the role of 4) and apply the same argument, we 
obtain 

sup x(t) =<g(1 - e  -zM) ( sup Ix( t ) l )  _-< [g(1 --e-)~M)] 2 I1~11" (1.13) 
ql <-t<=q2 O<t<-q 1 

If  fi > 0 is chosen so that 

K(1 - e  -~g) < 1, (1.14) 

then (1.13) implies that if 0 < 2 <__ fi, x(t) cannot be an SOP solution of 
(1.2)z. 

Next suppose that x(t) is an SOP solution of  (1.2)z (so 2 __> 5) and that 
q 2 = 2 T  and T>_2M. Note that (1.13) implies that K >  i. We must have 
ql >= T or q2 - ql --> T. Assume first that ql --> T. Equation (1.11) gives 

sup Ix(t)l---K[I~II, 
O<_t<M 

and because x'(t) >=-2x(t) for M < t _  ql, we obtain 

sup Ix(t)[ < e x p ( - 2 ( q l  - 2/14)) Ix(M)l 
ql-M<=t<=q 1 

=< exp ( - 2  ( r -  2M)) K[] ~b []. 

Thinking of  x l [q l -  M, ql] as q~, we obtain as before that 

sup x(t) <=K 2 e x p ( - 2 ( T -  2M)) l[qS[[ _-< K 2 e x p ( - f i ( r - 2 M ) ) [ l ~ b l [ .  (1.15) 
qi <--<_t<=q2 

Inequality (1.15) implies that 

K 2 e x p ( - f i ( T -  2M)) _ 1, (1.16) 

which yields the estimate on the period q2 in our lemma. 
If  q 2 -  ql >-T, an analogous argument, which we leave to the reader, 

again yields inequality (1.16). [] 
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For the remainder of  our work in this section we shall need some more 
or less standard tools. We refer the reader to [2, 41, 43 -45]  for the definition 
of  the fixed-point index and for some results concerning "attractive fixed 
points"  and "ejective fixed points". (See also [34, p. 53] for definitions.) 

Standard results concerning linear functional differential equations are 
summarized in [34, pp. 119-125].  The characteristic equation of  

x ' ( t )  = - 2 x ( t ) - k 2 x ( t - 1 ) ,  ) ~ > 0 ,  k > l ,  (1.I7) 

is the equation 

z = -)~ - k;te -z,  2 > O, k > 1. (1.18) 

Equation (1.18) has a pure imaginary root (for some )~ > 0, k > 1) if and only if 

~ -  Am -- VO + 2rcm v m (1.19) 
4 -1 4F-1 

where Vo is the unique solution of  

1 
cos(v0) = - --  -~ < v0 < ~r (1.20) k '  2 

and m is a nonnegative integer. I f  2 = 2m, (1.18) has only two pure imag- 
inary solutions, namely, •  and these solutions are of  multiplicity 1. (See 
Proposition A.2 of  [34, p. 121].) I f  x ( t )  is a periodic solution of  (1.17) which 
is nonnegative on some interval of  length greater than or equal to one and 
not identically zero, Proposition A.2 of  [34] and the remarks on p. 120 of  [34] 
imply that 2 = ,~0 and 

x( t )  = o~ cos(v0t) + fl sin(v0t) 

for some real numbers c~ and ft. 

Remark L6. For the remainder o f  this section, we shall usually assume that if 
f and r satisfy H I '  and H2' ,  then f ( u )  = f ( A )  for u =>A = s u p { I f ( u ) l :  
- B  _< u _.< 0} and f ( u )  = f ( - B )  for u = - B  and r(u)  = 0 for u < -B .  

I f  f and r satisfy HI  and H2 or H I '  and H2 '  and 0 _ < 2 _ < A  and 
A ( A  + B ) <  R, we have defined a map F :  CRX (0, A] ~ CR. Of  course, F 
depends on f and r and the constant M in Lemma 1.I. For the statement of  
the following lemma, it is convenient to indicate the dependence on f and r 
by writing 

F(q~, ~) = F (6 ,  2; r, f ) .  (1.21) 

For a given function r satisfying H2 or H2 '  and for s a real number with 
0 _ < s _ _ l  write 

G(u)  = (1 - s) u + sr (u) .  (1.22) 

Lemma 1.6. Assume that f and r satisfy HI  and H2 or H I '  and H2 '  (note 
Remark L6) and that f is in C 1 near 0 with 

f ' ( 0 )  = - k <  - 1 .  
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I f  A and B are as in H1 and H2 or H I '  and H2'  and A > 0, select R so that 
R > = A ( A  + B) and let CR be given by (1.6) and J = ( O , A ] .  Suppose Jo is a 
compact set o f  reals with 2 0 r  o (2 o as in (1.19)). There exists y > 0 such that 
i f  F ( 4 ~ , 2 ; r ~ , f ) = c ~  for  some 6 E C R - { 0 } ,  2 E J o n J  and 0 _ < s _ < l  (see 
(1.22)), then 

II' ll = s u p  
--M<_t<O 

Furthermore, i f  (r olj, sj) E (CIr - {0}) • (0, A] •  1] is any sequence with 
lim IlCj[I = 0, and F(6 j ,  otj; r~ j , f )  = 4~/, then ) im  oq = 40. I f  pj is the minimal 

j -+ oo 

period of  the SOP solution x j ( t )  corresponding to c~j, aj,  and rs/, then ! impj  = 
2 n / v  o, with v o as in (1.20). :-~o 

Proof.  We assume that the first part of  the lemma is false, so there exists a 
sequence (4)j, flj, sj) E (Ce - [0})  XJoX[0, 1] such that 

F ( 4~j , flj ; rsj , f ) = (~j 

and lim ]I Cj [I = 0. By taking a subsequence, we can assume that lim flj = f l .  2o j-~o j - ~  
and !ira sj = s. Lemma 1.5 implies that fl > 0. If  qlj = inf{t ____ 0 : 6j (p )  >__ 0 

j---~oo 

for t __< p = 0}, we know that there is an SOP solution x j ( t )  of  the equation 

x j ( t )  = -- f l jx j( t )  -- f l j f ( x j ( t  -- r s j ( x j ( t ) ) ) ) ,  

x j [[q l j ,  0l ---- c~j[[qlj, 0]. 

If  qlj denotes the first t > 0 such that x j ( t )  = 0 and q2j denotes the sec- 
ond such zero, qzj is the period of  x j ,  and Lemma 1.5 implies that q2j is 
bounded, say qzj <-- Q for all j. It follows by continuous dependence on initial 
data that 

I l x j ] l ~  s u p  ] x j ( t ) l = s u p ] x j ( t ) I - - - ~ o  as j ~  oo. 
O<=t<=q2j tER 

By taking a further subsequence we can assume that 

q l j  ~ ql and q2j ~ q2. 

If  we define rj = r~j(x/( t ))  and 

y j ( t )  = x j ( t )  ][xj I1-1, 

we easily see (because f ( 0 )  = 0 and i f ( 0 )  = - k )  that 

yj  ( t ) = - f l j  yj(  t ) - kflj y j(  t - rj) - / ~ j ( t )  yj ( t - rj),  (1.23) 

where 12j(t) in (1.23) is periodic of period q2j and p j ( t )  ~ 0  uniformly in t as 
j--,oo. Equation (1.23) implies that lyf( t )  I is uniformly bounded and 
lyj( t)]  __< 1 for all t. It follows by using the Ascoli-Arzel~t theorem and by 
taking a further subsequence that we can assume t h a t  1 . i m y j ( t ) = y ( t )  and 

j--~oo 

that the convergence is uniform on a compact interval: of reals. Thus y ( t )  has 
period q2, ][Y[] = 1, y ( t )  <_ 0 for 0 _< t _< q~ and y ( t )  >_ 0 o n  [ql, q2]. If  L 1 is 
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an upper bound for ly~'(t)t and L2 a Lipschitz constant for r, it is easy to 
see that 

l y j ( t -  ~.) -- y j ( t -  1)[ <=L1L2l[xjI [ . (1.24) 

Integrating (1.23) from 0 to t, using (1.24), and taking the limit as j ~ co we 
obtain 

t t 

y( t )  = - f l  ~ y (p)  dp - kfl ~ y (p  - 1) dp. (1.25) 
0 0 

Equation (1.25) implies that 

y ' ( t )  = - f y ( t )  - kfly(t - 1) ; 

since y is nonnegafive on an interval [q~, q2] with q2 - ql ->- i,  y is periodic, 
and tlY It = 1, we must have fl = 20, a contradiction. 

I f  we apply this same argument to the sequence (6.j, aj,  sj) of the second 
part of  Lemma 1.6, the results of  the first part of the temma imply that a j~20 .  
If  xj( t)  is the SOP solution corresponding to (6.j, aj ,s j ) ,  y j( t )=xj( t) f ix31!-1,  
and pj is the minimal period of  xj ,  suppose that pj does not converge to 
2;r,/vo. Then by taking a subsequence, we can assume that there exists c~ > 0 
such that t P j -  2zC/Voi >= ~ for all j .  As in the proof above, we can take a 
further subsequence for which pj o p .  2zr/v0, and yj(t)  converges uniformly 
on compact subsets of  R to a C ~ periodic function y( t )  which is nonnegafive 
on an interval [ql, q2], q2 - q~ -> 1, has minimal period p, and satisfies 

y ' ( t )  = - 2 o y ( t  ) - k2oy(t - 1). 

However, we have already noted that every nonzero periodic solntion of  this 
equation has minimal period 27~/vo, which is a contradiction. [] 

The whole point of Lemma 1.6 is that it enables us to reduce the problem 
of  computing the fixed-point index of F)~ on a small neighborhood of  the 
origin in CR to the relatively well-understood case that r(u)  =- 1 is a constant. 

I.emma 1.7. Let the notation and assumptions be as in Lemma L6. I f  20 is as in 
(1.19), 0 < 2 <= A,  and 2 :~ 20, there exists p = p ( 2 )  > 0 with F~(~b) ~ ~ .['or 
0 < II 6. II <-- p and 6. CR. I f  p is any number with Fz (6.) * ~ for 0 < II 11 --< p, 
6. E Cn, and icR(F ~, Bp) denotes the fixed point index of  F)~:Bp = [6. E CR: 
tl 6 II < P} ~ CR, then 

= icR(F ~, Bp) = f l ,  i f  0 < A < 20 , nz 
r O, if 20 < 2 < A.  

Proof. The additivity property of  the fixed point index implies that n;o is in- 
dependent of  the parficnlar number p as above. For a fixed )~ x~dth 0 < 2. <_ A 
and 2 . 2 0 ,  define a homotopy q~s : Ce ~ CR, 0 <_ s <_ 1, by 

~ ( ~ )  = F(6., 2; r s , f ) .  

Lemma 1.6 implies that there exists p > 0 such t h a t  

q~s(6.)*6, if 0<H6.H < p ,  C E c n ,  0 < _ s _ < l .  
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The homotopy property of  the fixed point index therefore implies that 

icR( ~O, Bp) = icR(~b t, Bp) = icR(F~., Bp). (1.26) 

Equation (1.26) reduces Lemma 1.7 to the case that r(u) = 1 for all u. 
However, we have still not reduced to the standard case as in [34] because, 
when r(u) - 1, equation (1.2)4 is not studied in CR in [34]. TO reduce to a 
standard case, first define DR by 

D R = { ~ E C [ - - I ,  0]: th(0) = 0 ,  0 < ~ ( t ) < A  for - - l < - t < _ 0 ,  

~b is Lipschitzian with LipschJtz constant R}. 

Define n : C R ~ D R  by n(tb)=4~ t [ - I , 0 ]  and define i : D  R ~ CR by i(4~)= ~u, 
where q/(t) = 8( t )  for - t  < t <_ 0 and ~t(t) = ~b(-1) for - M  _.< t _.< - 1. It is 
easy to see that 

(q~0" i) ( n ( 8 ) )  = ~0(~) for all ~ 6 CR. (1.27) 

If  Vp = {q~ E DR : ][ 4~ ][ < P}, one obtains from the commutativity property of 
the fixed-point index and from (1.27) that for all sufficiently small p > 0, 

icR( qSo, Bp) = icR( (b o �9 i" n, Bp) = iDR(Z(. DO" i, V:). (1.28) 

In using the commutativity property to obtain (1.28), it is useful to note that 
there exists a constant L such that if  (q~o" i)(n4,)  = q~, then [l~It---<LIIn4~ll. 

I f  0 E DR and x( t ;  O) = x( t )  is the solution of  

x ' ( t )  = - 2 x ( t )  + 2 f ( x ( t  - 1)), t >_ 0, 

x I [ - 1 ,  0] = 0, (I.29) 

define q0 = sup{t -> 0 :x ( s )  = 0 for 0 -< s <- t}, ql = inf{t > qo:x(t)  = 0}, and 
q2 = inf{t > qa :x( t)  = 0}. Lemma 1.1 implies that ql - qo > 1 and q 2 -  ql > 1. 
I f  we define ~ (0 )  = 01, where 

0t(t) = x ( q 2 + t ) ,  - 1  _ < t <  0, 

it is easy to see that  

~ = n ' ~ o ' i ,  

SO we obtain from (1.28) that 

iCR( ~ o, Bp) = iDR( ~,  Vp). 

