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1. INTRODUCTION 

IF D IS A subset of a Banach space (E, II-II) and f: D + E is a map, f is called nonexpansive 
(with respect to II- 11) if 

IIfW -f(Y)ll 5 IIX - Yll for all x, y E D. 

If D is a compact subset of I?” and the norm is the [,-norm )I. 11, (so llzll, = Cf=, Iz, I for z E F) 
and f: D + D is nonexpansive with respect to II - II,, Akcoglu and Krengel [l] have proved that 
for each x E D there exists a minimal positive integer px = p such that 

lim fkp(x) = q, wherefP(q) = q. (1.1) 
k-m 

Recall that a norm II * II on a finite dimensional Banach space E is called polyhedral if 
(x E E: llxll s 1) is a polyhedron. Equivalently, a norm is polyhedral if there exist continuous 
linear functionals (Pj E E*, 1 5 j I m, such that 

llxll = ,$?-m lcOj(x)l for 1 <j<m. (1.2) 

It is easy to see that the I, norm and the sup norm 11. Ilm (Ilxll, = max{Ix, I: 1 I i 5 n)) on I?’ are 
polyhedral. 

If E is a finite dimensional Banach space with a polyhedral norm 11. )I, D is a compact subset 
of E and f: D + D is a nonexpansive map, Weller [2] has shown that for each x E D, there 
again exists an integer px such that (1.1) holds. 

The original arguments did not give upper bounds for the integer px, x E D. However, 
subsequent work has proved (see [3-l 11) that there exists an integer N, depending only on the 
integer m in equation (1.2), such that px I N for all x E D. In general, the problem of finding 
optimal upper bounds for the integers px appears to be a very difficult combinatorial- 
geometrical question: see [3-9, 121 for a more complete discussion. 

The original motivation for the study of II-nonexpansive maps in [l] was to understand 
nonlinear analogues of diffusion on finite state spaces. However, as discussed in [S], these 
results, for the case of the sup norm and other polyhedral norms, also have applications to 
certain cone mappings and, hence, to a variety of examples and applications in [12-141. These 
ideas also apply to certain autonomous differential equations x’(f) = f(x(t)) (see [S]) and 
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(in work in progress by the author) to certain differential equations x’(t) = f(t, x(t)), where 
f(t, x) is periodic of period T in the t variable. 

If K" denotes the positive orthant in IR”, 

K" = (XE R":xi 2 0 for 1 I is n), 

K” induces a partial ordering by 

(1.3) 

We shall also write 

x5y if and only if y - x E K". (1.4) 

X<Y if and only if x 5 y and x # y. (1.5) 

A mapf: DC IR" + I?" is called “monotonic” or “order-preserving” if x 5 y (x, Y E D) implies 
that f(x) I f(Y). A norm (/ * 11 on IR” is called “monotonic” (on K") if 0 5 x 5 y implies that 
/(XII I 11 yll. The norm will be called “strictly monotonic” on K" if 0 5 x < y implies that 
llx[j < ljYl/. Note that the I, norm is strictly monotonic; the sup norm is monotonic but not 
strictly monotonic. 

Iff: K" + K" is an order-preserving map which is nonexpansive with respect to the I, norm 
and iff(0) = 0, Akcoglu and Krengel [I] have proved that the period p of any periodic point 
7 off satisfies 

p 5 n! (1.6) 

(Recall that q is called a periodic point off iff”(q) = V;I; the minimal positive integerp such that 
fP(q) = v is the period of I?.) Scheutzow [lo] has proved that iff: K" -+ K" is /,-nonexpansive 
and f(0) = 0, then the period p of any periodic point 7 off satisfies 

p 5 lcm(1, 2, . . . , n) = L(n). (1.7) 

(In (1.7), lcm( 1,2, . . . , n) denotes the least common multiple of (j: 1 5 j I n), and we shall 
write L(n) for lcm( 1, 2, . . . , n). Generally, if S is a set of positive integers, Icm(S) is the least 
common multiple of the integers in S.) 

It is known (see [15]) that 

L(n) I exp( 1.03883n) for all n, 

and L(n) is asymptotically dominated by exp(n) (for n large), so the estimate in (1.7) is much 
better than that in (1.6). Nevertheless, L(n) is not a sharp upper bound. In [9, p. 3621 (and also 
in equation (3.1) in Section 3 of this paper) a function p(n) is defined. It is proved in [9] that 
p I p(n) for all n and v(n) < L(n) for n > 2. The function p(n) has been computed for n I 24 
in [9]; and it has been proved that p(n) is an optimal bound for n I 24 in the sense that for each 
n I 24, there exists an I,-nonexpansive, order-preserving map f: K" + K" such that f(0) = 0 
and f has a periodic point of period p(n). In Section 3 of this paper, we shall extend these results 
to the range n 5 32 and discuss the function ~7 more fully. 

Exact asymptotic formulas for p(n) are not known, but estimates in [9] yield 

p(n) 5 &,[[:I) 5 nexp(l.03883[ ;I) and p(n) 5 2” for all n, 

where [x] denotes the greatest integer m 5 x. 
With these preliminaries, we can describe the main theorem of this paper. 
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THEOREM 1.1. Suppose that 11. )I . IS a strictly monotonic norm on K” c R". Assume that 

f: K” + K” is nonexpansive with respect to 1) * 11, f is order-preserving, and f(0) = 0. Then for 

every x E K”, there exists a minimal integer p = px cr q(n) (where q(n) is the function defined 
in [9, p. 3621 and in Section 3 of this paper) such that 

lim fkp(x) = rj 
k-m 

and f”(s) = rl. (1.8) 

Actually the tools used to prove theorem 1.1 provide strong information about the set of pos- 
sible periods p of periodic points of maps f, for f as in theorem 1.1. We shall not pursue this 
observation systematically here, although we shall give a discussion of the case n = 16 at the 
end of Section 3. 

The major difficulty in proving theorem 1.1 will be to prove that there is any finite integer 
p such that (1.8) holds. Of course, if the norm is polyhedral, this follows from our previous 
results, but the norm may even be Euclidean. Even if the norm is polyhedral and monotonic 
(for example, the sup norm), note that we do not obtain the estimatep, 5 p(n) unless the norm 
is strictly monotonic. 

In order to proceed further, we need to recall some notation and some results from [9, lo]. 
The vector space R” is a vector lattice, i.e. if x,y E R”, we define z = x A y, the minimum of 

x and y by 

Z; = min(Xi, Yj), 15i5n. 

Similarly, we can define x v y, the maximum of x and y. If S is a finite collection of vectors 
xj in R”, 1 5 j I k, we define 

z=min(x:xES]= Axj by zi = min{xi:x E Sl. 
j=l 

If A c R", we define V, “the lower semilattice generated by A” to be the smallest closed set V 
such that A c V and such that x A y E I/ for all x, y E I/. If A is finite, V is finite. If V is a 
finite lower semilattice and if T c V is a subset which has an upper bound in V (so there exists 
u E V, u L x for all x E T), then we define 

max(T) = min( w E I/: w 2 x for all x E T ). 
” 

An element x E I/ is called irreducible (with respect to V) if 

x > max(z E I/:x > z]. 
” 

V has a minimal element which is defined to be irreducible. 

Definition 1.1. Suppose that f: D C R" + R" is a map. We shall say that “f has the lower 
semilattice extension property” if whenever x E D is a periodic point of period p, A = A, = 
(fJ(x): 0 5 j < p) and V is the lower semilattice generated by A, f 1 A has an extension 

f V -+ V such that f(y A z) = y(y) A f(z) for all y, z E V. 

Scheutzow [lo] has shown that these concepts are directly relevant to our problem. 
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LEMMA 1 .l. (See [lo].) Letf: K” + K” be an /,-nonexpansive map such thatf(0) = 0. If x is a 
periodic point off of period p, A = (f’(x): 0 5 j < p] and V is the lower semilattice generated 
by A,f(V) c V and 

f(_Y A z) = f(Y) Uf(z) for all y, z E V. 

Thus, iff is as in the lemma, f satisfies the lower semilattice extension property. 
In this notation, Scheutzow has proved the following theorem. 

