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Abstract

Let C be a closed cone with nonempty interior int(C) in a finite dimensional Banach space X. We consider
linear maps f : X → X such that f (int(C)) ⊂ int(C) and f has no eigenvector in int(C). For q ∈ C∗, with
q(x) > 0 ∀x ∈ C\{0} we define T (x) = f (x)

q(f (x)) and !q = {x ∈ C|q(x) = 1}. Let ri(!q) denote the relative
interior of !q . We are interested in the omega limit set ω(x; T ) of x ∈ ri(!q) under T. We prove that the
convex hull co(ω(x; T )) ⊂ !!q , and if C is polyhedral we also show that ω(x; T ) is finite. Thus if C is
polyhedral there is a face of C such that the orbit of any point in the interior of C under iterates of f approaches
that face after scaling.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let D be a bounded open convex set in a finite dimensional real Banach space X. D can
be given a metric d called Hilbert’s metric with the aid of cross ratios (see [12]). Assume that
f : D → D is nonexpansive with respect to d . If in addition D is strictly convex and f has no
fixed point in D, then Beardon [4] showed that there exists a z ∈ !D such that ‖f k(x) − z‖ → 0
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as k → ∞ for all x ∈ D (actually Beardon assumes that d(f (x), f (y)) < d(x, y) but later work
(see [12]) has shown that this assumption is not necessary). This result is an exact analogue for
Hilbert’s metric of the classical Denjoy–Wolff theorem for fixed point free analytic maps of the
unit disc into itself. Further work in this direction can be found in [3,11,12].

Unfortunately, in almost all applications in analysis of which we are aware (see [5,13,15] for
example) the set D is not strictly convex, and simple examples show that in this case the direct
generalization of Beardon’s theorem fails. Karlsson and Noskov [12] have considered the case in
which D may not be strictly convex. If f has no fixed point in D, then for any x ∈ D, there must
exist a point z in the omega limit set (see Section 2 for definitions) of x such that for any other
point y in the omega limit set, the line segment connecting z and y lies in the boundary of D.
This result raises the following question. For a Hilbert metric nonexpansive map f : D → D, can
there exist a point x which has an omega limit set which is not contained in a face of the boundary
of cl(D)? Nussbaum has conjectured that the convex hull of the omega limit set ω(x; f ) of any
point x ∈ D under f will be contained entirely in the boundary !D, at least for many important
classes of functions from analysis (see [16] for further remarks). Karlsson has proposed a similar
conjecture by e-mail communication in 2004.

Let C be a closed cone in X. An alternative formulation of Hilbert’s metric can be given
on the interior of C, denoted int(C). In this formulation, we have a pseudo-metric d, called
Hilbert’s projective metric on int(C), which is invariant under scaling of the vectors involved. Let
q : C → R be a continuous, homogeneous of degree one map with q(x) > 0 for all x ∈ C\{0}
and define !q = {x ∈ C|q(x) = 1}. Hilbert’s projective metric restricted to the relative interior
of !q (defined to be ri(!q) = !q ∩ int(C)) is in fact a metric, and if !q is convex then this metric
is the same as the Hilbert metric obtained using cross ratios. For the problems dealt with in this
paper, we typically choose q to be an element of the dual cone C∗ with the property that q(x) > 0
for all x ∈ C\{0}. For finite dimensional cones, this poses no problems. However, such a linear
functional may not exist when C is an infinite dimensional cone.

If f : X → X is homogeneous of degree one, leaves int(C) invariant, and f preserves the
ordering induced by the cone C on X, then it is known that f is nonexpansive in Hilbert’s
projective metric on int(C) [15, Prop. 1.5]. This fact gives us an obvious place to look for examples
of maps which are nonexpansive with respect to Hilbert’s metric. In order to convert between the
two approaches to Hilbert’s metric, we define the map T by T (x) := f (x)/q(f (x)) which maps
ri(!q) → ri(!q), and is nonexpansive with respect to Hilbert’s metric. Note that T has a fixed
point in ri(!q) if and only if f has an eigenvector in int(C).

In a paper by Akian et al. [1], the authors consider polyhedral cones C and continuous maps
f : C → C which are order-preserving and subhomogeneous (see Section 2 for definitions). If
x ∈ C and {f k(x)|k ! 0} is bounded in norm it is proved that ∃p = p(x) and ξ = ξ(x) such that
‖f kp(x) − ξ‖ → 0 as k → ∞. In particular the omega limit set ω(x; f ) is finite. If in addition
f (int(C)) ⊆ int(C), x ∈ int(C) and f has no fixed points in int(C) the result of [1] is used in
[16] to show that ω(x; f ) lies in a single component of C (again see Section 2 for definitions) and
co(ω(x; f )) ⊆ !C. Thus this situation is reasonably well understood. However, if {f k(x)|k ! 0}
is unbounded in norm, the results of [1] give no information about ω(x; T ), where T is the scaled
version of f , T (y) = f (y)/q(f (y)).