The set DR is not used in Section 1 of  [34], so we define / ~  by 

ER = {q~ ~ C[0, I] :  4~(0) = 0, eZtdp(t) is monotone increasing, 

O<_(~( t )<A for 0 < t < l ,  

is Lipschitzian with Lipschitz constant R}. 

t f  0 E DR, x( t )  is a solution of  (1,29) and ql and q2 are as defined in the 
preceding paragraph, define G:DR ~ ER by 

G(O) = r ~( t )  = x(q~ + t) for 0 _< t < I .  



Differential-Delay Equations /19 

If  0 E ER, 0 =r 0 and y( t )  = y(t;  O) is the solution of (1.29), let ql denote the 
smallest t > 1 with y( t )  = 0, let ~2 denote the smallest t > qa with y( t )  = O, 
and define H:ER-~DR by H(0) = 0 and 

H(O) = 4~, c~(t) = y(~l + t), - l _ t _ < 0 .  

One can easily verify that H and G are continuous and HG = ~. Thus if we 
define T = GH: E R ~ ER and Wp = [8 E ER :][ 8 [] < p}, an application of the 
commutativity property for the fixed-point index shows that, for all sufficient- 
ly small p > 0, 

iDR(~t , Vp) = iER(T ~ Wp).  

The map T is described directly by 

T(~b) = g/, g/(t) =y(t~2 + t). 

The set ER is essentially the same as the set Kz defined by (1.16) [34, p. 50]. 
In defining Kz, the conditions that q~(t) < A  and that 4~ has Lipschitz con- 
stant R are not used, but the presence o r  absence of these conditions does not 
affect the calculations of the fixed-point index in [34, p. 49-59].  Those 
calculations show that 0 is an attractive fixed point of T if 0 < 2 < 20 and 
an ejective fixed point of T if 20 < 2 __< A. Therefore, we have 

iEle(T, Wp) = [ l  0 if 0 < 2 < 2 0 ,  
if 2 o < 2 - < ~ .  [] 

With the aid of Lemma 1.7 and a global bifurcation theorem, we can prove 
our main result concerning the existence of SOP solutions of (1.2)z. 

Theorem 1.1. Let f and r be functions which satisfy conditions H1 and H2 or 
conditions H I '  and H2'  and let A and B be reals as in H1 and H2 or H I '  and 
H2'. Assume that f is in C 1 near 0 and that f ' ( 0 )  = - k  < -  1; for this k, let 
20 be given by (1.19). I f  K > 2  o and R >= K(A + B), let C R be defined by (1.6) 
and let F,~ : CR ~ CR, 0 < 2 < K, as in the paragraph following (1.6). Then 
nonzero fixed points of Fz in Ce are in one-one correspondence with slowly oscil- 
lating periodic solutions of (1.2)x. There exists ~ > 0 such that (1.2)x has no 
SOP solutions for 0 < 2 <_ ~. I f  J denotes the interval (0, K) and S is defined by 

S = [(~b, 2):~b fi Cg -{01, 2 EJ,~Fx(4)) = ~b} u {(0, 2o) } C CR• 

then S is closed in the topological space CR • I f  So denotes the connected com- 
ponent of S which contains (0, 3~o), then, for each 2 E J with 2 > 2o, there exists 
~bz E CR - {0} with ( ~z, 2) E So. In particular, for each 2 > 2o, (1.2)z has an 
SOP solution xz (t) with - B  < xz (t) < A for all t. I f  a map p : S ~ R is defined 
(in the notation of Lemma 1.3) by p(~b, ).) = qz(~b, 2) for 4~ =~ 0 ( so p ( 6, 2) is 
the minimal period of the SOP solution corresponding to ( c), 2) E S, 4~ =~ 0) and 
p(0,  2o) = 2z~/Vo (with Vo as in (1.20)), then p is continuous. 

Proof. The first part of  the theorem follows from Lemma 1.4 and 1.5 and our 
previous remarks. We know that Cn is a compact, convex subset of 
X =  C ( [ - M ,  0]), and Lemma 1.4 implies that F :  C R •  Cn is continuous, 
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where F(q~, fl) = Fz(q~). Lemmas 1.6 and 1.7 are precisely the results needed 
to verify the hypotheses of  the global bifurcation result, Theorem 4.1 in [46, 
p. 91]. In the notation of Theorem4.1  in [46], A =[~0}, x0 = 0 ,  and 
J =  (0, K), and Theorem 4.1 implies that So is not compact in CRxJ. It 
follows that there does not exist K1 < K such that So C CR • (0,/s for if 
this were the case, we would have that So C CRX [& K1] and So is closed, 
which would imply that So is compact. The connectivity of  So thus implies 
that 

So c~ (CR - {0}) x{)~} is nonempty 

for ).0 < ,~ < K. 
Note that Theorem 1.2 in [44] can also be applied to obtain these results. 

Theorem 1.2 in [44] requires a map q5 : C x  (a, oo) ~ C, with C a closed convex 
subset of  a Banach space. However, we can reduce to this case by defining 
~(r  for r a > 0 ,  by 

q~(~b, U) = F((h, 2( /z)) ,  Z(U) = Kp(1 + f~)-1. 

If  2 > Z0, we can assume that K > ~, and the existence of  an SOP solu- 
tion xz(t) of  (1.2) 4, with x~ corresponding to (4)4, 2) ~ So, follows from the 
properties of  So. 

L e m m a l . 3  shows that (~b, 2 ) - * q 2 ( O , Z )  is a continuous map on 
S - { ( 0 ,  Z0)}. Lemma 1.6 shows that if p is extended to S by defining 
p(0 ,  Z 0) = 27r/Vo, then p remains continuous. [] 

Remark L7. Theorem 1.1 strongly suggests that some sort of local H o p f  bifur- 
cation theorem should hold for (1.2)z. Indeed, such results are well know in 
the constant time-lag case: see [4, 40, 50]. However, we know of  no such 
theorems for (1.2)z. 

In Section 2 of  [34] it is proved that there exists a global continuum of 
periodic solutions of  

x'(t) = - 2 x ( t )  + ) ~ f ( x ( t -  1)) 

bifurcating from (0,)~m), "~m as in (1.19), m ~ Z. However, the argument in 
[34] does not  directly carry over to the case of  (1.2)4, and even local bifurca- 
tion of  periodic solutions from (0, Xm), m E ?7, m :~ 0, has not yet been 
proved. 

If  f and r satisfy H1 and H2 or H I '  and H2 '  and, in addition, f is an 
odd function and r is an even function, then it is naturat to seek special SOP 
solutions of  (1.2)~, so-called "S-solut ions" (see [34, p. 59] and [35, 481). We 
call a periodic function x(t) with x(0)  = x(q) = O, x(t) < 0 for 0 < t < q, 
q > 1, and x(t  + q) = - x ( t )  for all t an S-solution. For f odd and r even, we 
seek S-solutions of  (1.2)4 for 2 > ;to. If  K > 0, if Ce and UR are as in (1.6) 
and (1.7) with R >= K(A + B), and if f and r are as above, we can define a 
continuous map T~, 0 < ~. < K, of  Ca to Cn. If  4~ ~ CR and q~ ~UR, we define 
Tz(8) = 0. If  8 ~ UR and q1(4~, ).) =oo with ql(q~, 2) as in Lemma 1.1, we 
define T4(~b) = 0. If  q~(4~, ~) < oo and ql(~,  ~) - qo(~ b, 2) -> M, we define 
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T.~(6) = g/, where 

~ ( t )  = - x ( q i  + t ) ,  - M  <_ t < O, 

and x( t )  = x ( t ;  6, )~). I f  ql(~b, 2) - qo(4~, ;~) < M ,  define T4(6) = ~u where 

[ - x ( q ~ + t )  for - (q , -qo)__<t__<0 ,  

~( t )  = 0 for - M _  t < -  (ql - qo). 

By using the oddness of f and the evenness of r, it is relatively easy to see 
that if T4 (4~) = 6 fo r  some 4~ 6 Ce - [0}, then x t [0, c~), where x (t) = x (t; ~, )~), is 
the restriction to [0, oo) of an S-solution of (1.2)4. Also, one can see that 
r~ = F4. 

Minor variants of the argument which gives Theorem 1A yield the follow- 
ing theorem. We omit the proof, except to note that if f and r satisfy H1 and 
H2, we can clearly assume A = B, while i f f  and r satisfy H I '  and H2',  we 
can define 

r(u) = f  0 for l u = B ,  
( r(u) for ]u < B ,  

f f ( B )  for u _ B, 

f ( u )  = i f ( u )  for u I < B ,  

k f ( - B )  for u ___ - B ,  

and observe that SOP solutions x( t )  of 

x ' ( t )  = - 2 x ( t )  + 2 f ( x ( t  - f (x( t ) ) ) )  (l.30b~ 

satisfy [x(T)t < B for all t and satisfy (1.2)4. 

Theorem 1.2. Let notation and assumptions be as in Theorem L1 and assume that 
f is odd and r is even. Assume that A := B i f f  and r satisfy HI and H2 and let 
B be as in H2" i f f  and r satisfy H I '  and H2'. For 0 < ,~ < K let T~ : CR -~ CR 
be as defined above. Then nonzero fixed points of T 4 in C R are in one-one cor- 
respondence with S-solution of  (1.2)4 for 0 < ), < K; and there exists ~ > 0 such 
that (1.2)4 has no S-solution for 0 < )~ < ft. I f  P C CR• is defined by 

P={(q~,A):qSE CR-[0},  .)~ E J, T,t(4~)=qS}u{(0,2o)}, 

then P is closed in Ce xJ.  I f  Po denotes the connected component of P which 
contains (0, ~o), then for each ;t with 2 0 < )~ < K there exists ~4 E CR - [0} with 
(~b, 2) E Po. In particular, for each 2 > 2o, (1.2)4 has an S-solution x4(t) with 
- B  < x 4 < B  for all t. 

Remark L8. If  r(u)  is a locally Lipschitzian, even function with r ( 0 ) =  1, 
r ( - B )  = 0 for some B > 0, and r(u)  > 0 for - B  < u < B, we can (as already 
noted) define e ( u ) = r ( u )  for lul ~ B  and e ( u ) = 0  for Iul >B.  Then 
satisfies H2 '  and the S-solution x( t )  of (1.30);~, which we obtain by 
Theorem 1.2, satisfies Ix(t)[ < B and hence actually satisfies (1.2);o. In view 
of examples fike r(u)  = 1 - cu z~, c > 0 m = 1, this trivial observation is im- 
portant. 
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2. Monotonicity and regularity properties of solutions 

We study here monotonicity and regularity properties of  solutions of  

~ ' ( t )  = --x(t)  + f ( x ( t  -- r)) ,  r = r ( x ( t ) ) ,  e > 0. (2.1)~ 

As the results of  Section 1 are nonconstructive, we seek information about the 
shape of  SOP solutions. We give an analogue for (2.1)~ of  "Proper ty  M "  
(compare Section 3 of [34]), which plays a crucial role in the constant-time-lag 
case and in our further work on (2.1)~ (see [38]). We begin the development 
of  a theory of  Poincar6-Bendixson type for (2.1)~ and give an important  ap- 
plication of  that theory in Theorem 2.6. 

For the reader's convenience we begin by summarizing Lemmas 1.t and 1.2 
from Section i. 

Proposition 2.1. Assume that f and r satisfy Hi  and H2 or H I '  and H2',  let 
M > = s u p { r ( u ) : - B < _ u < _ A }  and for a real number q, let 4 ~ : [ q - M , q ]  
[-B,  A] be a Lipschitzian map. Let x(t;  r A) = x( t )  be the unique solution of 

x ' ( t )  = - 2 x ( t )  + 2 f ( x ( t -  r)) ,  r = r ( x ( t ) ) ,  A > O, t >= q, 

x [ [ q -  M, q] = (b. 

I f  x (q) = O, then r (x (t)) > 0 for all t >_ q. If, in addition, there exists 
71, q - M < 71 <= q - 1, such that x(71) = O, then tl(t) > 71 for all t > q, where 
it(t) = t - r ( x ( t ) ) .  I f  4~ is as in Lemma l.1 (so q = 0 ,  ~b(0) = 0 ,  ~( t )  >=O for 
- 1 <_ t <_ 0 and ~ (to) > 0 for some to E [ -  1, 0]), and if  q j ,  j >= O, denote the 
successive zeros of x ( t )  as defined in Lemma 1.1, then qj - qj-1 > 1 for j >= 1 
and ~l(t) > qj_~ for all t >_ qj. 