THEOREM 1.2. (See [lo].) Suppose that f: D c R” + R” is a map which satisfies the lower 
semilattice extension property and that v is a periodic point of period p. Then it follows that 
p divides L(n) = lcm({j: 1 5 j 5 n)). If A = (fj(q): 0 I j < pj, V is the lower semilattice 
generated by A and y E I/ is irreducible, then y is a periodic point off of period q,, I n. If 
I: = (y E I/: y I q and y is irreducible) and q,, denotes the period of y E C and S = {qy : y E C), 
then p divides lcm(S). 

Theorem 1.2 motivates the following definition. 

Definition 1.2. Define d(n) to be the maximal positive integer p such that there exists a map 
f: D c I?” + R” which satisfies the lower semilattice extension property and has a periodic 
point of period p. 

If p(n) is the function previously discussed it is proved in [9] that a(n) I p(n) for all n and 
that a(n) = p(n) for 1 I n I 24. Our previous remarks show px I a(n) 5 p(n) for px as in 
theorem 1.1. Furthermore, it is shown in [9] that there are constraints (see Section 3) on the set 
S in theorem 1.2. 

2. LATTICES AND PERIODIC POINTS 

In this section we shall exploit various ideas connected with homomorphisms of lattices in 
order to prove theorem 1.1. In the end we shall have to restrict attention to the cone K” c R”, 
but many of our lemmas are true in much greater generality and may be of independent interest. 
Thus, we shall initially work in greater generality. 

Recall that a cone C in a Banach space E is a closed, convex subset of E such that tC c C 
for all t 2 0 and C fl (-C) = (0). A cone induces a partial ordering by x I y iffy - x E C. We 
shall writOe x < y if x I y and x # y; and if C has nonempty interior, we shall write x -+ y if 
y-x~C.Ifx,y~Eandthereexistsz~Esuchthatz~xandzryandz~iforeveryi 
such that [ I x and c I y, we shall write 

z=xr\y. 

If x A y exists for every x, y E C, E is called a vector lattice (in the ordering induced by C). It 
is easy to see that there is a smallest element w = x v y such that w L x and w 2 y and 

x+y = (XAY) + (XVY). 

If E is a vector lattice in the ordering from a cone C and A c E, we define V, the lattice 
generated by A, to be the smallest closed set such that A c I/ and such that for all x, y E V, 
x A y E V and x v y E V. Similarly, one defines the lower semilattice generated by A as in 
Section 1. 
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As for the cone K”, a norm II-If on E is called monotonic (in the ordering from C) if 

0 I x I y implies llxll I II y/l; the norm is strictly monotonic if 0 5 x 5 y implies llxll < llyll. 
A map f: D c E -+ E is called order-preserving if x I y, (x, y E D) implies f(x) I f(y). 

If D is a topological space and f: D + D a map and z E D, we shall denote the forward orbit 

of z under f, (f’(z):j 1 O), by y+(z;f) or (iff is obvious) r+(z). 

PROPOSITION 2.1. Let C be a cone in a Banach space E and assume that E is a vector lattice in 
the ordering from C and that the map (x, y) + x A y is continuous. Assume that the norm 11. II 
on E is strictly monotonic. Let T: C + C be an order-preserving, nonexpansive map with 

T(0) = 0. Assume that, for each z E C, y+(z; T) has compact closure. Suppose that x, y E C 
and that there exists a sequence of positive integers pi + 00 with 

lim Tpi(x) = x 
i-cc 

and lim Tpt(y) = y. (2.1) 
i-cc 

Then it follows that for allj 1 1 

IIT”(x)ll = llxll 

and 

T(x A Y) = (TX) A KY) 

and 

and 

IITj(y)II = llyll (2.2) 

T(x v y) = (TX) v (Ty). (2.3) 

Proof. The order-preserving property of Tj implies that 

Tj(x A y) I T’(x), Tj(x A y) I Tj(y) and Tj(x A y) I (Tjx) A (Tjy) (2.4) 

for all j 2 1. We claim first that 

lim 11 TPi(x A y) - (T”;x) A (Py)II = 0. (2.5) 
i+m 

If not, then by taking a further subsequence mi + co we can assume that for all i r 1 

/T-(x A y) - (Tm’x) A (Tmty)II 2 a > 0. (2.6) 

Because T(0) = 0 and T is nonexpansive, we see that for any x E C, II T’(z)/1 is a decreasing 
sequence of nonnegative reals. Using this observation and (2.1) we obtain (2.2). Because we 
assume that cl@+(z)) is compact for all z, by taking a further subsequence, which we also label 
mi, we can assume that 

lim Tmi(x A y) = ?j. (2.7) i-m 

By taking the limit as i + 00 in (2.6) we obtain 

11~ - x A ~11 2 (Y > 0. 

We already know from (2.4) and (2.7) that 

tl<xAy and x-(xAy)<x-?f. 

The strict monotonicity of the norm now implies that 

[Ix - (x A Y)ll < I\x - VII. 

(2.8) 

(2.9) 

(2.10) 



950 R. D. NUSSBAUM 

However, (2.10) gives a contradiction: by using the nonexpansiveness of T we obtain 

11x - qll = lim 11 T”‘(x A y) - Tmf(x)ll I [Ix - x A yll, 

which contradicts (2.10). It follows that (2.5) is valid. 
By using (2.5) we see that 

lim I( Tpr(x A y) - x A y II = 0 and lim (1 Tp$x A y)ll 
i-.X i-ar 

Since 11 T’(x A y)II is a decreasing sequence, we conclude that 

IIT+ A Y)II = I/x A Y/I for allj 2 1. 

Applying (2.11) to x’ = TX and y’ = Ty, we also obtain 

II T’(Tx A TY)II = II TX A Tyli for allj 2 1. 

It remains to prove that the inequality 

T(x A y) < TX A Ty 

IIX A ~11. 

(2.11) 

(2.12) 

(2.13) 

does not hold. If (2.13) holds we obtain from (2.12) and (2.11) and strict monotonicity of the 

norm that 

IIT~I(x A y)(l = IIT~I-~T(x A y)II = /IX A yll < IITX A ~~11 = IIT~~-~(Tx A ~y)l(. (2.14) 

However, (2.4) and (2.13) give 

IITX A ~~11 = I~T~'-'(Tx A TY)[) I 11~~1~ A ~~lyll; (2.15) 

and taking limits in the above equation yields 

IITx A Trll 5 IIx A ~11, 

which contradicts (2.14). Since we already know that 

T(x A y) I TX A Ty, 

we must have equality in inequality (2.13). 
The proof that 

T(x v y)ll = TX v Ty 

is completely analogous and left to the reader. n 

(2.16) 

Remark 2.1. Proposition 2.1 is false, even for linear maps, if the norm is not strictly 
monotonic. To see this, view elements of lR3 as column vectors and define T: rn3 + IR3 by 

T(x) = 

We have T(K3) c K3, T is order-preserving and T is nonexpansive with respect to the sup norm 
or /,-norm. (Recall that an n x n matrix A = (aij) induces a nonexpansive map of IR” into iR” 
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with respect to the sup norm if and only if 

i laoI 5 1 for 1 5 i 5 n.) 
j= 1 

On the other hand, if we define z, w E K3 by 

it is easy to check that 

T(z) = w and T(w) = z. 

Thus, w and z are periodic points of T and T2’(w) = w and T”(z) = z for i L 1. However, a 
calculation gives 

T(w A z) = 

i 

# Tw A Tz and T(w v z) = # Tw v Tz. 

Remark 2.2. As was noted in the proof of proposition 2.1, the facts that T(0) = 0 and T is 
nonexpansive imply that y+(z; T) is bounded for all z E C. Thus, if E is finite dimensional, 
cl(y+(z)) is automatically compact. In general, suppose that all hypotheses of proposition 2.1 
hold except the assumption that cl(y+(z; T)) is compact for all z E C. Instead suppose either 
that the norm is uniformly convex on C (so that if u, and v, are any sequences of points in C 
such that IIu,,II -+ r, IIv,II + rand II(u, + v,)/2ll + r, it follows that [Iu, - v,JI -+ 0) or that the 
norm is additive on C (so JIu + VII = I(uJI + Ilull f or all U, v E C). Then if x and y are as in 
proposition 2.1 (so that (2.1) is satisfied), it follows that (2.2) and (2.3) are satisfied. Equation 
(2.2) follows immediately, as in the proof of proposition 2.3, so it remains to prove (2.3). 