In this paper we shall consider Hilbert metric nonexpansive maps arising from linear maps
which are order-preserving and leave int(C) invariant. The iterates of such maps need not be
bounded even if they have spectral radius one. In Section 2 of this paper we review some relevant
background material and prove some general results about order-preserving, homogeneous of
degree one maps f : C → C. In Section 3 we prove that for a Hilbert metric nonexpansive map
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T arising from scaling a linear map f : int(C) → int(C) in the manner described above, either
T has a fixed point in ri(!q) or the convex hull of the omega limit set of any point x ∈ ri(!q),
co(ω(x; T )), is contained in the boundary of !q . In the case where !q is polyhedral, we show
that ω(x; T ) is also finite.

The case we are considering is really part of linear Perron–Frobenius theory on general finite
dimensional cones. It is striking that the elementary questions we ask seem not to have been
previously addressed.

2. Background material

In this section we collect some needed background material. By a closed cone C in a real
Banach space (X, ‖ · ‖) we shall mean a closed, convex set in X such that (a) λC ⊆ C for all
λ ! 0 and (b) C ∩ (−C) = {0}. A closed, convex set C is called a wedge if (a) holds but (b)
possibly fails. As usual, X∗ will denote the dual of X; and we shall always define C∗ ⊆ X∗ by

C∗ = {θ ∈ X∗|θ(x) ! 0 for all x ∈ C}. (1)

C∗ is always a wedge, and if the closed linear span of C equals X (in which case C is called
total), C∗ is a closed cone.

A closed cone C in a Banach space (X, ‖ · ‖) induces a partial ordering "C by x "C y if and
only if y − x ∈ C. If the context is clear, we shall write " instead of "C . If C is a closed cone
in a Banach space X and Y , the linear span of C, is finite dimensional, we say that C is finite
dimensional and we define dim(C) = dim(Y ). In this case it is easy to show that intY (C), the
interior of C as a subset of Y , is nonempty. In general, a closed cone C in a Banach space X

is called normal if there exists a constant M such that ‖x‖ " M‖y‖ whenever 0 " x " y. It is
known [9,19] that every closed, finite dimensional cone is normal.

If C is a closed cone in a Banach space (X, ‖ · ‖), x ∈ C\{0} and y ∈ X, we shall say that x

dominates y (in the partial ordering from C) if there exists β ∈ R with βx ! y. If x, y ∈ C\{0},
we shall say that x and y are comparable (in the partial ordering from C) and we shall write x ∼ y

if x dominates y and y dominates x. Comparability gives an equivalence relation on C\{0}; and
for u ∈ C\{0}, we shall call {x ∈ C|x ∼ u} the component of C containing u and we shall write

Cu = {x ∈ C\{0}|x ∼ u}. (2)

It is easy to see that Cu is convex and λCu = Cu for all λ > 0. If int(C) /= ∅ and u ∈ int(C), it is
clear that Cu = int(C). If C is a closed, normal cone in (X, ‖ · ‖), u ∈ C\{0} and Xu is a vector
space defined by

Xu = {x ∈ X|∃a > 0 with − au " x " au}, (3)

then it is well known see [9,19,21] and references to the literature on p. 494 of [7] that with a
norm ‖x‖u defined by

‖x‖u = inf{a > 0| − au " x " au}. (4)

(Xu, ‖ · ‖u) is a Banach space and Cu is the interior of C ∩ Xu in (Xu, ‖ · ‖u). If X is finite
dimensional, Xu is the linear span of Cu, ‖ · ‖u and ‖ · ‖ are equivalent norms on Xu and Cu is
the interior of C ∩ Xu in Xu.

If C is a closed cone in a Banach space (X, ‖ · ‖), x, y ∈ C\{0} and x and y are comparable,
we shall follow Bushell’s notation [5] and define

m(y/x; C) := sup{a ! 0|ax " y} (5)
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and

M(y/x; C) := inf{b ! 0|y " bx}. (6)

If x, y ∈ C\{0} are comparable, α := m(y/x; C), β := M(y/x; C), we define Hilbert’s pro-
jective metric d(x, y; C) by

d(x, y; C) = log(β/α). (7)

If it is clear what cone is referred to, we shall write M(y/x), m(y/x) and d(x, y) instead of
M(y/x; C), m(y/x; C) and d(x, y; C). If u ∈ C\{0} and x, y, z ∈ Cu, then (a) 0 " d(x, y) =
d(y, x), (b) d(x, z) " d(x, y) + d(y, z) and (c) d(x, y) = 0 if and only if y = tx for some t > 0.
It follows that if q : Cu → (0,∞) is a continuous map which is homogeneous of degree 1 (so
q(tx) = tq(x) for all t > 0 and all x ∈ Cu) and if Sq is defined by

Sq = {x ∈ Cu|q(x) = 1}, (8)

then (Sq, d) is a metric space. If C is also normal, it is known that (Sq, d) is a complete metric
space and the topology on (Sq, d) is the same as the topology induced by the norm on X: see
Chapter 1 of [15] and p. 494 of [7] for references to the literature concerning this theorem. We
shall be interested in maps T : Sq → Sq such that d(T x, T y) " d(x, y) for all x, y ∈ Sq , and we
shall call such maps nonexpansive with respect to d .