Proof.  Proposition 2.1 is simply Lemmas 1.1 and 1.2 except for the assertion 
that r ( x ( t ) ) >  0 for all t>=q. Assume, by way of  contradiction, that 
r ( x ( t ) )  = 0  for some t > q  and let to be the smallest t >  q such that 
r ( x ( t ) )  = 0, so X(to) * O. Define p by 

p = sup{t < to :x ( t )  = 0}, 

so q _ p < to. We can assume for definiteness that x( t )  > 0 for p < t < to. 
Then we have 

ex'(to) =--X(to) + f ( x ( to ) )  < O. 

Since x(p)  = 0, it follows that there exists So, P < So < to, such that X(So) = 
X(to) and, therefore, r(x(so))  = r(x( to)) .  This contradicts the minimality of  
to. [] 

Suppose that x( t )  satisfies (2.1)~ for t => 0 and x [ [ - M ,  01 = q~, where r is 
as in I_emma 1.1. I f  K denotes the set of  critical points of  x( t ) ,  we want to 
show that a refinement of  the arguments in Lemmas 1.1 and 1.2 and Proposi- 
t ion 2.1 proves that  q /K  is strictly increasing. (Recall that we say that a real- 
vatued function q/, defined on a set A of  reals, is "strictly increasing on A" 
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if  ~ u ( s ) <  g/(t)  for  all s, t E A  such tha t  s < t ;  "q /  is increasing on A"  if  
~ ( s )  ___ g/(t)  for  all s, t E A  such tha t  s < t . )  The  following l e m m a  is 
crucial.  

L e m m a  2.1. Assume that f and r satisfy H I  and H2 or H t '  and H 2 '  and that 
A ,  B, and M denote the usual constants. For a real number q let ~ : [q - M,  q] 
[ - B ,  A] be a Lipschitzian map and, f o r  e > O, suppose that x ( t )  satisfies (2.1)e 

f o r  t >= q and x [ [q - M,  q] = dp. Assume that ot and fl are real numbers with 
q <= ~ < fl, x ' (o t )  = 0 and either (1) x ' ( t )  >= O for  all tE [cx, fl] or ( 2 ) x ' ( t )  < 0 
for  all t E [a, fl]. Then 

t - - r ( x ( t ) )  = r l ( t )  >r l (ee)  for  a < t ~ _ f l .  

Proof. Let cq = s u p [ z :  c~ _< z _< fl and  x ( z )  = x(o0] .  For  ~ < t < a l  we have 
r/(t)  = t - r ( x ( o 0 ) ,  so r/( t)  > t / ( a )  for  ~ < t < ~i .  I f  oq = fl, we are done ,  
so assume tha t  a l < f l  and  note  tha t  x ( t ) > x ( o q )  for  o q < t _ < f l  in case 1 
and x ( t ) < x ( a l )  for  a 1 < t_<f l  in case 2. Also, we have tha t  x ' ( a l ) =  
x ' ( c 0  = 0 .  

I f  K is a Lipschitz  cons tant  for  r and  ( > 0 is chosen so tha t  [x ' ( t )  I < K -1 
for  oq = t __< oq + ~, we see tha t  r /( t)  is strictly increasing on [a l ,  a l  + ~]. In  
fact ,  i f  fi, t2 E [oq, a l  + (] and  tl < t2 we have tha t  

r/(t2) -- r /( t l)  => t 2 -- t I -- Klx( t2)  - -X( t l )  ] 

> - - t 2 - - t l - g t x ' ( s ) l  l t 2 - - t l [  > 0 ,  

where s E [q,  t2]. I t  follows tha t  i f  r / ( t)  _< r /(oq) for  some t E (oq,  fl], then  
there exists fi E (oq, fl] such tha t  r/(fi) = r/(o~l). In  case 1 we obtain  

0 <_ ex ' (O)  = - x ( f i )  + f ( x 0 / ( d ) ) )  < - x ( o q )  + f ( x ( t / ( c q ) ) )  = ex ' (oq )  = 0, 

which is a contradic t ion.  Similarly, in case 2 we f ind 

0 ____ e x ' ( d )  = - x ( O )  + f ( x ( r / ( d ) ) )  > - x ( o ~ l )  + f ( x ( r / ( O ~ l ) ) )  = 0, 

which is again  a contradict ion.  I t  follows tha t  ~ / ( t ) >  ~/(al)  >- 8 (00  for  
=1 < t_<fl .  []  

As  in Sect ion 1, for  given c = 2 - 1 >  0, q E ~,  and  Lipschitz  funct ion 
$ :  [q - M, q] -~ [ - B ,  A], x ( t )  = x ( t ;  4~, t -a )  denotes a Lipschitz funct ion  
which is a solut ion o f  (2.1)~ for  t > q and satisfies x [ [q - M, q] = $. 

Theorem 2.1. Assume that f and r satisfy H I  and H 2  or H I '  and  H 2 ' .  Let  A 
and B be as in H1 and H 2  or H I "  and H 2 '  and assume M > sup{ r (u )  : - B  < 
u <_ A}. For a given real number q, let ~ : [q - M,  q] ~ [ I B ,  A] be a Lipschitzian 
map. For a given e > O, let x ( t )  = x ( t ;  ~, e - l ) .  I f  K = {t > q I x ' ( t )  = 0} and 
t l ( t )  = t - r ( x ( t ) ) ,  then tl [K  is strictly increasing; i f  ~ E K and t > ~, then 
~ ( t )  > rt(oO. 
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Proof. Define T, by 

T, = sup { T E K:  I/ is strictly increasing on [q, T] n K}. 

I f  K is empty or if T. = 0% there is nothing to prove, so we can assume that  
q _ T. < co. One can easily see that T, ~ K and ~/I [q, T,] n K is strictly in- 
creasing. I f  K contains no element 27 > T, ,  we are done, so we can assume 
that  there exists r > T. such that  x ' ( z )  = 0. The same argument given in the 
proof  of  Lemma 2.1 shows that  there exists ( > 0 such that r/I [T. ,  T, + (] 
is strictly increasing. Thus, if (T . ,  T. + (] contains an element of  K, we 
contradict the maximali ty of  T. .  Thus there is a maximal interval 
J = (T , ,  T, + ( 1 ) ,  (1 > 0 ,  (1 ~ 27 - -  T, ,  such that either (a) x ' ( t )  > 0 for all 
t ( J  or (b) x ' ( t ) <  0 for all t ~ J .  The maximali ty of  J implies that  
x ' ( T ,  + ~1) = 0, so T, + (1 ~ K. However, Lemma 2.1 implies that  t / (T ,  + (1) > 
t / (T , ) ,  and this contradicts the maximali ty of  T, .  Thus we have proved that  
t / ] K  is strictly increasing. 

It  remains to prove that  if a e K and t > o~, then t/(t) > t/(o~). I f  t ~ K, 
we are done, so assume x ' ( t )  , 0. Define as to be the inf imum of  numbers 
r < t  such that  x ' ( s ) x ' ( t )  > 0  for all se[27, tl. Then a _ _ < a l < t  and 
x ' (oq)  = 0; so Lemma 2.1 implies that  t/(oq) < t/(t).  Since we have already 
proved that  r/(o~) ___ t / ( a l ) ,  the theorem is proved. [] 

We now wish to investigate Property M for slowly oscillating periodic solu- 
tions (or SOP solutions) of  (2.1)e. For the reader 's  convenience, we repeat 
Definition 3.1 f rom [34, p. 68]. Suppose that  x ( t )  is a periodic function such 
that  x(0)  = x(qa) = x(q2) = 0, x( t )  > 0 for 0 < t < ql, and x ( t )  < 0 for 
ql < t < q2 and x ( t )  = x ( t  + q2) for all t. Select Pl 6 (0, ql) such that  

x (p l )  = max{x(t)  :0 < t < ql} 

and select P2 e (ql,  q2) such that 

x(p2) = min(x( t )  : ql = t _< q2}. 

I f  c and d are positive numbers and X ( P l )  ~ C, define as to be the least 
t ~ (0, ql) such that  x ( t )  = c and rl to be the greatest t E (0, ql) such that  
x ( t )  = c. I f  x (p l )  < c, define 0-1 = 71-1 = Pl" Similarly, if  x(p2) --- - d ,  define 
az to be the least t ~ (ql,  q2) such that  x ( t )  = - d  and 272 to be the greatest 
t E (ql,  q2) such that  x ( t )  = - d .  I f  x(pz)  > - d ,  define o2 = P2 = 272- With 
this notat ion x is said to satisfy property M between - d  and c if x is increas- 
ing on [0, a l ] ,  x ( t )  >__ c for all t such that  0 1 < t < 271, x is decreasing on 
[271, 0"2], x ( t )  < - d  for 0"2 < t < 272 and x is increasing on [272, qz]. 

The definition of  Property M can also be extended to any continuous func- 
tion x with domain R; see [34, Remark 3.4, p. 76]. 

We are now in a position to generalize Theorem 3.1 in [34, p. 70]. 

Theorem 2.2. Let ot and fl be positive reals and f : [ - f l ,  e~] ~ [R be a Lipschitz 
map such that x f ( x )  < 0  for all xfi [ - f l ,  ce]-{0}. Let r : [ - f l ,  ot]~[R be a 
Lipschitz map such that r (x)  >= 0 for all x ~ [ - f l ,  od and r(O) = 1. Suppose 
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further that there are positive numbers c <= c~ and d <= fl and a number ~, > 1 such 
that 
(t) f is decreasing on [ - d ,  c] ; 
(2) f ( x ) > = c  if - f l < _ x < . - d  and f ( x )  <=-d if c < _ x < ~ ;  
(3) l f ( f ( x ) ) l  = ] /2 (x) l  >=  lxl for all x E [ -d ,  c] such that f ( x )  E [-f l ,  cr 
Then, if x( t )  is a slowly oscill~ing periodic solution of (2.1)e for some e > 0 and 
- f l  <-.6_ x( t)  <= ~ for all t, x satisfies Property M between - d  and c. 

Proof.  Let x( t )  be an SOP solution of  (2A)~ of  period q2 with 
- f l  <= x( t )  ~ ~x for all t. Suppose x(0)  = 0, x(t)  > 0 for 0 < t < qi, x( t )  < 0 
for ql < t < q2, and x( t )  > 0 for q2 < t < q3 = q2 + ql, Assume, by way of  
contradiction, that the theorem is false. Then either (a) there exist numbers 
tj, 1 =<j <_.6_ 3, such that q2 < tl < t2 < t3 < q3, x(t2) < c and X(tj) > X(t2) for 
j = 1, 3 or (b) there exist numbers s'i, 1 <=j =< 3, such that q1 < sl < s2 < s3 < q2, 
x(s2) > - d  and x(sj)  < x(s2) for j = 1, 3. For definiteness, assume that case 
(a) holds and let 

S = {3 E (q2, q3) : x ( r )  < c; there exist r l ,  ~:3 E (q2, q3) with 

ri < z <  r3 and x(~i) > x ( z )  for j = l, 3]. 

Define Ft = inf[x(-r)[ r 6  S} (so that 0 < a  < e). Select ~/1, t < Y1 < Y, with 
~'~a < c and select z = vz E S with X(T2) =< YlP. Let r l ,  33 e (q2, q3) be such 
that 3 1 < z z < 3 3  and x ( ~ ) > x ( r z )  for j = l ,  3. We can replace r2 by a 
number ~ (31, r3) with 

x(r~ ~) = min[x(t)  : rl _-< t = r31. (2.2) 

For a given 5 < x (ra) - x (v~), define z~' to be the least number t >__ q2 with 
x(t)  =x(v~)  + ~, so z~< 31 < r~, x'(r~) __>0 and x(3~') > x(v~). If we define 
e( t )  = t - r ( x ( t ) ) ,  then by taking/~ > 0 sufficiently small we can ensure that 
t/(z~) - r/(r~) >= z~ ' - z l  > 0. Finally, define r ]  to be the least number t => r~ 
with x( t )  = x(r3). 

The above construction yields numbers ~7, 1 __j __< 3, with v~r (q2, q3), 
,~< z~< ~ ,  x ' (r]  ~) >__ 0 for 1 =<j__ 3 and x'(z~) = O, and x(3~) > x ( , ~ )  for 
j = 1, 3. We have already seen that tt(*~) < ~/(z~), and Proposition 2.t and 
Theorem 2.I imply that r /(3~ > r/(32") and r/(v*) > qt for j = I, 2, 3. Using 
equation (2.1), we see that 

f (x(r / (vT)))  > x(T~) for j = I, 3, (2.3) 

f (x ( r / ( r~) ) )  = x(z~). (2.4) 

If  we define ~rj = r/(r~) and use the above inequalities together with proper- 
ties (i) and (2) o f  f ,  we conclude that 

x ( a j ) < x ( a 2 ) ,  j = t ,  3, 

x(a2)  > - d .  
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Furthermore, we already know that 

ql < al  < a2 < 63 <q2.  