An examination of the proof of proposition 2.1 shows that the same argument is valid in our 
situation if we can prove that 

lim II(Tpix) A (T’ly) - T”‘(x A Y)II = 0. (2.17) 
i-m 

To see that (2.17) holds, first assume that the norm is uniformly convex. The order-preserving 

property of T gives 

0 5 TPjx - Tpfx A TP’y 5 TPix - 
Tp,x A TPiy + Tp’(x A y) 

2 l- < TP,X _ 

Because T is nonexpansive we find that 

TpJ(x A y). (2.18) 

lITpi - Tp’(x A y)Ij 5 11x - (x A y)ll = p. (2.19) 
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We assume that Tpix + x and TpJy + y, so the continuity of the lattice operation implies that 

;;ir 11 Tprx - (TP1x A TPty)/I = 11x - (x A y)l( = p. 

Combining equations (2.18)-(2.20) and using the monotonicity of the norm gives 

(2.20) 

TP’X A TPfy2+ Tp’(x * Y) . 
(2.21) 

Equations (2.19) and (2.21) and the uniform convexity of the norm on C give (2.17). 
If the norm is additive, then we obtain from (2.18) that 

IITPix - (TP,x A TPfy)II + IITP’x A Tpfy - Tpz(x A y)ll = IITPgx - Tpn(x A y)ll 

5 IL- (XAY)ll. (2.22) 

By using (2.20) and (2.22), we immediately obtain (2.17) 

Remark 2.3. If we apply proposition 2.1 to C = K” and if we know that (1.8) is satisfied 
for some p 2 1 (as will be the case if the norm is polyhedral), then the results mentioned in 
Section 1 immediately give theorem 1.1 and the estimate p I p(n). Thus, the remainder of this 
section is devoted to proving that (1.8) is satisfied for some p 1 1, even if the norm is not 
polyhedral. 

Before proceeding further let us recall some basic facts about omega limit sets of non- 
expansive maps. If (M, d) is a complete metric space and T: M + A4 is a nonexpansive map (so 
d(Tx, Ty) 5 d(x, y) for all x, y E M), define the omega limit set of a point x E M under T by 

U(X; T) = n ~1 u Tj(x) , 

nt1 C > jzn 

where cl(A) denotes the closure of a set A. If o(x; T) is nonempty, it is known that T 10(x; T) 
is an isometry of o(x; T) onto itself. Furthermore, it is known that c&y; T) = o(x; T) for all 
y E o(x; T) and that given any two elements y, z E w(x; T), there exists a sequence qi + m such 
that T41(y) -+ z. Finally, there exists a sequence pi -+ a such that Tpl(y) + y for all 
y E o(x; T). All of these results are proved in [16]; the proofs in [16] are given for the norm in 
a Banach space but apply equally well to a complete metric space. 

PROPOSITION 2.2. Let C be a cone in a Banach space (X, )I. 11) and suppose that II * /I is a strictly 
monotonic norm. Assume that X is a vector lattice in the partial ordering from C and that 
(x, y) ---f x A y is continuous. Let T: C + (7 be an order-preserving map such that T(0) = 0 and 
T is nonexpansive with respect to II * II. A ssume that for each y E C, y+(y; T) has compact 
closure. Then for every x E C, w(x; T) is compact and nonempty. For any fixed x0 E C, there 
exists a sequence of integers pi + 00 such that Tpl(z) + z for all z E 0(x0; T). If S is defined by 

S = (z E C: !iirTpl(z) = z), 

S is a closed set such that T(S) c S and T / S is an isometry of S onto S. If y, z E S, it follows 
that y A z and y v z are elements of S and T and (T I S))’ preserve the lattice operations on S. 
If V is the lattice generated by 0(x0; T), then T(V) c I/ and T I V is an isometry of V onto V. 
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Proof. For x E C, we have 

Mx; T) = f-J A”(X), A,(x) = cl u 7+(x) , 

nzzl ( > jan 

so o(x; T) is the intersection of a decreasing sequence of compact, nonempty sets, and, hence, 
compact and nonempty. (This is well known.) It follows by the remarks preceding proposition 
2.2 that T 1 w(x~; T) is an isometry of w(x,,; T) onto 0(x,,; T) and that there exists a sequence 
pi + ~0 such that Tp;(z) -+ z for all z E 0(x0; T). Proposition 2.1 implies that if y, z E S, then 
y A z E S and y V z E S, and T preserves the lattice operations on S. It is obvious that 
T(S) c S; and if y, z E S and 

we obtain a contradiction 

110 - Tzll < 11~ - ~11, 

11~ - zll = ;;im_ 11 Tp’-‘KY) - Tpi-l(Tz)II I IITy - Tzll < Ily - z/l. 

Thus, we see that T I S is an isometry. 
To see that S is closed, assume that z, E S for n 2 1 and zn + z. Given E > 0, select N so 

that llzN - zll < e/3 and select i, so that 

11 T%N) - ZNII < ; 0 for i 2 i,. 

It follows (using the nonexpansiveness of T) that for i 2 i,, we have 

II Tpi(z,.J - zll I /TpJ z - TPizNII + IITprzN - z,,rli + llz,,r - zll < E, 

so Tplz + z. 
To see that T is onto S, observe that if z E S, 

z = lim Tpi(z). 
i-co 

It follows that Tp8(z) is a Cauchy sequence, and because T is an isometry TPf-‘(2) is a Cauchy 
sequence. It is easy to see that TPi-‘(z) E S for each i 2 1, and since S is closed, 

lim Tpl-‘(z) = y E S, 
i+oo 

and Ty = z. 

Notice that this proves that 

T-‘(z) = lim Tplml(z) 
i+m 

for 2 E S, 

so (T I S)-’ is order-preserving and preserves the lattice operations. 
It follows from what we have already proved that V c S and T(V) is a closed set. Writing 

w = w(x,,; T), we know that T(o) = CO, so T(V) > w. Proposition 2.1 implies that T(V) is 
closed under the lattice operations, so the minimality of V gives 

T(V) > V. (2.23) 
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If 1- = (T 1 S)_’ we also know (by using the formula T(z) = limTP1-‘(z) and previous 
arguments) that l- is an isometry, T(o) = w and I- preserves the lattice operations on S, so 

r(v) 3 I/. (2.24) 

The inclusions (2.23) and (2.24) imply that 

T(V) = r(v) = v. n 

Before proceeding further we need a technical lemma which insures that the set V constructed 
in proposition 2.2 is compact. In the following lemma recall that a cone C is “normal” if there 
exists a constant M such that llxll I ~l/Yll f or all x, Y such that 0 I x 5 Y. It is well known that 
every cone in a finite dimensional Banach space is normal. 

LEMMA 2.1. Let X be a Banach space and assume that C C X is a normal cone and &, the 
interior of C, is nonempty. Assume that X is a vector lattice with respect to the partial ordering 
induced by C. If A is a compact subset of X, let V be the lattice generated by A (see the defini- 
tion preceding proposition 2.1). Then V is compact. 

Proof. If F is a finite subset of X, we first claim that there is a finite set G such that G 1 F 
and G is closed under the lattice operations. To see this, first define 

H= 
I 
x= A [:TcF. 

.tET 1 

It is clear that H is a finite set, F C H and if x, Y E H, then x A Y E H. Next define G by 

G= 
L 
X= V(:TCH. 

TtT I 

Again it is clear that H C G, G is a finite set and if x, Y E G, then x v y E G. However, we also 
claim that if x, y E G, then x A y E G. Recall (see [17, p. 3651) that the lattice distributive laws 
hold in X 

(x A y) v z = (x v z) A (y v z) and (x V y) A z = (x A z) ‘.’ (y A z). 