A closed cone in a finite dimensional Banach space X is called polyhedral if there exist
θ1, θ2, . . . , θN ∈ X∗ such that

C = {x ∈ X|θj (x) ! 0 for 1 " j " N}. (9)

A face of a polyhedral cone C is a set F = {x ∈ C|ϕ(x) = 0}, where ϕ ∈ C∗. If dim(C) = n

and dim(F ) = n − 1, F is called a facet of C. It is known (see [20, Section 8.4]) that if C

is a closed polyhedral cone with nonempty interior in X and C has N facets, then there exist
θi ∈ C∗\{0}, 1 " i " N , such that Eq. (9) holds and such that each θi defines a facet of C.

If C is a closed cone in a Banach space X, " ⊆ C and D is a closed cone in a Banach space
Y , a map f : " → D is called order-preserving (with respect to the partial orders on C and
D) if f (x) " f (y) whenever x, y ∈ " and x " y. If t" ⊆ " for all t > 0, f is called homo-
geneous of degree 1 if f (tx) = tf (x) for all x ∈ " and t > 0 and f is called subhomogeneous
if tf (x) " f (tx) for all 0 < t < 1. Our main interest is in the case that " = C or " = Cu for
some u ∈ C\{0} and D = C or D = [0,∞). If u ∈ C\{0} and q : Cu → (0,∞) is continuous
and homogeneous of degree one, S := {x ∈ Cu|q(x) = 1} and f : Cu → Cu is homogeneous of
degree one and order-preserving, one can define T : S → S by T (x) = f (x)/q(f (x)), and it is
easy to verify (see Chapter 1 of [15]) that T is nonexpansive with respect to d. Furthermore, if
f : Cu → C is homogeneous of degree one, order-preserving and f (x) ∈ Cu for some x ∈ Cu,
then f (y) ∈ Cu for all y ∈ Cu.

Let C be a closed cone in a finite dimensional Banach space X and q : C → R be a continuous
map which is homogeneous of degree one and satisfies q(x) > 0 for all x ∈ C\{0}, a simple
continuity and compactness argument implies that there are positive constants c1 and c2 with

c1‖x‖ " q(x) " c2‖x‖ for all x ∈ C. (10)

If C is a closed, finite dimensional cone, it is well known that there exists θ ∈ C∗ and positive
constants c1 and c2 with

c1‖x‖ " θ(x) " c2‖x‖ for all x ∈ C (11)
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and in this case we shall take q = θ ∈ C∗, where θ satisfies Eq. (11). In infinite dimensions, there
may not exist θ ∈ C∗ which satisfies Eq. (11), and it may be necessary (see [15] or [16]) to take
q(x) = ‖x‖.

Lemma 1. Let C be a closed cone in a finite dimensional Banach space (X, ‖ · ‖) and q : C →
[0,∞) a continuous map which is homogeneous of degree one and satisfies q(x) > 0 for x ∈
C\{0}. Define !q := {x ∈ C|q(x) = 1}. Assume that 〈xk|k ! 1〉 ⊆ !q and 〈yk|k ! 1〉 ⊆ !q are
sequences in !q such that xk and yk are comparable for all k ! 1 and d(xk, yk) " R < ∞ for all
k ! 1. If limk→∞ ‖xk − ζ‖ = 0 and limk→∞ ‖yk − η‖ = 0, then ζ and η are comparable and
d(ζ, η) " R.

Proof. There is a constant M such that whenever 0 " x " y

q(x) " Mq(y). (12)

If Eq. (12) were not satisfied there would exist points χk " ψk in C\{0} with q(ψk)/q(χk) → 0.
By the homogeneity of q, we can assume that q(ψk) = 1. Using Eq. (10) we see that there are
positive constants c1 and c2 with c1‖x‖ " q(x) " c2‖x‖ for allx ∈ C. If we defineuk = χk/q(χk)

and vk = ψk/q(χk), we conclude that c1‖uk‖ " 1 " c2‖uk‖ and ‖vk‖ → 0. By taking a subse-
quence we can assume that uk → u ∈ C\{0}, vk → 0 and 0 − u = −u ∈ C\{0}. Since u /= 0,
we have contradicted the definition of a cone. Thus Eq. (12) holds.

There exist αk > 0 and βk > 0 with αkxk " yk " βkxk and log(βk/αk) " R. Applying q and
using Eq. (12) we see that

αk = αkq(xk) " Mq(yk) = M and 1 = q(yk) " Mq(βkxk) = Mβk.