Now we argue as in the first step of the proof and find numbers a~', a~' and 
a~ with 

ql < a ~ <  a ~ <  a~'< q2, 

x!o'f)  < x(a~) for j =  1, 3, x(a~) >=x(a2) > - d ,  x'(aj*) <=0 for j =  1, 3 and 
x (a~) = 0 and 0 < r/(a~') < r/(a~) < r/(tr3*) < ql- Using this information and 
(2.1)~ we find that 

f ( x ( t l ( a ~ ) ) )  <=x(a~) for j = 1, 3, (2.5) 

f ( x (  tl ( a~) ) ) = x(  a~) . (2.6) 

I f  we use (2.5) mad (2.6), define pj = t/(a~) and use the properties of f ,  we 
conclude that x(p2) < c and x(pj)  > x(p2) for j = 1, 3. Since x is periodic of 
period q2, we have that P2 + q2 E S. However, we also know that 

f ( x ( p 2 ) )  = X(a~) >= X(a2), SO 
(2.7) 

fZ (x (p2) )  <=f(x(a2)) =x(3~) =< x(z2). 

Property 3 of  f and (2.7) imply that 

X(P2 + q2) ~ y-lX(272) ~ ~1-t~1~/ < ,/-~, (2.8) 

which contradicts the definition of g. [] 

I f  one has slightly more information about f ,  the conclusion of  
Theorem 2.2 can be sharpened: 

Corollary 2.1. Let assumptions and notation be as in Theorem 2.2. In addition 
assume that f '  (u) exists for - d < u < c and f '  (u) < 0 for - d < u < c. I f  x is 
an SOP solution of (2.1)~ for some ~ > 0 and sup x ( t )  >= c, then x ' ( t )  ~- 0 for 

t 
all t such that 0 < x ( t )  < c. I f  sup x( t )  < c, there is exactly one real number t 

t 
with 0 < t <  ql and x ' ( t )  = O. Similarly, i f  intfx(t) <=-d, then x ' ( t )  ,1: O for all 

t such that - d < x ( t ) < =  0; and if  i n t f x ( t ) > - d ,  there is exactly one real 

number t with ql < t < q2 and x ' ( t )  = O. 

Proof. Let aj, pj, and 3j, j = 1, 2, be as given in the definition of Property 
M. Note that Pl and P2 are, a priori, not necessarily uniquely determined. It 
suffices to prove that x ' ( t )  > 0  for 0 =< t <  al  and x ' ( t )  < 0 for 31 < t_< ql; 
the proof is essentially the same for ql __< t < a2 and for z2 < t <_ q2. Thus 
assume, by way of  contradiction, that there exists t with 0 _< t < al  or 
3i < t <= qt and x ' ( t )  = 0, and define S by 

S = { t i x ' ( t )  =0 ,  O<=t<ai  or T1<t=<ql}.  
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Define p by 

a = inf{x(t)[t ~ S}, 

and note that p > 0. I f  ~1 is such that 1 < ?1 < ? (for ~ as in Theorem 2.2), 
select 1: ~ S so that 

X(T) ~ yl,l.l. 

We divide the proof  into two cases. 

Case 1. X(Px) = max{x(t) : 0 _< t _ qx} < c. We know that x(t) satisfies Prop- 
erty M between - d  and c and 3 . p l ,  so there exists ~ > 0  such that 
x[ (~: - d, r + ~) is increasing (if 3 < Pl) or decreasing (if r > Pl). Since 
x'('c) = 0, it follows that x ' ( r )  = 0 (otherwise x'(t) changes sign on ( r  - fi, 
z + fi)), and using (2.1)e we conclude that 

f ' (x(t1(3))) x'(vl(3)) it'(T) = O, where v/(~-) = r - r (x (O) .  (2.9) 

Note that because x '  (O = 0, we know (even though r is only Lipschitzian) that 
t / ' ( r )  exists, v / ' ( r ) =  1 and also 

x ( O  = f (x (v / (~ ) ) ) .  (2.10) 

Thus our assumptions o n f  imply that - d  < x(rl(3)) < 0 andf ' (x (v / ( -c ) ) )  < 0. 
Equation (2.9) now implies that 

x ' ( ~ ( O )  = 0. 

The fact that x ' (p l )  = 0 implies that 

x(p l )  = f ( x ( r / ( P l ) ) ) ,  (2.11) 

so - d  < x(rl(pl)) < 0 and the properties of  f imply 

X(rl(pl)) < x(rl(v)). (2.12) 

If  x ( O  < X(pl), strict inequality must hold in (2.12) and v/(pl) ae v/(3). If  
x(v)  - -x(pa) ,  we find that 

t /(pl) --/ ' /(3) = Pl -- "r :# 0. 

We conclude that r/(pl)=4= v/(3) in any case. Equation (2.12) and the fact 
that x satisfies Property M between - d  and c now imply that there exists 
~ * > 0  such that either x[ ( v / ( 3 ) - ~ * ,  v/(3) + ~ * )  is increasing or 
x[ (v/(r) - d*, v/(-c) + fi*) is decreasing. 

Since we also know that x ' (v/ (3))  = 0, we can now repeat the above argu- 
ment to find that 

x'(~/2('c)) = 0, f(x(vl2(Z))) = x ( v / ( z ) ) ,  (2.13) 

where ~/2(3) = v/(~/(r)). Equations (2.13) and (2.10) give 

f2 (x(v/2(r)))  = x (3 ) ,  

and we conclude from the properties of  f that 

X(y/2(3)) ~-~ ~-Ix(T). (2.14) 
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Theorem 2.1 and Proposition 2.1 imply that t/2(v) + q2 e (0, ql) so t/2(v) + 
q2 E S. On the other hand, (2.14) implies 

X(t/2(~) "[- q2) ~ ~-Ix("g) ~ (~"-1yl) inf{x(t)I tE S/, 

which is a contradiction ( y - l y  I < 1). 

Case Z max{x(t)  :0 _< t _< ql} _-> c. Essentially the same argument as in case 1 
(except that x ( ~ : ) = X ( p l )  is now impossible) shows that r /2( 'c )+ q2ES  and 

f2(x(r/2('t '))) = X('C). 

Just as in case 1, this leads to a contradiction. 
Since we have obtained a contradiction in cases i and 2, the proof  is com- 

plete. [] 

Remark 2.L Suppose that f and r satisfy H i  and H2 or H I '  and H2 '  and that, 
in addition, f is in C a near 0 and i f ( 0 )  = - k  < -  1. If  A and B are as in H1 
and H2 or H I '  and H2' ,  the results of  Section I imply that for 0 < e < e0 
(2.1)e has an SOP solution x( t )  = x~(t) with - B  < x~(t) < A for all t, where 
e0 =3~o -1 and )-o is given by (1.19). I f f ' ( u )  < 0 for - B  < u < A  and tf2(u)l  = 
] f ( f ( u ) )  ] > l uI for - B  < u < A, u * 0, Corollary 2.1 implies that xs = 0 
for exactly two values of  t on each half-open interval of  length equal to the 
period of xe. This result plays an important  role in [38]. 

On the other hand, suppose that f and r are as in Proposition 2.1, that 
f ' ( u )  < 0 for - B  < u < A and that x( t )  is an SOP solution of  (2.1)~. If  we 
do not assume that I f ( f ( u ) ) I  = I f2 (u ) ]  > lut for all u~  ( - B , A )  ( s o f  2 may 
have multiple fixed points), then our previous theorems do not  imply that x( t )  
satisfies Property M on ( - B ,  A). (If  r(u)  = 1 for all u, unpublished results 
of  MALLET-PARET & SELL imply that x( t )  does satisfy Property M on ( - B , A ) ) .  
More generally, if x( t )  satisfies (2.1)e for all real t, but x( t )  is not assumed 
periodic, one can ask for information about the zeros of  x ' ( t ) .  The last few 
results of  this paper shed some light on these questions. 

First, we need some definitions. We shall say that a continuous function 
y defined on an interval I "does not change sign on I "  if there do not exist 
points h ,  t2 fi I such that y ( q )  y(t2) < 0. We shall define N s ( y ; I ) ,  the 
number of  sign changes of  y on I, by 

Ns(y; I )  = sup{k E N : there exist real numbers tj E/ ,  0 ___j -__ k 

such t h a t  tj < tj+l for 0 =< j < k, 

y(tj)  y(t j+l) < 0 for 0 <_j < k}. (2.15) 

We are interested in counting the zeros of  x ' ( t ) ,  where x( t )  is a solution 
of  (2.1)~ for some e > 0. Thus assume that f ,  r, and x are as in Proposi- 
tion 2.1 and define 

rl(t) = t -  r ( x ( t ) ) ,  t >= q - M. (2.16) 
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Define mo(t; x) = mo(t) for t __> q by 

mo(t ;x  ) = f O  i f x ' ( t ) = ~ 0 ,  

if x ' ( t )  = O. 

Also, define No( t ;x )  by 

(2.17) 

No(t; x) = E m0(s; x) .  (2.18) 
tl(t)<s<=t 

A priori, No(t; x) may be infinite. 
If  f and r satisfy H1 and H2 or H I '  and H2 '  and x( t )  is a C 1 function 

which is defined for all real t, which satisfies - B  < x( t )  < A for all t, and 
which is a solution of  (2.1)e for all t, define re(t; x) - m ( t )  by m(t; x) = 0 
if  x ' ( t )  ~ 0 and by 

m(t; x) = sup{k + 1 :x ' (8J ( t ) )  = 0 for 0_<j  =< k} (2.19) 

otherwise, where ~/J(t) denotes the composition of  r/ with itself j times and 
r/~ = t. If f and r are in C =, then x is in C~ if f ' ( x ( t ) )  r 0 for ! all t, 
it is easy to prove that m(t; x) is just the multiplicity of t as a zero of  x'. 
Define N(t;  x) by 

N ( t ; x )  = s m ( s ; x ) .  (2.20) 
tl(t) <s<=t 

Obviously, N(t;  x) also depends on r/, but we do not indicate this dependence. 
A priori, it is possible that re(t; x) = oo or N(t;  x) = oo. 

Finally, define Ns(t; x) to be the number of  sign changes of  x ' ( s )  on 
(r /( t) ,  t], i.e., by (2.15), 

N~(t;x) =N,(x'; (n(t), t]). (2.21) 

Our strategy is to prove that the functions N0(t; x),  N(t;  x),  and N,(t;  x) 
are decreasing functions on K =  { t :x ' ( t )  = 0} and to use this fact to obtain 
more information about solutions of  (2.1)e. We begin with some lemmas. 

Lemma 2.2. Assume that f and r satisfy H1 and H2 or I-I1' and H2 '  and that 
A, B, and M denote constants as in Theorem 2.L For given real numbers q and 
e > O, let ep : [q - M, q] ~ [ -B,  A] be a Lipschitzian and differentiable function 
and let x ( t )  = x( t ;  4~, e- l ) .  Assume that either dp'(q) = x ' (q )  (so x has a two- 
sided derivative at q) or that x does not have a local extremum at q. Assume also 
that f ' ( u )  exists and f ' ( u )  < 0 for all u E ( - ~ ,  et), where - ~  <= x( t )  <_ o~ for 
all t >__ q - M .  (Note that this condition is automatically satisfied if f ' ( u )  < O for 
- B  < u < A. ) I f  to, tl >= q are numbers with t o < tl, x'(to) = 0 = x ' ( t l )  and 

x ' ( t )  <= 0 for to <-_ t <_ t 1, then there exists s with rl(to) < s < rl(q),  x ' ( s )  = 0 
a n d x ( s )  = max{x(o-) :*/(to) ___< a < ~(q)},  where it(t) = t - r ( x ( t ) ) .  Similarly, 
if x'(to) = x ' ( t l )  = 0  and x ' ( t )  >-O for to <_t<__ q ,  there exists s with rl(to) < 
s < r/(tl) , x ' ( s )  = O, and x(s)  = min{x(cr) : r/(to) --< a _--< r/(tl) }. 
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Proof. We claim that  there does not  exist a c~> 0 with x ( r l ( t ) ) < x ( r / ( t l ) )  
for  t i - ~ - - - t < t  1. I f  not ,  take such a f i > 0  and note that  

f ( x ( r l ( t ) ) )  > f ( x ( r l ( t l ) )  ) for  t I -- 6 --< t < q .  

The  assumpt ion  that  x ' ( t l ) =  0 implies tha t  

x ( q )  = f ( x ( ~ / ( t l ) ) ) ,  

so tha t  

ex'(t)  = - x ( t )  + f ( x (~ l ( t ) ) )  > - (x(t)  - X ( t l ) )  for  tl - fi_<_ t < q .  