If x, y E G, so there are sets T, C H and T2 C H with 

x= v r, and Y= v rz, 
TV E TI iz~ T, 

the lattice distributive laws give 

Because [, A c2 E H for all <, E T, and Tz E T,, we see that x A y can be written 

DAY= v c, 
TET 

where T is a subset of H, so x A y E G. 
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If B,(x) denotes a closed ball of radius r and center x, and if U, E Z?, then there exists r > 0 
such that 

This immediately implies that, 

-u 

As usual, if x 5 y we write 

u, + B,(O) c K. 

if u = Flu,, 

I.2524 for all z with ]]z]] I 1. 

[x,y] = (z:x I z I y). 

By using the normality of K it is not hard to see that there exists a constant M such that 

1-u, 4 c ~ld9. 

Since A is compact, given E > 0, there exist xj E A, 1 5 j 5 n, such that 

A C fi B&-l(Xj). 
j= 1 

It follows that (for E, = &M-r) 

A C ir [Xj - &lUIXj + &*U]. 
j=l 

If F denotes the finite set lxj: 1 I j 5 n), we know that there is a finite set G > F such that G 
is closed under the lattice operations. We claim that 

I/c lJ[y-Eru,y+E,U]=Vr. (2.25) 
YCG 

We know that V, is closed, and Vi > A, so to prove (2.23, it suffices to prove that I’, is closed 
under the lattice operations. However, if w, , w2 E V, , there exist y, z E G such that 

y - &,U I wr 5y + &,U and Z - &rU I w2 I z + Err.4. 

It follows easily that 

wr A w2 E [y A z - EiU,Y A z + E,Ul and w, v w2 E [y v z - &,U,Y v Z + &,U]. 

Since y A z E G and y v z E G, this proves that w, A w2 E V, and wr V w2 E V, . 
Since we know that 

v C v, C u B,(Y), 
YEC 

and G is finite, we conclude that V is totally bounded, hence compact. n 

Remark 2.4. Lemma 2.1 can be generalized slightly, but perhaps it is more interesting to note 
that lemma 2.1 fails badly if C has empty interior and one works in P’[O, l] for 1 5 p < 00. 
Specifically, we can construct a compact set A c Lp such that A is bounded in L” and such that 
V, the lattice generated by A, is not compact. To construct such an A, for each n 1 1 and for 
Orj<2”- 1 let Aj,n = u2-“, (j + 1)2-‘7. Let fj,n denote the characteristic function of 
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the interval Aj,n and define 

( 
co 2”-1 

A = (01 u U u c&J 
> 

c WA 11, 1 sp500. 
n=l j=O 

To prove that A is compact in P[O, 11, we have to prove that if g,, k 2 1, is any sequence of 
points in A, gk has a convergent subsequence. If gk has a subsequence g& such that gk, = gk, for 
all i,j 2 1, we are done. Otherwise, given any integer N, there exists kN such that 

m 2”-1 

gk E u u i&11 

n=N j=O 

for all k 2 k,. This implies that 

sag, + OinLP. 
If Tisanysubsetof(j:O ~j I 2” - 1)andgisgivenby 

g= V&Y 
jeT 

g is the characteristic function of U. J E T Aj,n. In particular, if we define h,(x) by 

1, 
h,(x) = 

if j2-” Ixr(j+ 1)2-“andjiseven,O~j~2”- 1, 

0, otherwise, 

we see that h, E V for n 2 1. If 1 I m < n, it is not hard to see that 

I]& - h,& = 3 for p < m and Jlh, - hm/lm = 1. 

This proves that V is not totally bounded and, hence, not compact. 
We shall also need a lemma which gives conditions under which it makes sense to talk about 

sup(A), where A is a subset of a Banach space X with a partial ordering induced by a cone 
C c X. Of course, if B is given by 

B = ]z I z 2 a for all a E A], (2.26) 

by sup(A) we mean an element c E B such that c I z for all x E B, if such an element < exists. 

LEMMA 2.2. Let X be a Banach space with a normal cone C and assume that X is a vector lattice 
with respect to the partial ordering induced by C. Let A be a nonempty subset of X. Assume 
either: (a) X is reflective and B (defined as in (2.26)) is nonempty; or (b) A is compact and C, 
the interior of C, is nonempty. Then sup(A) is defined. 

Proof. First assume hypothesis (a). Fix x0 E B and define B, = {x E B: x I x0]. If a E A, we 
have that 

a5x5xo for allxEBo, 

so the normality of C implies that B, is bounded. It is also easy to see that B, is closed 
and convex, so reflexivity implies that B, is compact in the weak topology. If x E B and 
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B, = (Y E B: y I x], the same argument shows that B, 
follows that in order to prove 

n 4~0, 
XEBO 

951 

is compact in the weak topology. It 

it suffices to prove that if F = (xi: 1 I i 5 k) is any finite collection of points in B, 

n&*0. (2.27) 
XCZF 

However, we have 

;(X,E nBx, 
i=l XEF 

so (2.27) is valid. If x E B, we have that x A x0 E B, and 

4 3 B,,,O. 

Using this we see that 

f-j&= n W0. 
xeB XEB, 

It is not hard to see that n, E B B, contains only one element and 

n B, = SUP(A). 
XEB 

The second part of the lemma follows easily from lemma 2.1. If V is the lattice generated 
by A, lemma 2.1 implies that V is compact. If u E C and m is a positive integer, the same 
argument used in lemma 2.1 shows that there are points ai, E A, 1 5 i I N(m), such that 

N(m) 
A C U [ai, - m-‘u, Ui, + m-‘u]. 

i=l 

If we define Y, E V by 
NW 

Y~I = V ai* 9 
i=l 

it is clear that 

1 
a<y,+ --u 

( > 
for all a E A. 

m 
(2.28) 

Since I/ is compact, we can assume, by taking a subsequence, that y, 4 y E V; and we have by 
taking the limit in (2.28) that 

asy for all a E A. 

If z 1 a for all u E A, it is clear that z 2 y, for all m, so z 2 y and y = sup(A). 
Obviously, the same argument also gives the existence of inf(A) in this case. n 

Remark 2.5. Suppose that C is a normal cone with nonempty interior in a Banach space X and 
assume that X is a vector lattice. Suppose that Ak , k 1 1, is a decreasing sequence of compact 
nonempty sets and write 

A= nAk. 
krl 
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As is well known, given any open neighborhood U of A, there exists an integer k(U) such 
that Ak c (I for all k 1 k(U). For any fixed 6 > 0 and u E C let 

U= ~wEX: w-x+&E&and-w+x+&ECforsomexEA). 

Lemma 2.2. implies that sup(A,) = sk exists and sup(A) = s exists and obviously sk 2 s for all 
k. However, if k 1 k(U), we have w I s + 6~ for all w E A, and sk I s + 6~. The normality 
of C now implies that lim s k = s. k_m 

Suppose now that assumptions and notation are as in lemma 2.1. We need to generalize the 
idea (defined in Section 1) of an irreducible element of V. If V is as in lemma 2.1, E > 0 and 
x E V, we shall say that “x is e-irreducible” (with respect to V) if 

so ( 5 x and [ # x. Lemma 2.2 implies that [ is well defined and [ E P’ (assuming that 

lz E VIZ < X, Ilx - zll - I > E is nonempty). If there does not exist z E V such that z < x and 
IIx - z/( 2 E, we shall still say that x is e-irreducible. 

LEMMA 2.3. Let notation and assumptions be as in proposition 2.2 and suppose in addition that 
C is normal with nonempty interior. If x E P’ is e-irreducible for some E > 0, then T(x) is also 
e-irreducible. 

Proof. We know from proposition 2.2 that T is an order-preserving isometry of V onto V. 
If I = (T I V)-‘, it was shown in the proof of proposition 2.2 that I is also an order-preserving 
isometry of V onto V. 

If A is any compact subset of V, lemma 2.2 implies sup(A) exists. More generally, if A is any 
subset of V, one can easily see that sup@) = sup(n); and because V is compact (see lemma 
2.1), sup(A) exists for any A C V. 