Since βk/αk " exp(R) we deduce that

βk " αk exp(R) " M exp(R) and
(

1
αk

)
"

(
1
βk

)
exp(R) " M exp(R).

It follows that by taking a subsequence we can assume that αk → α > 0 and βk → β, and we
deduce that αζ " η " βζ , with log(β/α) " R. #

If A is a subset of a Banach space (X, ‖ · ‖), cl(A) will denote the closure of A in the norm
topology, and co(A) will denote the convex hull of A. If D ⊆ X, T : D → D is a map and x ∈ D

we shall write

γ (x; T ) = {T k(x)|k ! 0}. (13)

We are interested in the “omega limit set of x under T ”, ω(x; T ) defined by

ω(x; T ) =
⋂

m!0

cl(γ (T m(x); T )). (14)

As is well known, ξ ∈ ω(x; T ) if and only if there is a sequence of integers ki ↑ ∞ with
‖T ki (x) − ξ‖ → 0 as i → ∞.

The following theorem will be crucial for the main results of this paper. Note that assertion
(a) is restatement of results which appear in Theorems 4.1 and 4.2 on p. 114 of [15]. For more
details see [16].

Theorem 1. Let C be a closed cone with nonempty interior, int(C), in a finite dimen-
sional Banach space (X, ‖ · ‖). Let q ∈ C∗ be such that q(x) > 0 for all x ∈ C\{0}. Define
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!q := {x ∈ C|q(x) = 1} and ri(!q) := !q ∩ int(C). Assume that T : ri(!q) → ri(!q) is non-
expansive with respect to Hilbert’s projective metric d and that T has no fixed points in ri(!q).

Then the following hold:

(a) For every x ∈ ri(!q),ω(x; T ) ⊆ !C.

(b) If x, y ∈ ri(!q), then every element ζ ∈ ω(x; T ) is comparable to an element η ∈ ω(y; T ).

(c) If x ∈ ri(!q), every element ξ ∈ co(
⋃

z∈ri(!q ) ω(z; T )) is comparable to an element ζ ∈
co(ω(x; T )).

(d) If there exists x ∈ ri(!q) and ζ ∈ ω(x; T ) such that T has a continuous extension T :
ri(!q) ∪ {ζ } → !q then ζ and T (ζ ) are comparable and d(ζ, T (ζ )) " d(x, T x).

Proof. As stated above, a proof of assertion (a) can be found in Theorems 4.1 and 4.2 of [15] on
p. 114.

Suppose that x, y ∈ ri(!q) and ζ ∈ ω(x; T ). By definition, there exists a sequence ki → ∞
with ‖T ki (x) − ζ‖ → 0. Because cl(γ (y; T )) is compact, by taking a further subsequence, which
we label the same, we can assume that there exists η ∈ C and ‖T ki (y) − η‖ → 0. Because T is
nonexpansive with respect to d , d(T ki (x), T ki (y)) " d(x, y). Lemma 1 now implies that ζ is
comparable to η and d(ζ, η) " d(x, y).

For ζ ∈ ω(x; T ) there exists a sequence ki → ∞ with ‖T ki (x) − ζ‖ → 0 as i → ∞. If T

has a continuous extension T : ri(!q) ∪ {ζ } → !q , then ‖T ki (T (x)) − T (ζ )‖ → 0 as i → ∞,
so T (ζ ) ∈ ω(x; T ). By the argument given above ζ and T (ζ ) are comparable and d(ζ, T (ζ )) "
d(x, T x).

Suppose ξ = ∑N
j=1 λjηj where each λj > 0,

∑N
j=1 λj = 1, and each ηj ∈ ω(yj ; T ) for some

yj ∈ ri(!q). We have proved that there exist ζj ∈ ω(x; T ) such that ζj is comparable to ηj for
each 1 " j " N . It follows that ξ = ∑N

j=1 λj ζj is comparable to
∑N

j=1 λjηj . #

Remark. We shall actually be considering a special case of Theorem 1: Suppose that f : C → C

is continuous, order-preserving, homogeneous of degree one and f : int(C) → int(C). We know
then that T (x) = f (x)/q(f (x)) defines a map of ri(!q) to ri(!q) which is nonexpansive with
respect to d. If G = {x ∈ !q |f (x) /= 0}, it is clear from the definition of T that T extends to a
continuous map T : G → !q . Generally, the question of when a Hilbert metric nonexpansive map
extends continuously to the boundary of its domain is critical in the problems we are studying.
Although we will not use it in this paper, the following proposition implies that if x ∈ ri(!q) and
ζ ∈ ω(x; T ) then ζ ∈ G.

Proposition 1. Let C, X, q, and !q be as in Theorem 1 and assume that f : C → C is continuous,
order-preserving and homogeneous of degree one. Assume that f (int(C)) ⊆ int(C) and define
T : ri(!q) → ri(!q) by T (x) = f (x)/q(f (x)). If x ∈ ri(!q) and ζ ∈ ω(x; T ) then f (ζ ) /= 0.