I f  we write u(t) = x ( t )  - x ( t x ) ,  ~ = e -1, we conclude that  

d 
-- (e;~(t-q)u(t)) > 0 for  tl - ~ _--< t < q .  
dt 

It  follows that  u(t) < 0 for t I - fi _< t < t I and 

ex'(t)  > - u ( t )  > O, t 1 - fi <= t < ti, 

which contradicts  the assumpt ion  that  x'( t )  <__ 0 for to _-< t = tl. 
The above remarks  show that  for  each 8 > 0 there exists t . ,  t I - f i  =< 

t ,  < q ,  so tha t  x(r l ( t , ) )  >--X(r / ( t i )  ).  Since r / ' ( t i )  = l ,  by taking ~ small 
enough  we can also ensure tha t  v / ( t , ) <  t / ( t l ) ;  Theorem 2.1 guarantees that  
t / ( t , )  > r/(t0). We also know that  X(to) >- X(tl) and f ( x ( r l ( t f l ) )  = x(tj) for 
j = 0, 1, so the monoton ic i ty  o f  f implies that  

x(rl(to)) _<-- x ( r / ( t i ) )  <=X(rl(t,)). 

It  follows f rom the above remarks  tha t  there exists s with ~/(t0) < s < r / ( q )  
and  

x(s)  = m a x { x ( a )  : r/(t0) -< a _< r/(tl)} >x(~ l ( t , ) ) .  

O f  course,  if  x is differentiable at s, then x'(s)  = O. The only value o f  s for  
which x may  not  be differentiable at s is s = q. But our  assumpt ions  imply  
that  if  x is no t  differentiable at q, then x does no t  have a local m a x i m u m  at 
q, so s ~ q .  

The p r o o f  in the case that  x'( t )  >= 0 for  to = t<= tl and x'(to) = x ' ( t l )  = 0 
is ana logous  and is left to  the reader. [ ]  

I f  x ( t )  is as in L e m m a  2.2, it is apriori possible tha t  {t => q:x ' ( t )  = 0} may  
have accumula t ion  points.  Our  next l emma discusses this possibility o f  ac- 
cumula t ion  points.  First, it is convenient to give a definition. 

Defini t ion 2.1. I f  J is an interval o f  reals and f : J ~ [E is a map,  f is called 
"s t r ic t ly  nondegenerate  on  J "  if  for  each u ~ J there exists fi = flu > 0 such 
that  (1) f l  [u, u + ~] c~ J is either strictly increasing or  strictly decreasing and 
(2) f ]  [u - ~, u] n J is either strictly increasing or  strictly decreasing. 

I f  J1 and J2 are intervals o f  reals and  g : J1 x J2 -~ [E is a map,  we say that  
u ~ g ( x ,  u) is "s tr ict ly nondegenera te  o n - / 2  un i formly  on J l "  if, for  each 
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x E J1, the map u ~ g ( x ,  u) is strictly nondegenerate and the number ~, in 
Definition 2.1 for the map v ~ g ( x ,  v) can be chosen independent of x ~J1 
for each u ~ Jz. 

If  f :  J--* IE is in C ~ and if for each u ~ J there exists an integer k __> 1 
such that f ( k ) (u )  t -0 ,  then one can see by using Taylor's theorem (with the 
integral form of  the remainder term) that f is strictly nondegenerate on J. 

With future applications in mind, we prove our next lemma in greater 
generality than is immediately necessary for our work here. 

Lemma 2.3. Let J be an interval of reals and g : J • ~ R a Lipschitz map such 
that u ~ g ( ~ ,  u) is strictly nondegenerate on J uniformly for ~ ~ J. Assume that 
there are nonnegative constants Cl and c2 such that for all ~1, ~2 and v ~ J, 

- -C1(~1 - -  ~2) ~ g((1,  v) - g ( ~ 2 ,  v) =< --C2(~1 --  ~2)" (2.22) 

(Note that these condition are all met if f : J  ~ ~ is strictly nondegenerate and 
Lipschitzian and g(~, u) = - ~  + f ( u ) ) .  Let r : J ~  [0, oo) be a Lipschitz map. 
Let Pl < P2 be reals, 0 : [Pl, P2] ~ ~ a differentiable function and x [ [Pl, oo) ~ R 
a continuous map such that x ( t )  ~ J for all t >_>_ Pl, x ( t )  = O(t) for Pl <-_ t <= P2, 
tl(t) - t - r ( x ( t ) )  >= Pl for all t >_ P2, x[ [P2, oo) is continuously differentiable 
and 

x ' ( t )  = g ( x ( t ) , X ( t l ( t ) ) )  for t > p2. 

Let K = {t >_ Pl :D+x(t)  = 0} (where D+x( t )  denotes the right-hand derivative 
of x at t) and let/(ace denote the set of accumulation points of K. I f  r ~ Kac c and 
z > P2, then it follows that r /(r)  fi Kacc. 

Proof.  Let tk �9 r be a sequence of points in K with limk_~ tk = Z. By taking 
a subsequence, we can assume that either r < tk+l < tk for all k__> 1 or 
tk < t~+l < r for all k. For definiteness we assume that v < tk+l < tk for all k. 
Because ~ ' ( r )  = 1, it is not hard to prove that for s o m e  t~ 1 ~ 0 FI I [T  --  61,  

r + 6~] is strictly increasing. (Some caution is necessary since r is only as- 
sumed Lipschitzian). Furthermore, by decreasing t~ 1 we can assume that 
Ix(rl( t))  - x ( t / ( r ) ) [  __< 6 for I t - z  I __< 61, where ~ is as in the definition of  
strict nondegeneracy for u ~ g ( ~ ,  u) at u = x ( t l ( z ) ) .  

If  /Co is chosen so that tk-- r_--< 61 for k__/c0, we claim that for each 
k__> ko, there exists Sk with "c < Sk < t~ and x ' ( r / ( sD)  = 0. Since t / ( r )  <t/(sk) < 
q(tk), this will imply that t/(z) ~/(ace. To prove the existence of  sk, we sup- 
pose not. Rolle's theorem then implies that 

(1) There does not exist t e  (r, tk] with x ( t l ( t ) )  =X(t I (T)) .  

(2) There does not exist t E [Z, tk) with x ( r l ( t ) ) = X ( r l ( t k ) ) .  

It follows that either ( a ) x ( t / ( r ) ) < x ( J / ( t ) ) <  x(rl(tk) ) for all t e (z, tk) or 
(b) x ( r l ( z ) )  > x ( r / ( t ) )  > x ( t / ( t D )  for all t e  (r, tk). Because u ~ g ( ~ ,  u) is 
strictly nondegenerate on J uniformly in ( e  J, we conclude that either (cx) 
g ( x ( t ) , x ( r l ( t ) ) )  > g(x( t ) ,X(r l ( tk) ) )  for all t~ [z, tk) or (fl) g ( x ( t ) , x ( r l ( t ) ) )  < 
g ( x ( t ) ,  x(rl(tk))) for all t E [z, tk). 
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Assume first tha t  case (a)  holds. Writing u(t )  = x ( t )  - x ( t k )  and recalling 
that  x'( tk)  = 0, we obtain for r ___< t <tk that  

u" (t) = g ( x ( t ) ,  X(rl( t)  ) ) > g ( u ( t )  + x( tk) ,  x(rl(tk) ) ) -- g ( x ( t k ) ,  X(~l(tk) )) 

>= - q u ( t ) .  

It  follows that  

d ( e x p ( c l (  t tk)) u ( t ) )  > 0 for  z < t < tk. 
dt = 

Since u(tk) = O, this implies that  u(t )  < 0 for  r __< t < t~. Because cl _-> O, we 
conclude that  u ' ( t )  > 0 for  r _< t < tk, which contradicts the fact tha t  u ' ( z )  = 
! imx ' ( t j )  = O. 

j ---~ o o  

Suppose  next tha t  case (fl) holds. For r __< t < tk we obtain 

u" (t) = g ( x ( t ) ,  x(~l( t)  ) ) < g ( x ( t ) ,  x(rl( tk)  ) ) -- g (x ( t k ) ,  x(~l(tk) ) ) 

= < - c 2 u ( t ) .  

We conclude that  

d (exp(c2(  t t k ) ) u ( t ) )  < 0  for  r _ t < t ~ .  
dt 

Since u(tk) = 0, we must  have that  u(t )  > 0 for r < t < tk. It  follows that  

u'(r) <-c2u(~) _-< 0, 

which contradicts  u ' ( z )  = 0. []  

We also need a result concerning the multiplicity o f  zeros o f  x ( t ) .  

I_emma 2.4. Let J = [ - f l ,  or] be a bounded interval, let g : J x J  ~ [E be a Lipschit- 
zian map and suppose that r : J ~ .  is a Lipschitzian map with r (u)  >= 0 for 
- f l  < u < e~ and r(u)  > 0  if  g(u,  u) = 0  and - f l  < u < ol. Assume that 

x : R ~  ( - p ,  c~) is a C 1 map with 

x ' ( t )  = g ( x ( t ) ,  x ( t l ( t ) ) )  for all t, 

where t l ( t ) = t - r ( x ( t ) ) .  I f  x ( t )  is not constant and tlJ(t) denotes the jth 
iterate of tl for j >_ O, there does not exist to ~ [E with x'(11J(to)) = 0 for all 
j >= O. If, in addition, u ~ g ( ~ ,  u) is nondegenerate uniformly for ~ EJ  and g 
satisfies (2.22) with nonnegative Cl and c2 and K = {t ~ R : x ' ( t )  = 0}, then K has 
no accumulation points. 

Proof .  We suppose that  there exists to with x ' ( ~ l J ( t o ) ) = 0  for all j >_0. 
Define tj = v/J(t0) for  j = 0 and define yj ( t )  by 

yj ( t )  = X(tj -b t) -- X(t j) .  
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Recalling that x'( t j )  = 0 and that g is a Lipschitz map we obtain 

[yj(t)  [ = [g(x( t j  + t), X(rl(tj + t) )) - g (x( t j ) ,  X(rl(tj) )) I 

<__c3[x(ti+t) - x ( t j ) ]  + c 3 [ x ( r l ( t j + t ) )  -x (~ / ( t j ) )  ], (2.23) 

where c3 depends only on g. Note that we can write 

t t ( t j  + t)  = tj+l + t - o j ( t ) ,  
where 

Oj(t) = r (x ( t j  + t)) - r ( x ( t j ) ) .  

If  we also recall that x is a Lipschitz map with Lipschitz constant c4, 

c4 = sup lg(u, v ) l ,  
u,v~J 

we obtain 

Ix (rl (tj+ t)) - x ( r l  (t/)) [ = Ix (tj+ 1 + t -  Oj ( t ) ) - x ( t j +  I + t) +x  (tj+l + t) - x  (tj+ 1)1 

<= c4]Oi(t) ] + ]Yj+l(t)]. (2.24) 

Because r is Lipschitzian we obtain from (2.24) that 

[ X ( t l ( t j + t ) )  - x ( t l ( t j ) ) t  <=cs[yj(t)[ +[y j+ l ( t ) t ,  (2.25) 

where c5c~ -1 is the Lipschitz constant for r. Using (2.25) in (2.23) gives 

]yj(t)!  <__ c6]yj(t)] + c61Y]+x(t)] , (2.26) 

where c6 = c3 + c3c5. We also know that there is a constant M so that 
lyj(t)[ <_ M and [yj(t)[ <_ M for all t and all j _>_ 0. Using this information we 
easily show that 

Y ( t )  = (yo(t),  yx(t) . . . . .  Ym(t) . . . .  ) ~ l ~ 

and that t ~  Y(t) is continuous from R to l ~. Equation (2.26) gives 

t 

[yj(t) I ~ c6 ~ [yj(s) [ + [yj+] (s) l ds for t_>0;  (2.27) 
0 

by the continuity of  t--+ Y(t) ,  it follows from (2.27) that 

t 

II r(t)Ho~ <- (2c6) ~ it Y(s)II~ ds -- 2c6R(t  ). (2.28) 
0 

If  we define c = 2c6, then (2.28) implies that 

d (e_CtR(t)) < O, 
dt = 

so that 
R(t )  <_ eetR(O) = 0 for all t = 0. 

Since R(t )=>0 for all t_>0, we must have R ( t ) = 0  for all t=>0 and 
x(t j  + t) = x(tj)  for all t __> 0. Because tj is a decreasing sequence, it follows 
that x(t j )  = X(to) for all j _>__ 0. Thus to prove that x(s )  = X(to) for all real s, 
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it suffices to prove that  inf  tj = -  oo. I f  not ,  we must  have 
j_->0 

lira tj = r > - oo and x (z )  = X(to). 
j ~  

It  follows that  x( t )  = x ( r )  for all t ____ z and x ' ( z )  = g ( x ( T ) ,  x ( t / ( r ) ) )  = 0. I f  
r ( x ( r ) )  = 0 and  if we set u = x ( r ) ,  we obtain tha t  r(u) = 0 and  g(u, u) = O, 
which contradicts  our  assumptions.  Therefore we must  have that  r / ( z ) <  z. 
However, this gives 

= lim ~( r j )  = t / (z)  < z, 
j--*~ 

which is again a contradict ion.  
It  remains to prove that  if g satisfies the given addit ional  condit ions and 

x is not  constant ,  then K has no accumula t ion  points.  However, if r is an ac- 
cumula t ion  point  o f  K, L e m m a  2.3 implies tha t  r/J('r) is an accumula t ion  
point  o f  K for  all j _> 0, so tlJ(z) ~ K for all j > 0. This contradicts the first 
par t  o f  L e m m a  2.4. []  

We are now in a posi t ion to obtain  more  detailed in format ion  about  the 
zeros o f  x '  ( t) ,  where x (t) satisfies (2.i)8. The following theorem generalizes 
with little difficulty to equat ions o f  the fo rm 

ex'(t) = g (x ( t ) ,  x ( n ( t ) ) ) ,  

but  for  simplicity we shall restrict a t tent ion to (2.1) 8 . 