We next claim that if A is any subset of V, 

T(sup(A)) = sup(T(A)). 

To see this, let z, = sup(A) and z2 = sup(T(A)). Because T is order-preserving, we have 

T(z,) 2 T(a) for all a E A, 

so T(z,) 2 z2. Because lJT(A)) = A and I is order-preserving the same argument shows that 

r(zd 2 zi. 

If equality does not hold in the above inequality, we obtain 

z2 = VI-(zz)) > T(z,) 2 zz, 

a contradiction. Thus, we must have T(z,) = z2. 
For l E I/ and E > 0, define a set A,(r) by 

A,(l) = (_Y E V: y I < and Jly - (11 2 E). 

Because T and I’ are order-preserving isometries we have 

%4,(x)) c A,(Tx) and IV,(=)) c A,(x). 

(2.29) 

(2.30) 
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Because I and T are one-one and (TT)(A,(x)) = A,(x), we conclude that both of the 
inclusions in (2.30) must be equalities. It follows that 

T(su~(~,(x))) = sup(&(Tx)), 

which shows that x is &-irreducible if and only if TX is c-irreducible. n 

If C is a normal cone with nonempty interior in a Banach space X and X is a vector lattice 
in the partial ordering induced by C, then it is not hard to see that (x, y) + (x A y) is 
continuous. Thus, the hypotheses of lemma 2.3 are slightly redundant. 

We also need an “epsilonized” version of the idea of the height of a point x in a lattice V (see 
[lo]). If X is a vector lattice and a normed linear space and V c X is closed under the lattice 
operations and x E I’, we define the “c-height of x” (with respect to I’), h,(x), by 

h,(x) = suplk 1 3 e, E V, 0 5 i I k, such that ek = x and ej < ei+, for 0 I i < k 

and lIei+, - e,Ij 2~forOSi<kl. (2.31) 

If there is no element w E I/ such that w < x and )I w - x/I 2 E, we define h,(x) = 0. If the 
norm on X is monotonic and ej is as in (2.31) we have 

llep - ejll 2 llep - ep-1ll 2 & for 0 I j < p I k. (2.32) 

If, in addition, we assume that V is compact, there exists for each E > 0 an integer N = N(E) 
such that V is contained in the union of N open balls of radius s/2 and centers in V. By using 
(2.32) and the pigeon-hole principle, it is easy to see that 

h,(x) < N(E) < 00. 

Our next lemma is a straightforward generalization of the corresponding result for irre- 
ducible elements in finite semilattices. 

LEMMA 2.4. Let C be a normal cone with nonempty interior in a Banach space X and suppose 
that the norm of X is monotonic. Assume that X is a vector lattice with respect to the partial 
ordering induced by C. Let V be a compact subset of X such that I/ is closed under the lattice 
operations. If E > 0 and x E V, then x = suplz E I/: z I x and z is &-irreducible with respect 
to V). 

Proof. For w E V, let h,(w) denote the s-height of w with respect to V. We shall prove the 
lemma by induction on h,(x). If h,(x) = 0, x is s-irreducible by definition and the lemma is 
true. For an integer k > 0, assume that the lemma is true for all x E V such that h,(x) < k. If 
x is not c-irreducible, 

x = suplz E V I z I x and (1~ - xl1 2 ~1 = sup(S). (2.33) 

If z E S, it is easy to see that h,(z) < k: if h,(z) L k, we would obtain h,(x) L k + 1. By induc- 
tion we have (for z E S) 

z = suplw E V I w 5 z, w is s-irreducible). (2.34) 
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We obtain from (2.33) and (2.34) that 

x = suplw E V ( w I x, IIw - x/( I E and w is e-irreducible], 

which completes the proof. n 

Remark 2.6. In general it is necessary in lemma 2.4 that E > 0. If E = 0, O-irreducibility is the 
same as irreducibility. However, lemma 2.4 may fail for E = 0: to see this take X = R and 
V = [0, I] and note that 0 is the only irreducible element of I’. 

We prove our next lemma in somewhat greater generality than we shall actually need. No real 
simplification is gained by considering a less genera1 case. In the statement of the following 
lemma, we shall call a partial ordering on a metric space (0, d) “closed” if whenever xK I yk 
for all k 1 1 and xk -+ x and y, + y, it follows that x I y. 

LEMMA 2.5. Let (M, d) be a complete metric space and T: M -+ M a nonexpansive map with 
respect to d. Assume that < E M and x0 E M are such that w(t; T) is compact and nonempty 
and TX, = x,, . Then for all x, y E o(<; T) 

45 x0) = d(Y, x0). 

If, in addition, there is a closed partial ordering defined on o(<; T) such that 

d(x, Y) 5 w, i) and d(y, Z) 5 d(x, Z) (2.35) 

whenever x, y, z E w([; T) and x I y 5 z and if T preserves the partial ordering on o(r; T), 
then there do not exist elements x,y E o(<; T) such that x I y and x # y. 

Proof. If x E w(<; T), we know that there exists a sequence pi -+ 00 such that P(x) + x. 
It follows that 

d(x, x0) = lim d( Tpfx, x0) = lim d( Tp8x, TPtx,,). (2.36) 
i-m i-cc 

On the other hand, T is nonexpansive, so d(T”x, T”‘x,) is a decreasing sequence of reals. Using 
this fact and (2.36) we see that 

d( T’“x, x,,) = d(x, x0) forallmz 1. 

For any y E w([; T), there exists a sequence 4; + CO such that T41(x) + y, so 

(2.37) 

d(y, xg) = !it d(T’@), xc,) = d(x, -G). 

To prove the second part of the lemma, assume, to the contrary, that there exist 
x, y E w(<; T) with x c y. We know that there exists a sequence qi + co such that Tqt(x) -+ y. 
Since T 1 w is an isometry of o onto o, Tqt 1 o is also an isometry of o onto o. We assume 
that w is compact, so the Ascoli-Arzela theorem implies that there exists a map S: w + o and 
a subsequence of qi (which we label the same) so that Tql 1 o approaches S uniformly on w. 
We have 
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so S is an isometry. To see that S is onto, choose z E o and xi E w such that 

7-4i(Xi) = 2. 

Since Tq8 approaches S uniformly on u we have that 

lim S(xi) = !\im+ zi = 2, 
i+m 

so zi is a Cauchy sequence. It follows, because S is an isometry, that xi is a Cauchy sequence and 

limXi=<EW with S(c) = z. 
i-co 

Notice that S is also order-preserving, because Tqi is order-preserving and the partial ordering 
is closed. 

We now have, using the order-preserving property of S, that 

x<sx=y and sjx < S”x forOIj<m. (2.38) 

By using (2.35) and (2.38) and the fact that S is an isometry, 

0 < d(x, Sx) = d(S’x, sj+ lx) 5 d(Sjx, S”x) forOccj <m. (2.39) 

On the other hand, (2.39) implies that the sequence Sj(x) can have no convergent subsequence, 
which contradicts the assumption that w is compact. n 

Remark 2.7. An examination of the proof of lemma 2.5 shows that it suffices to replace (2.35) 
by the assumption that there exists a constant M such that 

d(& Y) 5 M&X, z) and d(Y, z) 5 Md(X, z) 

whenever x, y, z E w(r; T) and x 5 y 5 z. One can also see that the final assertion of lemma 2.5 
holds without the assumption that T has a fixed point x0. 

We shall also need a technical lemma. We shall only use lemma 2.6 in finite dimension 
Banach spaces, but we shall prove it in greater generality. 

LEMMA 2.6. Let C be a normal cone with nonempty interior in a Banach space X and assume 
that X is a vector lattice with respect to the partial ordering from C. Let V c X be a compact 
set and let T: I/ + V be a nonexpansive, order-preserving map of I/ to I’. Given 6 > 0, there 
exists E(B) > 0 such that if x, y E a(<; T) for some < E Y and 11x - yl( 2 6, then 

IIX - (X A Y)II 2 c(d) and IIY - (X A Y)ll 1 c(d). 