Proof. Choose c > 0 such that cx " f (x). Since f is order-preserving, cf k(x) " f k+1(x). So
using Eq. (12) (which we may do by the arguments given in the proof of Theorem 1) we get that

cq(f k(x)) " Mq(f k+1(x))

and hence

q(f k+1(x))

q(f k(x))
! c

M
for all k ! 0.



B. Lins, R. Nussbaum / Linear Algebra and its Applications 416 (2006) 615–626 621

This implies that

f

(
f ki (x)

q(f ki (x))

)
= f (T ki (x))!0

for any subsequence ki → ∞. So if ζ ∈ ω(x; T ) then f (ζ ) /= 0. #

If C is a closed, two dimensional cone, all of our questions become trivial.

Proposition 2. Let C be a closed, two dimensional cone in a two dimensional Banach space X

and let q : C → [0,∞) be a continuous map which is homogeneous of degree one and satisfies
q(x) > 0 for all x ∈ C\{0}. Let !q := {x ∈ C|q(x) = 1} and ri(!q) := int(C) ∩ !q . Assume
that T : ri(!q) → ri(!q) is a continuous map which has no fixed points in ri(!q). There exist
points v1, v2 ∈ !C ∩ !q such that !q = ri(!q) ∪ {v1, v2} and either (a) T k(x) → v1 as k → ∞
for all x ∈ ri(!q) or (b) T k(x) → v2 as k → ∞ for all x ∈ ri(!q).

Proof. It is easy to verify [6] that there exist linearly independent vectors v1, v2 ∈ X such that
C = {λ1v1 + λ2v2|λ1 and λ2 ! 0} and int(C) = {λ1v1 + λ2v2|λ1 and λ2 > 0}. By homogeneity
of q, we can assume that q(v1) = q(v2) = 1. There exists a homeomorphism # : [0, 1] → !q

defined by #(t) = (1−t)v1+tv2
q((1−t)v1+tv2)

, and #((0, 1)) = ri(!q). If we define T̂ : (0, 1) → (0, 1) by

T̂ = (#−1 ◦ T ◦ #)(t),

it is easy to see that T̂ k(t) → 0 for all t ∈ (0, 1) if and only if T k(x) → v1 for all x ∈ ri(!q).
Similarly T̂ k(t) → 1 for all t ∈ (0, 1) if and only if T k(x) → v2 for all x ∈ ri(!q). Because T has
no fixed points in ri(!q), T̂ k has no fixed points in (0,1). The intermediate value theorem implies
that either (a) T̂ (t) < t for all t ∈ (0, 1) or (b) T̂ (t) > t for all t ∈ (0, 1). In case (a) we deduce
that for 0 < t < 1, 〈T̂ k(t)|k ! 0〉 is a strictly decreasing sequence of real numbers in (0, 1). It
follows that there exists τ ∈ [0, 1) so that limk→∞ |T̂ k(t) − τ | = 0. Thus T̂ (τ ) = τ , and if τ > 0,
T̂ has a fixed point in (0,1) which is a contradiction our. Thus, in case (a), limk→∞ T k(x) = v1
for all x ∈ ri(!q). An analogous argument shows that in case (b) limk→∞ T k(x) = v2 for all
x ∈ ri(!q). #

3. Hilbert metric nonexpansive maps from linear maps

For any closed cone C with nonempty interior in a finite dimensional Banach space (X, ‖ · ‖),
we may choose a linear functional q in the dual cone C∗ with the property that q(x) > 0 for all x ∈
C\{0}. We define !q := {x ∈ C|q(x) = 1} and ri(!q) := !q ∩ int(C). As mentioned before, if
f : C → C is continuous, order-preserving, homogeneous of degree one and f (int(C)) ⊆ int(C),
then the map T : ri(!q) → ri(!q) defined by T (x) = f (x)/q(f (x)) is a nonexpansive map in
the Hilbert metric on ri(!q) (see Chapter 1 of [15]). In particular, if f is a linear, it will give
rise to a map T : ri(!q) → ri(!q) which is nonexpansive in Hilbert’s metric. In this section
we will collect some results relating to the omega limit sets of points x ∈ ri(!q) under a map
T (x) = f (x)/q(f (x)) where f is linear.

Theorem 2. Let C be any closed polyhedral cone with nonempty interior in a finite dimen-
sional Banach space X. Suppose that f : C → C is a linear map such that f (int(C)) ⊆ int(C).

Let q ∈ C∗ be such that q(x) > 0 for all x ∈ C\{0}, and define !q and ri(!q) as before. Let
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T (x) = f (x)/q(f (x)). If T has no fixed points in ri(!q), then for any x ∈ ri(!q), ω(x; T ) is a
finite subset of Cu ∩ !q for some u ∈ !C, and Cu does not depend on x.

Before we can prove this theorem, we need the following lemma. For completeness we give a
proof, although Bit-Shun Tam has pointed out that this lemma can be obtained as a corollary of
Theorem 3.6 in [8]. For comparison, see Theorem 9.1 of [17].