Theorem 2.3. Assume that f and r satisfy H1 and H2 or H I '  and H 2 '  and let 
A, B, and M denote the usual constants. For given reals q and e > O, let 
0 : [q - M, q] ~ [ -B,  A] be a Lipschitzian, differentiable function and let 
x ( t )  = x ( t ;  c~, e - l ) .  Assume that (o'(q) = x ' (q )  or that x does not have a local 
extremum at q. Finally, suppose that f is differentiable and that i f ( u )  < 0 for 
- f l  <_ u <_ or, where - f l  <__ x( t )  <_ o~ for all t >= q - M. I f  K =  {t > q : x ' ( t )  = 0} 
and N0(t ;  x) = N 0 ( t )  is defined by (2.18), then No lg  is a decreasing function. 
I f  there exists a Ek  with N o ( a ) < o o ,  then there exists T>=a such that 
x'(tl(t)) . 0 and ex"(t)  = f ' ( x ( ~ ( t ) ) )  x ' ( t l ( t ) )  e~ 0 for all t ~ K with t >___ T. 

Proof .  I f  a,  z E K  and  a < z ,  we must  prove that  No(a)>=No(z) .  I f  
No(a)  = ~ ,  this is immediate ,  so we assume that  No(a)  < ~.  We claim that  
a is no t  an accumula t ion  point  o f  K. I f  it were (since No(a)  < r there 
would exist a sequence sk E K, Sk > a, with lira sk = a.  The argument  in Lem- 
m a  2.3 would  then imply that  there exists a sequence & ~ K, with r / (a )  < Pk 
and l i r a& = ~ ( a ) ,  which would contradict  No(a)  < c~. 

Thus if we define a l  = i n f [ t  ~ K :  t > a] ,  then a l  > a.  I f  t / ( a l )  = a ,  then 
No(a)  = N 0 ( a l )  = 1. I f  r / ( a l )  < a ,  L e m m a  2.2 implies tha t  

No(a l ;X)  - N o ( a ; x )  = 1 - Z mo(s ;x )  <=0. (2.29) 
t/(a) <s_-<~/(al) 
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Furthermore,  in either case, if x ' ( ~ l ( a ~ ) ) = 0  (so t/(aa)<___ a ) ,  Lemma 2.2 
implies that 

N0(o') > N0(ax). (2.30) 

We can now proceed inductively. For k >= 1, define 

Ok+ 1 = inf[ t  E K:  t > ok}. (2.31) 

It is a simple argument by induction that o'k < a~+l and 

N0(ak) >--- N0(ok+l),  (2.32) 

and strict inequality holds in (2.32) if t/(ak) E K. 
We claim that ak is not bounded above. If  ak were bounded above, there 

would exist y E Kate with ak <Y for all k and lim ak = y. Lemma 2.3 implies 

tha t  r /(y)EKacc,  and Theorem 2.1 hmplies that t / ( a ) < t / ( y ) <  y. By our 
construction, there are only finitely many- elements of  K contained in any com- 
pact subset of  ( t / ( a ) ,  y ) ,  which contradicts the fact that t / ( y )E  Kaco. 

It follows that 

{ t E K : t >  o'} = {ok:k_>_ 1}, 

so there exists k >__ 1 with ~ = ak and 

N0(r)  = No(ak) < No(a) .  

Because strict inequality holds in (2.32) for all k with r/(a~) E K and because 
No(a)  < o  o, it must be true that for all sufficiently large k, t / (ak)~K.  It 
follows that there exists T with x'(J1(t))  * 0 for all t E K with t _> T Since 
r/ ' ( t)  = 1 for t E K, we conclude from (2.1)e that 

ex"(t)  = f ' ( x ( r l ( t ) ) )  x ' ( r l ( t ) )  * O. [] 

Corollary 2.2. Assume that f and r satisfy H1 and H2 or H I '  and H2'  and that 
f is strictly nondegenerate on [ - B , A ]  (see Definition2.1). Suppose that 
x:',~ ~ [ - B , A ]  is a C 1 function which satisfies (2.1)e for all t E ~ and is not 
identically zero. I f  K = { t E ~ : x '  (t) = 0}, then K has no accumulation points and 
there does not exist t E K with x'  ( tlJ ( t ) ) = O for all j >_ O. (Here 
tl(t) = t -  r ( x ( t ) )  and tl j denotes the composition of ~ with itself j times.) I f  
- f l  <= x( t )  < ot for all t, f is differentiable on [-t0, or] and i f ( u )  < 0 for 
-10 < u <_ c~, then there exists T with x" (t) * 0 for all t E K, t >= T. If, in addi- 
tion, x ( t )  is periodic and x ' ( t )  = 0 ,  it follows that x" ( t )  r 

Proof. The first part of Corollary 2.2 is a special case of  Lemma 2.4. Since 
K has no accumulation points, it follows, in the notation of  Theorem 2.3, that 
No(t) <r for all t E K. The final statements of  Corollary 2.2 now follow 
from Theorem 2.3. [] 

The same techniques used to prove Corollary 2.2 also provide information 
about / ( =  [ t : x ( t ) = 0 }  and show that there exists T with x ' ( t ) .  0 for all 
tEI~,t>__T 
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Corollary 2.3. Assume that f and r satisfy H I  and H2 or H I '  and H 2 '  and that 
f is strictly nondegenerate on [ -B ,A] .  Suppose that x: ~-~ [ -B ,A]  is a C 1 
function which satisfies (2.1)e for all t ~ [R and is not identically zero. I f  K = 
[t fi ~ : x ( t )  = 0}, /~ has no accumulation points. If, for t E/~, v0(t;  x) = Vo(t) 
denotes the number of zeros of x( t )  on the interval ( t -  1, t] (not counting 
multiplicity of zeros), then Vo I ~ is a decreasing function. There exist T and an 
odd integer m >__ 1 such that if x ( t ) = 0  and t>= T, then x ' ( t ) e~O and 
Vo ( t ) = m. In particular, if x is periodic, Vo ( t ) = m and x" ( t ) :~ 0 for all t E I~. 

Proof. Coro l l a ry2 .2  implies tha t  K = { t : x ' ( t ) = 0 }  has no accumula t ion  
points,  so given any t E [R there exists ~ > 0 with x ' ( s )  ~: 0 for 0 < It - s] < ~. 
This implies tha t  /s has no accumula t ion  points.  To prove that  v0l /~ is 
decreasing, it thus suffices to prove that  if x(ql)  = x(q2) = 0 and x( t )  ~: 0 
for  q~ < t < q2, then v 0 ( q 2 ) _  v0(ql) .  For definiteness we can assume that  
x( t )  > 0 for ql < t < q2. We know then that  there exists d > 0 with x ' ( t )  > 0 
for  ql < t < ql + ~, so (2.1)e gives 

f ( x ( t l ( t ) )  ) > x ( t )  > 0 ,  x(t?(t))  < 0 ,  ql < t < ql + & 

I f  x ' ( q l )  > 0, we also conclude f rom (2.1)~ that  

f ( x ( q l  - 1)) > 0, x(ql  - 1) < 0. 

It  follows, when x ' ( q l )  > 0, tha t  there exists 01 > 0 with 

x(s)  < 0 for ql - 1 < s < ql - 1 + t~ 1. 

However, if x ' (q l )  = 0, then r / ' (q l )  = 1 and we deduce f rom the fact tha t  
X(t l ( t ) )  < 0 for  ql < t < ql + ~ that  there exists t~ 1 > 0 for which we have 

x(s)  < 0  for q l - 1  < s < q l -  1 + 0 1 .  

I f  x ' ( q 2 ) <  0, the same reasoning, using (2.1)~, shows that  x(q  2 - 1 ) >  0. 
Thus,  in this case we deduce f rom the intermediate value theorem that  x (3) = 0 
for  some -c with ql - 1 < "c < q2 - 1. This implies tha t  vo(q2) _-< v0(ql) when 
x'(q2) * O. 

I f  x ' (q2)  = 0, we have x(q2 - 1) = 0. Because t/ is strictly increasing on 
some open  ne ighborhood  o f  q2 and because q2 - 1 is an isolated zero o f  x, 
there exists ~ > 0 with X(t l ( t ) )  :r 0 for  q2 - ~ -< t < q2. We claim that  
x ( l l ( t ) )  > 0 for q2 - ~ --< t < q2. Writing )t = e -s ,  we obtain f rom (2.1)~ that  

q2 
-e~(t-q2)x(t)  = ~ ~eZ(S-q2)f(x(tl(s))) ds. 

t 

I f  X(tl(S))  _- 0 for  q2 - ~ --- t < q2, we deduce that  the lef t -hand side o f  the 
equat ion  is negative and the r ight -hand side is greater than  or  equal to zero 
for q2 - ~ -<- t < q2, a contradict ion.  We conclude that  if x ' (q2)  = 0, there ex- 
ists ~ 1 > 0  with x ( s ) > O  for  q 2 - 1 - ~ l < s < q 2 - 1  and x ( s ) < O  for 
q~ - 1 < s < ql - 1 + ~ .  The intermediate value theorem implies that  x ( r )  = 0 
for some r with ql - 1 < r < q 2 -  1. Since x ( q 2 -  1) = 0  also, we have vo(q2) < 
Vo(ql) in this case. 

Since Vo ]/(: is a decreasing integer-valued positive funct ion,  there exists an  
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integer m => 1 and a number  T1 so that Vo(t) = m for t E/f,  t _>_ T1. Because 
vo(ql)  > vo(qa) whenever ql and qz are consecutive zeros of  x and x ' (q2)  = O, 
there exists T2 with x ' ( t )  ~ 0 for all t ~/~, t _>_ T2. I f  t = max(T1, T2) and 
x ( q )  = 0 for some q _ T and x ( t )  is positive on (q - ~, q] for some 6 > 0, 
it follows that  

0 > x ' ( q )  = f ( x ( q  - 1)), 

so x ( q  -- 1) > 0. However, it is easy to see that x ( q  - 1) > 0 implies that  m 
is odd. A similar argument applies if x ( t ) <  0 on ( q - f i ,  q] for some 
6 > 0 .  [ ]  

Our next theorem follows by arguments analogous to those used in 
Theorem 2.4, The usefulness of  Theorem 2.4 is that  Ns( t ;  x )  may be finite 
when N0(t;  x) is infinite, For reasons of  length, we omit  the proof.  

Theorem 2.4. Let  notation and assumptions be as in Theorem 2.3. I f  Ns( t ;  x )  is 
defined by (2.15) and (2.2t), then b~(t ;  x)  is a decreasing function o f  t for  t E K. 
Furthermore, i f  r is in C 1 on [ - B ,  A] and i f  Ns(to; x )  < o~ for  some t o ~ K, there 
exists T with x"  ( t ) :# 0 for  all t ~ K, t >__ T. 

Our results up to this point have used only crude assumptions about  the 
function r. I f  we assume more about  r, we obtain considerably more informa- 
tion about  solutions x ( t )  of  (2.1)~ and about  t l ( t )  = t -  r ( x ( t ) ) :  

Theorem 2.5. Let  q and M > 0 be given real numbers and ot and fl real numbers 
with - f l  < o~. Assume that d~ : [q - M,  q] ~ [ - f l ,  e~] is a Lipschitz ,function, 
f : [ - f l ,  a] --+ R is a Lipschitz function, r : [ - f l ,  or] ~ [0, oo) is a C 2 function and 
). > O. Suppose that x : [q - M, oo) ~ [ - f l ,  o~] is a Lipschitz function such that 
t l ( t )  = t -  r ( x ( t ) )  >= q - M for  all t >- q, x I[ q - M,  q] = d~, x l[q, oo) is in C 1 
and, for  all t >__ q, 

x ' ( t )  = - 2 x ( t )  + , ~ f ( x ( t -  r ) ) ,  r = r ( x ( t ) ) .  

Assume that there is a constant D with 

r " (u )  < D ( r ' ( u ) )  2 for  - f l  < u <_ ee. (2.33) 

I f  p >= q and t f ( p )  > 0 and i f  ~ > D, it follows that r f ( t )  > 0 f o r  all t >_ p. 

Note that  if  x ' ( p )  = 0 for s o m e p  = q, ~/'(p) = 1 > 0. 