Proof. We leave to the reader the exercise of proving (under the assumptions on C) that 
if xk -+ x and y, + y are any two convergent sequences in X, then x, A y, + x A y and 
X, vYk +XvY. 

We assume lemma 2.6 is false and try to obtain a contradiction. If the lemma is false, there 
CXiStS tW0 SCqUCIlCeS x, E a(rk; T) and Y, E o(<k; T) (& E v) such that 11X, - Y,ll L 6 and 

lhk - cxk h Yk)ll + 0. 
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Because o(&; T) = o(xk; T), we can assume that & = x,. Because V is compact, we can 
assume that x, -+ x and yk -+ y. We claim that x, y E o(x; T). If we can prove this we will be 
done: lemma 2.5 and remark 2.7 imply that x and y are not comparable in the partial ordering. 
However, we have that 

lim IlXk - (Xk A yk)ll = [Ix - (x A y)ll = OY 
k-rm 

which implies that x I y. 
Thus, it suffices to prove that x, y E o(x; T). The properties of omega limit sets imply that 

for each k > 1 there exist sequences of integers pik and qik such that pik + 00 aS i -+ 00 and 

lim TPik(Xk) = Xk and lim Tqik(Xk) = y k’ 
i+m ido0 

Given an integer j 2 1, choose xk and yk such that 

I[& - XII < 2-j-’ and llyk - yI/ < 2-‘-2. 

Choose an integer i such that pjk L j, qik 2 j and /ITpi” - Xkll < 2-j-’ and 
))Tqtk(xk) - y,l\ < 2-j-i. For this choice of i and k, define Pj = pik and qj = qik. By the 

triangle inequality we obtain 

IIT” - XII I 11X - Xkll - ((Xk - TpJ(Xk)lj + IIT” - T”~(x)ll 

< 2-j-2 + 2-j-l + 2-j-2 = 2-j 

It follows that Tpj(x) -+ x and x E w(x; T). An analogous argument shows that Tq/(x) --t y and 

y E ~(x; T). W 

It may be worthwhile to indicate a simpler variant of lemma 2.6 which would also be 

adequate for our applications. 

LEMMA 2.6’. Let X be a Banach space which is also a vector lattice and assume that the norm 

on X is strictly monotonic. Assume that the map (x,y) + (x A y) is continuous. Let V be a 
compact subset of X. Given 6 > 0, there exists E(B) > 0 such that if x,y E V, (Ix(( = ((y(( and 
IIx - yll 1 6, then 

IIX - (x A Y)ll 2 Et4 and 11~ - (x A Y)I/ 2 a(d). 

Proof. Suppose the lemma is false. Then there are sequences xk E V, yk E V, such that 

IlXkll = Ilykll, IlXk - ykll z 6 and lim Ilxk - (xk A yk)II = 0. 
k-m 

Because V is compact, we can take a subsequence and assume that xk + x and yk --t y and 

llxll = Ilull, IIX - YII 2 6 and /Ix - (x A y)ll = ~mi&k - (Xk A yk)II = 0. 

It follows that x < y and llxll = II yll, w ic contradicts the strict monotonicity of the norm. h h n 

For the remainder of this section we shall confine ourselves to finite dimensions and to 
C = K”. 
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d(n) is defined in definition 1.2 and p(n) is defined in [9, p. 3621 and in Section 3 below) such 
that 

lim 7+(r) = rl and TP(a) = 17. 
k+m 

Proof. Let V be the lattice generated by w([; T). 
If 6 > 0 and E = E(B) is as in lemma 2.6 and N = Icm(1, 2, . . ., n), we claim that for any 

e-irreducible element x E V one has 

I/TN(X) - XII 5 N6. 

To see this, note that lemma 2.7 implies that 

11 T”x - XII I 6 for some m, 1 5 m 5 n. 

We can write N = mp, , p, an integer. Because 

I] T mo+nx _ Tmjx]] 5 6 for 0 I j < p, , 

the triangle inequality implies 

/(TNx - XII I p,6 I N6. 

If x now denotes any fixed element of V andp, is as above, define a compact set A, (S > 0) by 

A, = ]u E V: y I x and IIT”‘y - y(l 5 N6). 

By our remarks above, As contains all e(G)-irreducible elements y E V withy Z% x. Thus, lemma 
2.4 implies that 

x = sup(&). 

Select a sequence Sj 10, so A,, is a decreasing sequence of compact, nonempty sets. If we 
define A, by 

A, = fi A,,, 
j=l 

it follows from remark 2.5 that 

sup(&) = ,liz sup(&) = x. 

On the other hand, one can easily see that 

A, = ]u E V/y I x and TN(y) = y). 

Because both TN and TN are order-preserving, where II = (T ) V)-‘, one can see that 

~“‘(~uPMIN = su~G’+bW. 

we have that 

TN(x) = TN(sup(A,)) = 

of A, shows that = A,, so 

sup(TN(Ao)) = = x. 
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Thus, we have proved that for N = L(n) and all x E I/ 

7-N(X) = x. 

If we take x E o(c; T), we see that w(<; T) is the orbit of the periodic point x and the period 
pX of x divides N. If V, is the semilattice generated by w(<; T), T(&) c V, and T preserves the 
lattice operation on V,, so by definition 1.2 we have px I a(n). H 

Remark 2.8. In the Ii-norm case, Scheutzow [lo] has observed that one need not assume that 
T is order-preserving. However, Scheutzow strongly uses the Akcoglu-Krengel result [I] that 
o([; T) is a finite set for every Lj E K” if T: K” --t K”, T(0) = 0 and T is Ii-nonexpansive. It is 
interesting that a slight variant of our proof of theorem 2.1 gives a different proof that o(r; T) 
is finite when T: K” + K”, T(0) = 0 and T is Ii-nonexpansive. For a given r E K”, define a set 

M by 

M = (z: 3 x E w(r; T) such that 0 5 z 5 x). 

A generalization of arguments in [9, lo] shows that T is integral-preserving (so x1= ,(Tz)~ = 
XI= 1 zi for z E M) and order-preserving on M. There exists a sequence of integers pi + CO such 
that TPi(x) -+ x for all x E o(<; T), and we define M,, by 

One can prove that if xi, x2 E M,, then xi A x, E M,, and T(x, A x2) = T(x,) A T(x,). Similarly 
if xi, x2 E M,, and xi V x2 E M, then xi V x2 E M, and T(x, V x2) = T(x,) V T(x~). Also one 
can show that T 1 MO is an order-preserving isometry of M, onto M, and IY = (T 1 M,,-’ is also 
an order-preserving isometry of M,, onto M,. By defining c-irreducibility, the c-height of 
x E M,, etc., with respect to M,, instead of V, one can mimic the proof of theorem 2.1 to prove 
that o(<; T) is finite and lo(~$; T)l I a(n). 

Remark 2.9. Theorem 2.1 does not apply to an interesting case, namely the sup norm on IR”. 
Is the conclusion of theorem 2.1 still true for the sup norm? If not, what sort of estimates can 
one obtain on ]w(t; T)I when T: K” + K” is order-preserving, nonexpansive with respect to the 
sup norm and T(0) = O? 

Remark 2.10. If the norm is the Euclidean norm in IR”, n L 3, and all assumptions of theorem 
2.1 are satisfied except that T is order-preserving, it is easy to construct examples for which 
w(r; T) is infinite for almost all < E K”. See [18, p. 2241. 

3. COMPUTING (y(n) AND q(n) 

In this section we want to prove more information about the functions a(n) and p(n) and 
extend a table of values of a(n) and p(n) which was given in [9]. 

Recall that a lower semilattice W c I?” is a set such that for all x, y E W, x A y E W. 

Definition 3.1. Qo(n) is the set of integers p 2 1 such that there exists a lower semilattice WC I?” 
and a map T: W --t W such that T(x A y) = TX A Ty for all x, y E W and T has a periodic point 
5 E W of period p. 
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It is clear (see definition 1.2) that 

a(n) = sup@: P E Q&)1. 

Definition 3.2. Ql(n) is the set of integersp 1 1 such that there exists a map T: K” --f K” such 
that T(0) = 0, T is Ii-nonexpansive and T has a periodic point r E K” of period p. 