Lemma 2. If A /= 0 is a nonnegative n × n matrix, with spectral radius r(A) = 1, then there is
a positive integer p and a nonnegative integer m such that limk→∞ Akp

km = L exists, and L is a
nonnegative matrix not equal to zero.

Proof. If A is irreducible and the spectral radius r(A) = 1, then it is well known that every
eigenvalue λ of A with |λ| = r(A) = 1 is a root of unity [10, Cor 8.4.10]. In fact this is true for
any nonnegative matrix with spectral radius r(A) = 1. To see this, it suffices to note that A is
conjugate via a permutation matrix to its Perron normal form, which is a block upper triangular
matrix with irreducible blocks along the diagonal ([14, p. 142]). Therefore, there is a p such that
the only eigenvalue of Ap with absolute value 1 is 1. Thus the Jordan form J = S−1ApS of Ap

will consist of Jordan blocks corresponding to the eigenvalue 1, and Jordan blocks corresponding
to eigenvalues with modulus strictly less than 1.

If Jq(1) is a q × q Jordan block of J corresponding to the eigenvalue 1, then Jq(1) = Iq + Nq

where Iq is the q × q identity matrix, and Nq is the nilpotent matrix with entries νij = 1 if
j − i = 1 and νij = 0 otherwise. The binomial theorem gives

J k
q (1) = Iq +

k∑

t=1

(
k

t

)
Nt

q

and Nt
q is the matrix with entries ν(t)

ij = 1 if j − i = t ; ν(t)
ij = 0 otherwise. In particular, if t >

q − 1, Nt
q = 0. Thus

lim
k→∞

J k
q (1)

k(q−1)
= lim

k→∞

(q−1)∑

t=1

1
k(q−1)

(
k

t

)
Nt

q = 1
(q − 1)!N

(q−1)
q .

Thus if q is the size of the largest Jordan block in J corresponding to the eigenvalue 1, it
follows that if Ji is any Jordan block of J which either corresponds to the eigenvalue 1, but has
size less than q, or corresponds to an eigenvalue with modulus less than 1, we have

lim
k→∞

J k
i

k(q−1)
= 0.

This implies that

lim
k→∞

J k = J∞

exists and is not zero. Thus,

lim
k→∞

Akp

k(q−1)
= lim

k→∞
S

(
J k

k(q−1)

)
S−1 = SJ∞S−1 = L

exists. Then since each Akp is a nonnegative matrix, we conclude that L must also be nonnegative,
and since J∞ has a strictly positive norm, L /= 0. #
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Using this lemma, and the results of the previous section, we can now prove Theorem 2.

Proof (of Theorem 2). Since C is a polyhedral cone and q is a linear functional, the set !q is
a convex compact polyhedral set, and thus !q has a finite number of extreme points. Suppose
that ζ1, ζ2, . . . , ζN are the extreme points of !q . If x ∈ ri(!q), there exist λ1, λ2, . . . , λN ! 0
such that x = λ1ζ1 + λ2ζ2 + · · · + λNζN . In fact, we may assume that each λi > 0 for 1 " i "
N . This is because x is in the interior of !q and can therefore be written as a convex com-
bination of the point z = 1

N

∑N
i=1 λi and some other point in !q on the ray from z passing

through x. Furthermore, since f is linear, f (x) = λ1f (ζ1) + λ2f (ζ2) + · · · + λNf (ζN). Since
f : C → C and span{ζ1, ζ2, . . . , ζN } contains C, note that f (ζj ) = ∑N

i=1 aij ζi with each aij !
0. Let A be the N × N matrix defined by A = [aij ]. Let φ : RN → X be the map given by
φ(u1, u2, . . . , uN) = u1ζ1 + u2ζ2 + · · · + uNζN . Using the linearity of φ we can see that if v =
u1ζ1 + u2ζ2 + · · · + uNζN then f (v) = φ(Au) where u = (u1, u2, . . . , uN) ∈ RN . Since v =
φ(u) implies f (v) = φ(Au) it follows that f k(v) = φ(Aku) whenever v = φ(u). In particu-
lar, for our x ∈ ri(!q), f k(x) = φ(Aky) where y = (λ1, λ2, . . . , λN) ∈ Rn. By Lemma 2, there

exists a p and an m such that Akp

kmρ(A)kp
→ L /= 0 as k → ∞. Since φ is continuous, f kp(x)

kmρ(A)kp
=

φ
(

(Akpy)

kmρ(A)kp

)
→ φ(Ly) as k → ∞, and since all entries of y are strictly positive Ly /= 0. It then

follows that T kp(x) → ζ = φ(Ly)/q(φ(Ly)). Since T has no fixed points in the interior and
x ∈ ri(!q), Theorem 1 tells us that ζ ∈ !C ∩ !q . Because T i(x) ∈ ri(!q) for 0 < i " p − 1, the
same argument shows that the sequence 〈T kp+i (x)|k ! 0〉 converges as k → ∞ for all i, 0 <