Proof .  Assume the theorem is false and define 

t 1 = inf{t > p : ~/'(t) = 01. 

At t = q ,  f ( x ( r l ( t ) ) )  is differentiable with derivative zero (even though f is 
only Lipschitzian), so 

e.x•(tl) = - x ' ( t l ) .  (2.34) 

I t  foUows that r l " (q )  exists and 

~/"(tl) -- - r " ( x ( t l ) )  (x ' ( t~))  2 - r ' ( x ( t l ) )  x" ( t l ) .  (2.35) 
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Because ~ ' ( q )  - -0 ,  we have 

1 = r ' ( x ( t l ) )  x ' ( t l ) ,  (2.36) 

and using (2.34) and (2.36) in (2.35) gives 

~/"(q) = - r "  (x(t~)) ( r ' ( x ( t l ) ) ) - 2  + 2. (2.37) 

The definition of  tl implies that r / " (q)  __< 0, so it follows from (2.37) and 
(2.36) that r ' (u)  . 0 and 

r"(u)  >_ 2 ( r ' ( u ) )  z, u =X( t l ) .  (2.38) 

If  2 > D, (2.38) contradicts (2.33). [] 

It is unclear at present what conditions on f and r are optimal to ensure 
that r/ '( t)  > 0 for all t. However, if r(u)  = 1 + cu 2 and c > 0 (so (2.33) fails) 
and if f satisfies H1, numerical studies suggest that SOP solutions x( t )  of  
(2.1)~ fail to satisfy the condition that ~ / ' ( t )>  0 for all t, no matter how 
small e is. 

If  r ' (u)  ~ 0 for all u E [ -B,  A], r is in C 2 on [ -B ,  A], and f and r satisfy 
H1 and H2 or H I '  and H2' ,  then Theorem 2.5 implies that there exists 
F, 1 > 0 (r t t ( l t )  ~ g,11 ( r ' (u ) )  2 for u ~ [ -B ,  A]) such that if 0 < e < el and if 
x( t )  is an SOP solution of (2.1)e, then 

r ( x ( t ) )  < t + r(x(O))  for t > 0, 

r ( x ( t ) )  > t + r(x(O))  for t < 0. 

If, for example, r(u)  = 1 + cu and x( t )  is any SOP solution of  (2.1)e with 
x(0)  = 0, then 

cx(t) < t for t > 0, cx(t) > t for t < 0. 

As we remarked earlier, even if f ( u )  is strictly decreasing on an interval 
( - f l ,  a)  which contains the range of  an SOP solution x( t )  of  (2.1)~, 
Theorem 2.2 does not necessarily imply that x( t )  satisfies Property M on 
( - f l ,  a ) .  However, if, as in Theorem 2.5, we know that ~/'(t) > 0 for all t, 
where ~l(t) = t -  r ( x ( t ) ) ,  then we can prove that x( t )  satisfies Property M on 
( - f l ,  a) .  The following lemma will play a crucial role. 

I .emma 2.5. Let a and fl be positive reals and suppose that f and r are C 1 maps 
f r o m ( - f l ,  c~) to R with f (O) = 0 ,  r (0)  = 1, and f ' ( u )  < 0  and r(u)  >_ O for all 
u ~ ( - f l ,  or). Assume that e > O, that x ( t )  is a periodic solution of (2.1)e with 
- f l  < x ( t ) <  c~ for all t and that x ( t ) has minimal period p. I f  tl ( t ) = 
t - r ( x ( t ) ) ,  assume that tl '( t)  > 0 for all t. (See Theorem 2.5 for conditions 
which ensure that ~ ' ( t )  > 0  for all t .)  Define w2(t) by 

w;~(t) = 2 - 1 I x ( t )  - - x ( t - -  2)1, 2 : # 0 ,  

Wo(t) = x ' ( t ) .  

Then, if  0 <-_ 2 < p  and w~(t) = 0, it follows that w~(t) e~ O. 
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Proof.  Define w(t, 2) = wk(t) and note that w is a C 1 function of  (t, 2). We 
can extend f and r so that they satisfy H1 and H2. Thus Theorem 2.3 and 
Corollary 2.2 imply that  if Wo(t) = x'(t) = 0, then x"(t) ~ O. By the con- 
tinuity of  x"(t) and the periodicity of  x(t),  there exists fi > 0 such that if 
x ' ( t )  = 0  for any t E ~  and I s - t [  <=c~, then x"(s)=r I f  O<2___f i  and 
wz(t) = O, we claim that  w[(t) . O. To see this, observe that  if  wz(t) = O, the 
mean value theorem implies that  there exists tl, with t - 2 < t I < t, such that  
x ' ( t l )  = O, SO X~t(S) ~ 0 for t -- 2 --< s <-- t. On the other hand, if w[(t) = O, 
SO 

x'(t) = x ' ( t  - ) 0 ,  

then the mean value theorem implies that  there exists s, t -  k < s < t, with 
x"(s) = 0, which is a contradiction. 

Motivated by the above observation, we define 20 by 

2 0 = s u p { k  : 0 __< 2 < p ;  if wu(t) = 0  for 0 = / t  = 2 and t E R, then ws :~ 0}. 

We must  prove that  2o = p. We shall assume that 2o < p and obtain a con- 
tradiction. Select z~ E R with 

X(rl)  = max{x(t)  : t E N}. 

Let {Vl, "c 2 . . . . .  "Crn } be {t: t E [2"1, T 1 + p ) ,  x'(t) = 01 and assume rj < rj+ 1 for 
1 ___j < m. Since x'(t) changes sign at each rj, m must be an even integer. I f  
0 < k < k 0  and w(t ,k )  = 0  for some t E [ r l ,  r l + p ] ,  note that  t=~r l  and 
t ~ rl + p .  For if t =  rl and wk(t) = 0, the definition of  "q implies that x ' ( z l )  = 
0 = x ' ( r l  - 2 )  and w~(zl) = 0, contrary to our assumptions. I f  0 < 21 <20,  
the implicit function theorem implies that there exist positive numbers p and 
such that if w(t, ~ ) = 0  for some {EN and ~E[0,  211, then for I -i1 < ~ ,  
/t E [0, 21], there exists a unique solution t = t(/t) of  the equation w(t, I~) = 0 
with ] t -~  I < p .  The map /2--+t(B), defined for ] p - ~ ]  < f i ,  ,t/ E [0, 21] , is 
continuously differentiable. 

Using the above remarks, we see that there exist C 1 functions t j (2) ,  
1 __<j__< m, defined for 0 = 2 < 20, such that  tj(O) = zj and 2 1 < t j ( 2 )  < T 1 "t-p 
for 0 < 2 < 2 0 .  Notice also that we must have t j (2)* tk(2)  for l<_j<k<__m 
and 0 __< 2 < 20, or we would contradict the local uniqueness of  solutions of  
w(t, 2) = 0 given by the implicit function theorem. It  follows that we must  
have tj(2) < t / + l ( 2 )  for l _ _ < j < m  and 0__<2<20 .  Finally, if w(a, 21) = 0  
for some a E ( r l ,  rl + p )  and 0 < 21 < 20, the same argument using the im- 
plicit function theorem shows that there is a C 1 function t (2 ) ,  defined for 
0 ___ 2 _< 21, with t(21) = a and w ( t ( 2 ) ,  2 )  = 0 for 0 _< 2 _ 21. I f  a :~ tj(21) 
for some j,  1 __<j ____ m, we argue as above that t(2) :~ tj(2) for 1 = j  = m and 
0 _ < 2 _ 2 1  and t(2) E ( r~ , v l+p)  for 0<2___21 .  It  follows that t(0) E 
[r 1, z- 1 + p ] .  However, one can argue that t (0)  ~ rl + p ,  because if t(0) = 
rl + p ,  then t ' (0 )  > 0 and t(2) > rl +p  for 2 > 0. Thus t (0)  E [rl, rl + p )  
and t (0)  = rj for some j ,  1 =<j = m, contradicting our previous assertions. 

It  follows that the zeros of  wk (t) on the interval [ri, Zl + p)  are precisely 
the numbers tj(2), 1 <_<_j <= m. Because w[(t) ~: 0 if wk(t) = O, wk(t) changes 
sign at each of  these zeros. Thus, the sign of wk(t) on (tk(2), tk+l(2)) is 
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constant for 0 _< 2 <  20. i f  2~ is a sequence of  reals approaching 20 f rom the 
left, we can, by choosing a subsequence, assume that  lim tj(2k) =aj, 1 <_j <= m, 

and r~<__aj<=aj+l<_rl+p for l < = j < = m - l .  I f  v ( t )= wzo ( t ) ,  we know 
that  w.~(t) converges uniformly to v(t) on •. We conclude by a simple 
limiting argument that  if a~ < aj+l, then (i) v(t)>_ 0 for aj N t <_ aj+l if 
w~(t) > 0 on ( t j (2 ) ,  tj+l()~)) for some 2 (and hence all 2) with 0 < 2 < 20 
and (ii) v(t) <__ 0 for aj <= t <= aj+l if wz(t) < 0 on ( t j (2 ) ,  tj+l(;t)) for some 
2 E (0,)o0). A similar remark applies to the intervals [r 1, as] and [am, Zl +p] .  

I t  remains to prove that  if  v(t) = 0, then v'(t) t O. Notice that  our observa- 
tions above prove that  Ns(v; J )  < ~ for any finite interval J and for Ns defined 
by (2.15). The defining equation for x(t)  shows that v ( t )=  2 0 - 1 [ x ( t ) - x ( t - 2 0 ) ]  
satisfies 

ev'(t) = --v(t)  + 2~ -1 [ f (x(r l ( t ) ) )  -- f ( x ( r l ( t  -- ~-0)))]. (2.39) 

Define g(u) = f ( x ( u ) )  and define continuous functions F(ul ,  u2), G(Ul, u2) 
and R(Ul, u2) on ~ •  by 

I h(Ul) - h(u2) for u 1 :~: U2, 

H(Ul ,  u 2 )  = u 1 - -  u 2 

h'(u) for u 1 = u2 = u, 

where h = f i f  H = F,, h = g if H = G, and h = r if H = R. An easy calculation 
shows 

ev'(t) = - v ( t )  - G(t l ( t )  - 20, rl(t - 20)) R ( x ( t  - %o), x( t ) )  v(t) 

+ F(x ( t t ( t ) ) ,  x(rl(t)  - )~o)) v(rl( t ))  

= - a ( t )  v(t) - b(t)  v ( t l ( t ) ) .  (2.40) 

The functions v(t) ,  a(t) ,  and b(t) in (2.40) are continuous and periodic of  
period p, and b(t) > 0 for all t (because i f ( u )  < 0 for - f l  < u < o~). 

For each t 6 K = {t : v(t) = 0}, we can let Jt be the largest interval contain- 
ing t with v(s) = 0 for all s E Jr. We assert that  there exists a finite collection 
S of  real numbers t E ['Cl, rl  + p] such that  

K n [~1, "q + P] = l,J Jt n [T1 ,  V 1 "}- p] .  (2.4t) 
tES 

In order to prove this, select to ~ [rl, rl + p ]  with v(to) �9 0. Such a point 
exists because 0 < 20 < p .  For definiteness, we can assume that v(t) > 0 and 
let J - - [ c ,  d] denote the largest interval of  reals containing to such that  
v(t)  >__ 0 for all t ~ J. In  order to establish (2.41) it suffices to prove that  K n J 
can be decomposed into a finite union of  intervals o f  the form Jt c~J, 
t ~ K c ~ J .  

We first claim that  c and d are finite. To see this, observe that if A'( t )  = 
a(t)  for all t, then (2.40) gives 

d (exp(e_1A(t))  v(t))  = --e  -1 e x p ( e - l A ( t ) )  b(t) v( r / ( t ) ) .  (2.42) 
dt 

I f  c = - o o ,  we derive f rom (2.42) that  e x p ( e - l A ( t ) ) v ( t )  is decreasing on 
( -  ~ ,  d], so if v(q)  = 0 for any t~ < d, v(t) = 0 for all t E [q, d]. However, 
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v(q  - rip) = 0 for all positive integers n, so v(t) = 0 for all t E ( -  co, d] and 
hence, by periodicity of  v, for all t. This proves c > - oo and a similar argu- 
ment  gives d < oo. 

Now let 
U = ( t E  [c ,d]:v( t )  >O}C ( c ,d ) ,  

so U is an open set. I t  follows that U can be written as a countable union 
of  disjoint open intervals I / ,  1 _<j __< n, where we allow n = co. To prove 
(2.41), it suffices to prove n < oo. I f  n =oo and we write Ij = (cj, dj), we 
have 

E ( d j - c j ) < = ( d - c ) ,  c < c j < d j < d .  
]=1 

Thus we conclude that  lira ( d / -  c/) = 0 and that  by taking a subsequence we 
j--.o~ 

can assume lira cj = 7 = lim d/. By taking a further subsequence we can also 

assume that  cj is either a strictly decreasing sequence or a strictly increasing 
sequence. 