The results of Section 1 show that Ql(n) C Q&n). 
If T: D c IR" + R", T is called “integral-preserving” if 

i (TX), = i Xi for all x E D. 
i=l i=l 

If D = IR” or K” and T is integral-preserving, it is known [19] that T is Ii-nonexpansive if and 
only if T is order-preserving. We shall denote by u the vector in IR” all of whose components 
equal one. 

Definition 3.3. A map T: K” --t K” will be said to satisfy H3.1 if T is integral-preserving and 
order-preserving and T(u) = cu for all c L 0. 

By our remarks, if T satisfies H3.1, T is Ii-nonexpansive. 

Definition 3.4. P(n) is the set of integer p > 1 such that there exists a map T: K” + K” which 
satisfies H3.1 and has a periodic point r E K” of period p. 

It is easy to see that 

and 

P(n) c Q,(n) c Q&d and P(n) C P(n + 1) 

Qj(n) C Qj(n + 1) for j = 0, 1. 

Also, if T is in the class of maps allowed for definitions 3.1, 3.2 or 3.4, respectively, and r is 
a positive integer, then T’ is also allowed for definitions 3.1, 3.2 or 3.4, respectively. Thus, if 
p E Q&n), Ql(n) or P(n), respectively, andp = rnr, then m E Qo(n), Q,(n) or P(n), respectively. 
If C denotes Qo(n), Q,(n) or P(n), we can put a partial ordering on I: by p, +pz if p, is a 
factor of p2. In this ordering, I: has maximal elements, and C comprises precisely all divisors 
of its maximal elements. 

It is clear that the order p of any permutation on n letters is an element of P(n), so n E P(n). 
More generally, it is proved in Section 3 of [9] that if n = mr and p, , p2, . . . , pr E P(m), then 

rlcm({pj: 1 5 j 5 r)) E P(n). 

Furthermore, if n, + n2 = n and pj E P(nj) for j = 1,2, it is shown that 

P = lcm(p, , PJ E P(n). 
It is proved in [9] that ifp E Q,Jn), there is a set SC (j: 1 I j 5 n) such thatp divides lcm(S). 

However, not every subset S of (j: 1 I j I n] is possible. It is proved in [9] that there are 
constraints on S. To indicate some of these constraints, recall that if T is a set of positive 
integers, gcd(T) denotes the greatest common divisor of the elements of T. Recall also the 
following conditions from [9] concerning nonempty subsets S of (j: 1 I j I n). 
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Condition A. S does not contain a subset Q such that (1) gcd(i, j) = 1 for all i, j E Q with i # j 
and (2) Ci,Qi > n. 

Condition B. S does not contain disjoint subsets Q and R which satisfy the following 
properties: 

(1) gcd(i, j) = 1 for all i, j E Q with i # j; 
(2) gcd(i, k) = 1 for all i E Q and k E R; 
(3) R has r + 1 elements, r 1 1, i > r for all i E R, and gcd(i,j) divides r for all i,j E R with 

if j; 
(4) i+j>n-(CkeQ k) for all i, j E R with i # j. 
The possibility that Q is the empty set in condition B is allowed. In that case conditions (1) 

and (2) in condition B are vacuous and Ck E o k = 0. It is also not hard to see that if S satisfies 
condition B (with r = l), then S satisfies condition A, but we prefer to state condition A 
separately. 

Condition C. S does not contain disjoint subsets Q and R with the following properties: 
(1) gcd(i, j) = 1 for all i, j E Q such that i # j; 
(2) gcd(i, k) = 1 for all i E Q and k E R; 
(3) R has m + 1 elements where m = p2 - p + 1 and p 2 2 is an integer and gcd(i, j) divides 

r = p2 for all i,j E R with i # j; 
(4) there exists y E R such that gcd(y,j) divides p for all j E R, j # y, and y 1 p and j > p2 

forj f y; 

(5) i +j > n - (.LEo k) for all i, j E R with i #j. 

Condition D. S does not contain a set R with the following properties: 
(l)R=(pj(l~j~m+r-l], where mz2, rr2, and pi#pj for l<i<js 

m+r-1; 
(2)gcd(pi,p~)dividesrfor1~i<j~m+r-1andpi>rfor1~i~m+r-1; 
(3) Cj”=,pj>nandpj+p,>nforallj#ksuchthat1~jIm+r-1andm<k~ 

m+r-1. 

Definition 3.5. If S c (j: 1 5 j I n) we say that S is “admissible for n” if S = (1) or if 1 $ S 
and S satisfies conditions A-D. 

It is proved in [9] that if p E QJn), then there exists a set S c (j: 1 I j 5 n} which is 
admissible for n and is such that p is a divisor of lcm(S). Motivated by this fact, an ad hoc func- 
tion p(n) is defined by 

q(n) = sup(lcm(S): S is admissible for n). (3.1) 

If we define functions /I(n) and r(n) by 

P(n) = suplp 1 P E Ql@N and r(n) = w-4~ Ip E WOl, (3.2) 

we have that 

y(n) 5 P(n) 5 a(n) 5 q(n). (3.3) 

If a set S is admissible for n, it is admissible for n + 1, so q(n) is a monotonic increasing 
function, and clearly y(n), al(n) and /3(n) are monotonic increasing functions. 
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In [9] it is proved that y(n) = v(n) for 1 5 n I 24 and the values of y(n) are tabulated for 
n I 24. Here we want to extend this table for n I 32 and prove y(n) = p(n) for n 5 32. By 
using the previously mentioned properties of P(n), it is relatively easy to find lower bounds for 

v(n). 

LEMMA 3.1. For 25 5 n 5 32 we have the following lower bounds for y(n) 

~(25) 1 2640 = 16 x 3 x 5 x 11, 

~(26) 2 3120 = 16 x 3 x 5 x 13, 

~(27) 2 5040 = 16 x 9 x 5 x 7, 

y(n) 2 9240 = 8 x 3 x 5 x 7 x 11 for 28 5 n I 30, 

~(31) > 18480 = 16 x 3 x 5 x 7 x 11 

and 

~(32) 2 36960 = 32 x 3 x 5 x 7 x 11. 

Proof. It has been proved in [9, theorem 3.41, that 2640 E P(24), so we certainly have 
2640 E P(25) and ~(25) 2 2640. 

There are permutation maps of K3 to K3 which have periodic points of period 3 and 2, 
respectively. Thus, 2, 3 E P(3) and our previous remarks imply 2 lcm(2, 3) = 12 E P(6). There 
is a permutation map of K6 to itself which has a periodic point of period 5, so 5 E P(6). It 
follows that 120 = 2lcm(5, 12) E P(12), so 120 E P(13). There is a permutation map of K13 
with a periodic point of period 13, so 13 E P(13). It follows that 3120 = 2 lcm(120, 13) E P(26). 

There are permutation maps of KS of order 5 and 4, respectively, so 2 lcm(4,5) = 40 E P(10). 
There is also a permutation map of K” of order 9, so 9 E P(10). It follows that 2 lcm(9,40) = 
720 E P(20). There is a permutation map of order 7 of K7, so 7 E P(7). It follows that 

5040 = lcm(7,720) E P(27). 

It is proved in remark 3.2 of [9] that 9240 E P(28), so y(n) 2 9240 for 28 I n I 30. 
We have already remarked that 2640 E P(24), and by considering a permutation map we have 

that 7 E P(7). Because 7 + 24 = 31, we conclude that lcm(7,2640) = 18480 E P(31). 
There are permutation maps of K4 of orders 4 and 3, respectively, so 2 lcm(4, 3) = 24 E P(8). 