i " p − 1. Because T kp+i (x) and T kp(x) are comparable for k ! 0, with d(T kp+i (x), T kp(x)) "
d(T i(x), x), Lemma 1 implies that limk→∞ T kp(x) and limk→∞ T kp+i (x) are comparable for
0 < i " p − 1. Also since limk→∞ T kp(x) = limk→∞ T kp+p(x) = ζ , it follows from Theorem
1 that the omega limit set ω(x; T ) consists of at most p points in Cζ ∩ !q . It also follows from
Theorem 1 that for any other y ∈ ri(!q),ω(y; T ) ⊆ Cζ . #

Remark. The number p in the statement of Theorem 2 will always be the order of a cyclic
subgroup of the symmetric group on N elements, where N is the number of extreme points of
!q , see [14].

Remark. Theorem 2 implies that the omega limit set under T of any point on the interior of !q

is finite. This result is not true in general for cones C which are not polyhedral. In fact, if C ⊆ R4

is the cone defined by

C = {x ∈ R4|x1 ! 0, x2
2 + x2

3 " x2
1 , and 0 " x4 " x1}

and f : C → C is the linear map defined by f (x) = Ax where

A =





1 0 0 0
0 a b 0
0 −b a 0
0 0 0 1

2



 ,

where a2 + b2 = 1, and tan−1(b/a)/2! is irrational. Then for x =
(

1, 1
2 , 0, 1

2

)
∈ int(C), the

omega limit set ω(x; f ) contains infinitely many points in !C. If we define ! = {x ∈ C|x1 = 1},
and T : ! → ! by T (x) = f (x)/(f (x)1), then ω(x; T ) will not be finite for x =

(
1, 1

2 , 0, 1
2

)
.
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For an arbitrary closed cone C with nonempty interior in a finite dimensional Banach space
X, and a linear map f : C → C, with f (int(C)) ⊆ int(C), it will not always be the case that the
omega limit sets of points in ri(!q) under the action of the Hilbert metric nonexpansive map T

arising from f are finite. We can, however, prove a weaker result, which tells us that if T has no
fixed points on the interior of !q , then the convex hull of the omega limit set ω(x; T ) will lie in
the boundary of !q . The proof of this result relies on the following observation.

Lemma 3. For an affine map f (x) = Lx + b, where L is linear and order-preserving with respect
to C, b ∈ C, and with q and !q as in Theorem 2, let T (x) = f (x)/q(f (x)). Such a map T

is a convexity-preserving map defined on the set G = {x ∈ !q |f (x) /= 0}. That is, if x ∈ G

is a convex combination of z1, z2, . . . , zk in G, then T (x) will be a convex combination of
T (z1), T (z2), . . . , T (zk).

Proof. For x = λ1z1 + λ2z2 + · · · + λkzk , with λi > 0 and
∑

i λi = 1

T (x) = f (x)

q(f (x))
= Lx + b

q(Lx + b)

= λ1Lz1 + · · · + λkLzk + b

λ1q(Lz1) + · · · + λkq(Lzk) + q(b)

= λ1(Lz1 + b) + · · · + λk(Lzk + b)

λ1q(Lz1 + b) + · · · + λkq(Lzk + b)

= λ1q(Lz1 + b)T (z1) + · · · + λkq(Lzk + b)T (zk)

λ1q(Lz1 + b) + · · · + λkq(Lzk + b)

= µ1T (z1) + µ2T (z2) + · · · + µkT (zk)

with

µi = λiq(Lzi + b)

λ1q(Lz1 + b) + · · · + λkq(Lzk + b)
. #

Remark. For a characterization of convexity-preserving maps on a subset of a vector space see
[2].

Theorem 3. Let C be a closed cone with nonempty interior in a finite dimensional Banach space
X. Let f : X → X be a linear map such that f (int(C)) ⊆ int(C). Let q ∈ C∗ be such that
q(x) > 0 for all x ∈ C\{0} and define !q = {x ∈ C|q(x) = 1} and ri(!q) = !q ∩ int(C). If the
function T defined on !q by T (x) = f (x)/q(f (x)) has no fixed point in ri(!q), then for any
x ∈ ri(!q), co(ω(x; T )) ⊆ !!q := !q\ri(!q).