We now use the above assumptions to contradict the fact that  Ns(v;  L) is 
finite for any finite interval L. Our construction ensures that 

v(c~) = v'(ck) = O, v(dk) = v'(dk) = 0 for k = 1, 

so (2.40) implies 

v(rl(Ck)) = 0 = v(11(dk)) for k > 1. 

Equation (2.42) implies that for t > ck and t close to ck, 

t 

e x p ( e - l A ( t ) )  v(t) = - e  -1 ~ exp (e - lA ( s ) )  b(s)  v(rl(s)  ) ds. (2.43) 
Ck 

Since - b ( s )  < 0 for all s and v(t)  > 0 on (ck, dk), equation (2.43) implies 
that  there exists r~E (ck, dk) such that  v ( q ( ~ k ) ) <  0; ?~ can be chosen as 
close as desired to ck. I f  t < dk and t is close to dk, we obtain 

d~ 
- e x p ( e - l A ( t ) )  v(t) = - e - l  ~ exp (e - lA ( s ) )  b(s)  v(rl(s))  ds. (2.44) 

t 

Equation (2.44) implies that  there exists 6k E (ck, dk) with v(rl(6k)) > 0; 5k 
can be chosen as close as desired to dk. For Yk and ~k close enough to ck and 
dk, respectively, our assumption that  t / i s  strictly increasing implies that  either 
r/(~,k) < t/(Ok) < t/(~'k+l) for all k or r/((~k+l) < t/(~,k) <t/(Ok) for all k. In  
either case, since ck ~ ~' and dk ~ 7, we find that  v has infinitely many sign 
changes on a compact  interval. This contradiction proves (2.41). 

As an immediate corollary, we see that if  t E R, there exists 5 > 0 such that 
either v(s) = 0 for all s E [t, t + 5] or v(s) ~ 0 for all s ~ (t, t + ~]. A similar 
statement holds for an interval [ t -  6, t]. 

I f  q,  t 2 E K = { t : v ( t  ) =0} ,  we say that tl - t 2  or tl is equivalent to t2, if  
there exists an interval I such that fi, t2 E I and v(t) = 0 for all t E L We 
allow I to consist of  a single point. For t E K, we define/~(t)  to be the number  
of  equivalence classes of  K which have a nonempty  intersection with the inter- 
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val (r /( t) ,  t]. Our previous work shows that p(t)<oo for all t E K, and we 
claim that/~ ] K is a decreasing function. A little thought shows that it suffices 
to prove that (a) if [fi, t2] c__ K and tl < t2, then /~(tl) _~ p(t2) and (b) if 
tl, t2 ~ K, tl < t2, and v(t) =r 0 for all t ~ (q ,  t2), then p ( t l )  _-__ tt(t2). Asser- 
tion (a) is straightforward, because we are assuming that q ( q ) <  ~/(t2). To 
prove (b), we assume for definiteness that v(t) > 0 on (t2, t2). If  v ' ( t l )  > 0, then 
(2.40) implies that V(rl(ta)) < 0. If  v ' ( t l )  = 0, then v(rl(tl)) = 0, and using 
(2.43) (with t2 replacing ck) we see that there are numbers sl,  tl < s2 < t2, sl 
arbitrarily close to tl, such that V(rl(Sl)) < 0. Obviously, we can also choose 
such an s2 if v(~/ (q))  < 0. In fact, our previous remarks and the fact that 
r/ is strictly increasing imply that there exists 5 > 0 with v ( t r ) <  0 for all 
o- E (r / ( t l ) ,  t /(t l)  + 51]. If  v'(t2) < 0, then (2.40) implies that v(~/(t2)) > 0. 
I f  v'(t2) = 0, then (2.40) implies v(r/(t2)) = 0, and (2.44) (with t2 replacing 
dk) shows that there are numbers s2, t2 < s2 < t2, s2 arbitrarily close to t2, 
with v(r/(s2)) > 0. Of  course, such an s2 also exists if v(~/(t2)) > 0. In fact, 
just as above there exists 52 > 0 with v ( a )  > 0 for all tr ~ [~/(t2) - 52, r/(t2)). 
We can assume that tl < Sl <s2 <t2, and our assumptions about J7 imply that 
r /( t l)  < r/(s2) < /'/(s 2) < r/(t2). 

It follows that an equivalence class of  K is contained in (~/(Sl), ~/(s2)) 
and hence not contained in (r/(t2), t2]. On the other hand, the only equiva- 
lence class of  K which intersects (r/(t2), t2] and not ( t / ( t l ) ,  t2] is the equiva- 
lence class containing t2. Thus, we conclude that p ( f i )  _/-t(t2). Since p is 
decreasing on K and v is periodic, we conclude that p is constant on K. 

We now claim that if v('c) = 0, then v'( 'r) :r 0. To see this, let [t2, t2] be 
the largest interval containing z such that v(s) = 0 for all s ~ [q, t2]. Possibly 
tl = t2 = r. We assume that v'(z) = 0 and obtain a contradiction. We know 
that there exists 5 > 0 with v(t) ~ 0 for all t ~ [q - 5, t~) u (t2, t2 + 5]. For 
definiteness, we assume that v ( t ) >  0 on [ t l -  5, tl),  and we select to ~ K, 
t o < q ,  with v(t)>O for t o < t < t l .  We know that v(t) =v'(t) = 0  for 
tl <- t ____ t2, so the same argument used in the proof  that p is decreasing on 
K shows that there exists 52 > 0 with v(o-) < 0 for t/(to) < a -5 q(to) + ill, 
v(a) > 0 for t / (q)  - 5 1  --- a < r/(tl), and v(a) :# 0 for /'/(t2) < O" N r/(t2) +51. 
It follows that there is an equivalence class L1 of zeros of  v(t) which is 
contained in (r/(to) + S a ,  ~/(tl) - 5 )  and that [t/(tl), r/(t2)] = L 2  is an 
equivalence class of  zeros of  v. Proposition 2.1 implies that t /(t  1) < t 1, and 
we know that v(tl(t)) = 0  for q__<t---t2. Since v(t)>O for t o < t < q ,  it 
follows that r / (q)  _<_ to and hence t/(t) ___ to for tl -< t ____ t2. We also know that 
r/(to) < t/(tl)  < t/(t2), so L 1 and L 2 are both contained in (~(to),  to] and are 
disjoint from (~/(t2), t2]. On the other hand, [q,  t2] is the only equivalence 
class of  zeros of  v(t) which intersects (t/(t2), t2] but does not intersect 
(t/(to), to]. We conclude that p ( t  o) - - -p ( t2 )+  1, which contradicts the fact 
that /x is constant on K. [] 

Remark 2.2. It is tempting to try to prove a more general version of  Lemma 2.5 
by giving an analogue of I_emma 2.4 in which wz(t) (w~ as in Lemma 2.5) 
replaces x'(t). Specifically, if x(t) satisfies (2.1) e for all t E • and x(t) is 
bounded, one would hope to prove, under appropriate assumptions on f and 
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r, that there does not exist to with w~(tlJ(to)) = 0 for all j __> 0 (unless wz(t) 
is a constant). If  r(u) is constant and f ' ( u )  < 0 for all u, an argument as 
in Lemma 2.4 can be given, but for general r, the argument in Lemma 2.4 
fails. Of  course, if one knew x( t )  to be real-analytic, there would be no prob- 
lem, but even i f f  and r are real analytic, it is not known whether x( t )  is real- 
analytic. Results and techniques in [42] are not directly applicable. 

With the aid of Lemma 2.5, we can extend to the case of  state-dependent 
time lags some unpublished results which have been obtained by MALLET- 
PARET & SELL for the case of  a constant time lag. 

Theorem 2.6. Assume that e > 0 and that x ( t ) is a nonconstant periodic solution 
of (2.1)e with -[3 < x( t )  < o~ for all t, where o~ > 0 and fl > O. Assume that 
f : ( - f l ,  o 0 ~ R  and r :  ( - f l ,  o 0 ~ R  are C 1 maps with f ( O ) = 0 ,  r ( 0 ) = 1 ,  
f ' ( u )  < 0 and r(u)  >_ O for all u ~ ( - f l ,  ~). I f  tl(t) = t - r ( x ( t ) ) ,  assume that 
tl '(t) >O for aU t. (Theorem 2.5 implies that if r is in C 2 and r"(u)  <=D(r'(u)) 2 
for all u~ [-[3, o~) and e -1 > D, then tl '(t)  >O for all t.) Let p denote the 
minimal period of x( t )  and (using Corollary 2.3) let q j , j  ~ Z, denote the zeros 
of x ( t ) ,  labelled consecutively. I f  m is a positive integer chosen so that 
qm - qo = P, then m = 2. Furthermore, if  q and 7 t are consecutive zeros of x ( t ) ,  
there exists exactly one t such that q < t < 71 and x" ( t ) = O. 

Proof.  If  q and ~ are consecutive zeros of  x( t ) ,  Corollary 2.3 implies that 
p > 71 - q, x ' (q )  . 0 and x'(71) =~ 0. For definiteness, we assume that x( t )  > 0 
for q<t<71,  so x ' ( q ) > 0 ,  and x ' (71)<0.  We claim that there exists a 
unique t ~ (q, 71) such that x '  (t) = 0. For suppose not. Corollary 2.2 implies that 
if x ' ( t )  = 0, then x"( t )  :I: 0, so x ' ( t )  = 0 has finitely many solutions t ~ (q, 71). 
Let tj, 1 <=j <= n, denote the complete set of  solutions of x ' ( t ) = 0  with 
t E (q, 71) ; and for notational convenience write to = q and tn+l = ?/. We can 
assume that tj < .tj+ 1 for 0 __<j =< n; because x"( t )  . 0 whenever x ' ( t )  = 0, we 
know that ( - 1 ) J x ' ( t )  > 0  for t~ (tj, tj+l) and 0____j<n and n is odd. 

Because ~ - q  < p ,  Lemma2.5 implies that the curve t ~ R ( t ) =  ( x ( t ) , x ' ( t ) ) ,  
q < t < 71, has no self-intersections. We now employ a simple geometrical 
argument to obtain a contradiction from this fact. The reader may find draw- 
ing a picture helpful at this point. Let Fj denote the arc given by t ~ R ( t )  for 
tj<_t<=tj+~, O < j < n ,  and note that Fj lies in the first quadrant of  the 
(x, x ')-plane for j even and in the fourth quadrant for j odd. Because 
x ' ( t )  < 0 for t 1 = t ___< t2, it follows that x(t2) < X(tl). Since F 2 does not inter- 
sect F 0 and both arcs lie in the first quadrant, it follows that x(t3) < X(tl) : 
otherwise F 2 would intersect F o. We also know that x(t2) < x(t3), because 
x ' ( t )  > 0 for t2 < t < t 3. We now repeat the argument but use the arcs/ '1 and 
F3. F1 and F3 lie in the fourth quadrant and x(t2) < x(t3) < X(tl), so F3 
must lie inside the region bounded by the x-axis an d / " i :  otherwise F 3 would 
intersect F1. In particular, this implies that x(t2) < x(t4) < x(t3). Continuing 
in this way, we eventually find that x(t2) < x(tn) < x ( q ) .  However, x(tn+l) = 0 
and x ' ( t~+l )<  0, so the arc F~+I, which lies in the fourth quadrant, 
necessarily intersects the arc FI,  a contradiction. 

Let zj ~ (qj, qj+l) be the unique t e (qj, qj+l) such that x ' ( t )  = 0. For 
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definiteness, assume that  x( t )  > 0 for q1 < t < q2. Because x( t )  is periodic of  
minimal period p, there exists k => 1 such that  q2k+l - q l  = P ;  to complete the 
proof,  we must  show that  k = 1. We assume that  k > 1 and obtain a contradic- 
tion. Note that  Lemma 2.5 implies that  R(t)  = (x ( t ) ,  x ' ( t ) ) ,  ql <= t <___ qzk+l, 
gives a simple, closed Jordan curve in the (x, x ' ) -p lane .  Furthermore (under 
the assumption that  x( t )  > 0 for qa < t < q2), our results show that R(t)  lies 
in the first quadrant  for ql < t < r~, in the fourth quadrant  for T1 < t < qz, 
in the third quadrant  for q2 < t <T2, in the second quadrant  for ~2 < t < q3, 
and then cycles around again as t goes f rom q3 to qs, etc. I f  Ix'(q3)t < Ix'(q~)I, 
one can see (because R(t )  does not intersect itself for ql-< t < q2~+~) that  
]x'(qj+2)[ < lx'(qj) l and [x(rj+2)[ < ]x(rj)[ for 1 < j  ____ 2 k -  1. This implies that  
Ix'(q2k+l)[ < ] x ' ( q l ) [  and contradicts periodicity. A similar argument applies 
if ]x'(q3)[ > [x ' (ql ) [ ,  so we obtain a contradiction if k >  1. [] 
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