There is also a permutation map of order 7 of K8, so 7 E P(S) and 336 = 2 lcm(7, 24) E P(16). 
There is a permutation map of K16 of order 55 = 5 x 11, so 55 E P(16). It follows that 
2 lcm(336, 55) = 36960 E P(32). n 

We claim that y(n) actually equals the lower bounds for it given in lemma 3.1 for 25 I 
n 5 32 and that y(n) = v(n) for 25 5 n 5 32. The method of proof is to show p(n) I y(n) for 
25 5 n 5 32. The problem is that the computation of p(n) for values of n like n = 30 or 31 is 
highly nontrivial and involves a very laborious and lengthy case-by-case analysis in which con- 
ditions A and B are primarily used but conditions C and D also play important roles. Reasons 
of length and aesthetics preclude a full proof, but notes are available from the author for those 
who wish to see details. Here we shall be satisfied to give the outlines of the proof for 
28 I n 5 32. 
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First, consider the case 28 5 n 5 30. Because ~(28) r 9240, it suffices to assume that 
T C (j: 1 5 j I 30) is admissible for n = 30 and that lcm(T) 1 9240 and try to prove that 
necessarily lcm(T) 5 9240. First, one proves for such a T that 29, 27, 25,23, 19 and 17 are not 
factors of lcm(T). It is only necessary to use conditions A and B to obtain this result. Next one 
proves (this is more difficult) that 13 is not a factor of lcm(T); here conditions A-D are all 
needed. 

Finally, one first proves that 16 is not a factor of lcm(T) and then that 9 is not a factor of 
lcm(T); again, conditions A-D are all needed. Using these results one finds that 

lcm(T)S8x3x5x7x 11 =9240 and ~(30) 5 9240. 

If T is admissible for n(n = 31 or 32) and lcm(T) 2 18480 (for n = 31) or lcm(T) 2 36960 
(for n = 32), one proves fairly easily that 31, 29, 27, 25, 23, 19 and 17 are not factors of 
lcm(T). With much more effort one proves that 13 is not a factor of lcm(T); conditions A-D 
are all needed. If n = 31 or n = 32, one proves that 9 is not a factor of lcm(T), so 
lcm(T) I 16 x 3 x 5 x 7 x 11 = 18480 and ~(31) 5 18480 for n = 31 and lcm(T) I 
32~3~5~7~11=36960forn=32. 

Similar arguments apply for 25 5 n I 27 and one obtains the following theorem. 

THEOREM 3.1. For 25 s n 5 32, y(n) = /3(n) = a(n) = q(n). Also, one has that ~(25) = 
2640 = 16 x 3 x 5 x 11, ~(26) = 3120 = 16 x 3 x 5 x 13, ~(27) = 16 x 9 x 5 x 7 = 5040, 
y(n) = 8 x 3 x 5 x 7 x 11 = 9240 for 28 i n I 30, ~(31) = 16 x 3 x 5 x 7 x 11 = 18480, 
andy(32)=32~3~5~7~11=36960. 

With the aid of theorem 3.1 we can extend the table of values of v(n) in [9]. 
For 1 I n 5 32, c~(n) = /3(n) = r(n) = p(n) (see Table 1). 
We should emphasize that there are constraints on the set S in theorem 1.2 other than 

conditions A-D, and it is by no means clear that a(n), P(n) or y(n) behaves asymptotically like 
p(n) for large n. Nevertheless, for values of n 5 32, one can obtain remarkably precise results 
concerning P(n), Q1(n) and Q,,(n). As an illustration, we mention the following easy result: 
define numbers (Ye = 16 x 3 x 7, CX~ = 16 x 3 x 5, CY~ = 3 x 13, CY~ = 2 x 13, (;Y~ = 2 x 3 x 11, 
a,=5x11,(~,=4~11,(~~=4~9~5,0l~=2x9x7and~~,=4x5x7.Theelements 

Table 1. Values of 9(n) for 1 5 n 5 32 

n 9(n) 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

2 
3 
4 
6 

12 
12 
24 
24 
60 
60 

120 
120 

n 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
21 
28 
29 

9(n) 

420 
420 
840 

1680 
1680 
1680 
1680 
2640 
2640 
3120 
5040 
9240 
9240 

14 168 30 9240 
15 180 31 18480 
16 336 32 36960 
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of P(16) U (cy9) and the elements of Q0(16) U {(rs) are precisely the numbers which are the divi- 
sors of ~j for some j, 1 I j I 10. It follows that, aside from the troublesome c+,, we know all 
elements of P( 16) and 

P(16) U (4 = Q,(16) U bd = Qcd16) U (~~91. 

The difficulty with oly arises from the fact that 

cyg = lcm(6,7, 9). 

The set T = (6, 7,9] is admissible for n = 16, but we do not know whether (Y~ E P(16) or 
olg E Q&16). However, since & = 9 x 7 E P(16), the problem is not too serious. 

1 

2 

3 

4 

5 

6. 

7. 
8. 

9. 

10. 
11. 
12. 

-.I 3. 
,.14. 

15. 

16. 

17. 
18. 

19 

20 

REFERENCES 

AK~OGLU M. A. & KRENGEL U., Nonlinear models of diffusion on a finite space, Prob. Th. Rel. Fields 76.41 l-420 
(1987). 
WELLER D., Hilbert’s metric, part metric and self-mappings of a cone, Ph.D. dissertation, University of Bremen, 
Germany, December (1987). 
BLOKHUIS A. & WILBRINK H. A., Alternative proof of Sine’s theorem on the size of a regular polygon in R” with 
I--metric, Discrete Comput. Geometry 7(4), 433-434 (1992). 
Lo SHIH-KUNG, Estimates for rigid sets in IR”’ with I, or polyhedral norm. Diplomarbeitj Inst. flir Mathematische 
Stochastik der Georg-August Universitat zu Gdttingen (1989). (In German.) #i 

LYONS R. & NUSSBAUM R. D., On transitive and commutative finite groups of isometries, in Fixed Point Theory 
and Applications (Edited by KOK-KEONG TAN), pp. 189-228. World Scientific, Singapore (1992). 
MARTUS P., Asymptotic properties of nonstationary operator sequences in the nonlinear case. Ph.D. dissertation, 
Friedrich-Alexander Universitit Erlangen-Ndrnberg. Germany, November (1989). (In German.) 
MISIUREWXZ M., Rigid sets in finite dimensional /,-spaces (preprint). 
NUSSBAUM R. D., Omega limit sets of nonexpansive maps: finiteness and cardinality estimates, Diff. IntegralEqns 
3, 523-540 (1990). 
NUSSBAUM R. D., Estimates of the periods of periodic points for nonexpansive operators, Israel J. Math. 76(3), 
345-380(1991). 
SCHEUTZOW M., Periods of nonexpansive operators on finite [,-spaces, Eur. J. Combinalorics 9, 73-81 (1988). 
SINE R., A nonlinear Perron-Frobenius theorem, Proc. Am. mafh. Sot. 109, 331-336 (1990). 
NUSSBAUM R. D., Convergence of iterates of a nonlinear operator arising in statistical mechanics, Nonlinearity 4, 
1223-1240 (1991). 
NUSSBAUM R. D., Hilbert’s projective metric and iterated nonlinear maps, Mem. Am. math. Sot. No. 391 (1988). 
VUSSBAIJM R. D., Hilbert’s projective metric and iterated nonlinear maps, II. Mem. Am. math. Sot. No. 401 
(1989). 
ROSSER J. B. & SCHOENFELD, L., Approximate formulas for some functions of prime numbers, Illinois J. Moth. 
6, 64-94 (1962). 
DAFBRMOS C. M. Sr SLEMROD M., Asymptotic behavior of nonlinear contraction semigroups, .I. funcf. Anulysis 13, 
97-106 (1973). 
Yosro~ K.. Funcfional Analysis. Springer, Berlin (1980). 
NUSS~AUM R. D., Periodic points of nonexpansive operators, in Opfimization and Nonlinear Analysis (Edited by 
A. IOFFE, M. MARCUS and S. REICH), Pi/man Research Noles in Mothemafies, Vol. 244, pp. 214-226. Longman, 
London (1992). 
CRANDALL M. G. & TARTAR L., Some relations between nonexpansive and order preserving mappings, Proc. Am. 
math. Sot. 78, 385-391 (1980). 
%:HEUTZOW M., Correction to periods of nonexpansive operators on finite /,-spaces. Eur. J. Combinatoric.y 
(to appear). 