Proof. We argue by induction on n = dim(X). If n = 1, !q = ri(!q) and T has a fixed point
in ri(!q), so the theorem is vacuously true. If dim(X) = 2, Proposition 2 proves that the the-
orem holds. Assume, for some n > 2, that the theorem is true for dim(X) < n. Let X be a
Banach space with dim(X) = n and let C and f be as in the theorem. If f is not one-to-one,
Y = {f (x)|x ∈ X} satisfies dim(Y ) < n, f (Y ) ⊆ Y and f (int(C)) ⊆ int(C) ∩ Y . By our induc-
tive hypothesis applied to the cone C ∩ Y in Y, co(ω(y; T )) ⊆ !Y (int(C) ∩ Y ) ⊆ !C for all y ∈
int(C) ∩ Y ∩ !q; and since T (x) ∈ int(C) ∩ Y ∩ !q for all x ∈ ri(!q), co(ω(x; T )) ⊆ !!q for
all x ∈ ri(!q).
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Thus we may restrict attention to the case that f is one-to-one. In this case, the map T is
defined continuously on !q . Let us suppose by way of contradiction that there is a point x ∈ ri(!q)

such that co(ω(x; T )) ∩ ri(!q) is nonempty. Let y ∈ co(ω(x; T )) ∩ ri(!q). Thus y is a convex
combination of points in ω(x; T ). By Carathéodory’s theorem (see [18]), we may assume that y

is a convex combination of at most n points z1, z2, . . . , zn ∈ ω(x; T ).
Consider ω(y; T ). By Theorem 1(c), we know that co(ω(y; T )) has a nonempty intersec-

tion with ri(!q). At the same time, we claim that: ω(y; T ) ⊆ co(U) where U = ω(z1; T ) ∪
ω(z2; T ) ∪ · · · ∪ ω(zn; T ). Note that T extends continuously to any point on !!q since f is one-
to-one. Therefore the omega limit sets ω(zi; T ) are well defined. To prove the claim, note that
for each k ! 0, T k(y) = λ

(k)
1 T k(z1) + · · · + λ

(k)
n T k(zn), with each λ(k)

i ! 0, and
∑

i λ
(k)
i = 1, by

Lemma 3. Taking a subsequence, 〈kj 〉, we can arrange for 1 " i " n that T kj (zi) → z′i as j → ∞
and simultaneously λ

(kj )

i → λ′i with each λ′i ! 0 and
∑

i λ
′
i = 1. Thus, each point z′ ∈ ω(y; T )

is a convex combination
∑n

i=1 λ
′
iz

′
i with each z′i ∈ ω(zi; T ), proving the claim.

Let y1 be a point in co(ω(y; T )) ∩ ri(!q), and choose z1
1, z

1
2, . . . , z

1
n ∈ U such that y1 ∈

co({z1
1, z

1
2, . . . , z

1
n}). Note that each point z1

j ∈ ω(zi; T ) for some i. Furthermore, since zi ∈ !!q ,
we know that zi must lie in a component Ci of C which has dimension at most n − 1. Theorem
1(d) implies that T (cl(Ci) ∩ !q) ⊆ cl(Ci) ∩ !q . If Ci contains a fixed point of T then since T is
nonexpansive in the Hilbert metric on Ci , every T -orbit in Ci ∩ !q must remain within a bounded
Hilbert metric distance of that fixed point. On the other hand, if Ci does not contain a fixed point,
then applying Theorem 1(a) to T |Ci∩!q implies that z1

j is contained in a component of C on the
boundary of cl(Ci). Such a component would have to have dimension strictly less than n − 1.

Repeat this process to obtain a sequence of points y1, y2, . . . , yn−2 ∈ ri(!q) with the property
that each yi ∈ co(ω(yi−1; T )) and more importantly yi ∈ co({zi

1, z
i
2, . . . , z

i
n}) where each zi

j is
contained in a component of C with dimension less than n − i or is contained in a component
of C on which T has a fixed point. This means that yn−2 is a point in ri(!q) which is a convex
combination of points zn−2

1 , zn−2
2 , . . . , zn−2

n which all lie in components of C containing fixed
points of T . For each 1 " i " n, let pi be a fixed point in the component which contains zn−2

i .
Suppose that yn−2 = λ1z

n−2
1 + λ2z

n−2
2 + · · · + λnz

n−2
n and let ζ = λ1p1 + λ2p2 + · · · + λnpn.

Observe that ζ is comparable to yn−2 since zn−2
i ∼ pi for all 1 " i " n. Thus ζ ∈ ri(!q). Now,

since T (pi) = pi iff f (pi) = ripi we have

T k(ζ ) = f k(ζ )

q(f k(ζ ))
=

∑
λi r

k
i pi∑

λi r
k
i q(pi)

.

If r = max ri and J = {i|ri = r} then the reader can verify that as k → ∞

T k(ζ ) →
∑

i∈J λipi∑
i∈J λiq(pi)

which is a single point in !q . Since there are no bounded orbits in ri(!q), this limit point must be on
the boundary !!q . However, ifω(ζ ; T ) is a single point, then co(ω(ζ ; T )) ⊆ !!q , a contradiction
by Theorem 1(c). #

Remark. Theorem 3 also applies to maps T (x) = f (x)/q(f (x)) where f : X → X is an affine
map, so long as f (int(C)) ⊆ int(C). The proof of Lemma 2.1 in [15] shows that such a map T is
nonexpansive in Hilbert’s metric on ri(!q).
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