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Abstract

If L : Y → Y is a bounded linear map on a Banach space Y , the “radius of the essential spectrum”

or “essential spectral radius” ρ(L) of L is well-defined and there are well-known formulas for ρ(L) in

terms of measures of noncompactness. Now let C ⊂ D be complete cones in a normed linear space

(X, ‖ · ‖) and f : C → C a continuous map which is homogeneous of degree one and preserves the

partial ordering induced by D. We prove (see Section 2) that various obvious analogs of the formulas

for the essential spectral radius for the case f : C → C have serious defects, even when f is linear on

C. We propose (see equation (3.5)) a definition for ρC(f), the “cone essential spectral radius of f ,”

which avoids these difficulties. If r̃C(f) denotes the (Bonsall) cone spectral radius of f , we conjecture

(see Conjecture 4.1) that if ρC(f) < r̃C(f), then there exists u ∈ C \ {0} with f(u) = ru where

r := rC(f)u. If f satisfies certain additional conditions (for example, if f is a compact perturbation

of a map which is linear on C), we obtain the conclusion of the conjecture; but in general we observe

(Remark 4.7) that the conjecture is intimately related to old and difficult conjectures in asymptotic

fixed point theory. In Section 5 we briefly discuss extensions of generalized max-plus operators which

were our original motivation and for which Conjecture 4.1 is already nontrivial.

Key Words: Nonlinear Krein-Rutman theorems; fixed points of cone maps; measures of noncom-

pactness; essential spectral radius.
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0 Introduction

Let C ⊂ D be complete cones in a normed linear space (X, ‖ · ‖) and suppose that f : C → C is

continuous, homogeneous of degree one and preserves the partial ordering induced by D. In this

framework there is a natural definition of what we shall call (see equation (1.5)) the “Bonsall cone

spectral radius of f ,” denoted r̃C(f). However, it is much less clear how one should define ρC(f), the

“cone essential spectral radius of f .” If X is a Banach space and L : X → X is a bounded linear

operator, there is a natural definition of the essential spectral radius ρ(L) of L. With the aid of the

Kuratowski measure of noncompactness, one can give a simple formula for ρ(L); see [24]. Motivated

by this simple formula, the authors (see [18] and [29]) have proposed what might seem a natural analog

as a formula for ρC(f). One goal of this paper is to give a variety of examples which show that, in

general, the definition proposed in [18] and [29] for ρC(f) has serious defects. We shall propose a new

definition for ρC(f) which avoids the problems of the earlier definitions.

If f : C → C is as before and r := r̃C(f) > 0, it is natural to ask whether f has an eigenvector

u ∈ C \ {0} with eigenvalue r, that is, satisfying f(u) = ru. If ρC(f) < r̃C(f), where ρC(f) is the

new definition of the cone essential spectral radius of f , we conjecture that f has such an eigenvector.

We prove this conjecture in a number of cases, for example, if f is a compact perturbation of a map

g : C → C which is linear on C. In general, we argue that the conjecture is exactly analogous to a

long-standing and apparently intractable problem in “asymptotic fixed point theory;” see Remark 4.7

below.

This paper is long, so an outline may be helpful. In an attempt to keep the paper self-contained,

we list in Section 1 some standard facts about cones, and we recall the classical linear Krein-Rutman

theorem [15] and generalization due to Bonsall [3]. We also recall some theorems concerning measures

of noncompactness, including recently discovered results (see [20] and [21]) concerning existence of

inequivalent measures of noncompactness; and we describe some nonlinear Krein-Rutman theorems

for noncompact operators from [18] and [29]. In Section 2, we construct closed, total cones K and

linear maps L : K → K for which the definition of cone essential spectral radius in [18] is seriously

flawed. With the aid of results from [20] and [21], we also show that another plausible definition of

cone essential spectral radius has serious defects for linear maps L : K → K, where againK is a closed,

total cone. In Section 3 we present our definition of ρC(f); see Definition 3.2 and equation (3.5). We

then derive a number of consequences which play a role in investigating the basic conjecture that
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ρC(f) < r̃C(f) implies that f(u) = ru for some u ∈ C \ {0} with r := r̃C(f). In Section 4 we prove

the basic conjecture if f satisfies a variety of additional assumptions; but we note that the general

conjecture remains open. In Section 5 we consider a concrete class of maps F motivated by the general

max-plus operators treated in [18], but the general conjecture again remains unsolved for the class F ;

see Question E.

1 Background: Cones, Measures of Noncompactness and Theorems

of Krein-Rutman Type

We begin by reminding the reader of some necessary background material.

If (X, ‖ · ‖) is a normed linear space (or NLS) over R or C, we shall call a subset C of X a “wedge”

if C is convex and tC ⊂ C for all t ≥ 0, where tC := {tx | x ∈ C}. We shall call a wedge C a “cone”

(with vertex at 0) if C ∩ (−C) = {0}, where −C := {−x | x ∈ C}. If C is a cone (respectively, wedge)

and C is a complete metric space in the metric induced by the norm on X , we shall call C a “complete

cone” (respectively, “complete wedge”). If X is a Banach space, a wedge C ⊂ X is complete if and

only if it is closed.

A cone C in an NLS (X, ‖ · ‖) induces a partial ordering ≤C on X by x≤C y if and only if

y − x ∈ C. If C is obvious, we shall write ≤ instead of ≤C . Such a cone is called “normal” if there

exists a constant M such that ‖x‖ ≤ M‖y‖ whenever 0 ≤C x≤C y. If (X, ‖ · ‖) is a Banach space

and C is a complete, normal cone in X , it is known that there exists an equivalent norm ||| · ||| on X

such that |||x||| ≤ |||y||| whenever 0 ≤C x ≤C y. See [35] for more general results. If (X, ‖ · ‖) is an NLS,

one obtains the same result by taking the completion of X . A wedge C in an NLS (X, ‖ · ‖) is called

“reproducing” if X = C − C := {u − v | u, v ∈ C}, and C is called “total” if X equals the closure

of {u − v | u, v ∈ C}. As will be illustrated in some later examples, it may easily happen in infinite

dimensions that a complete cone in a Banach space is total but not reproducing. If C is a closed,

reproducing cone in a real Banach space (X, ‖ · ‖), one can define a norm ||| · ||| on X by

|||x||| := inf{‖u‖ + ‖v‖ | x = u− v for some u, v ∈ C}, (1.1)

and it is known (see [8], [13], [35]) that ‖ · ‖ and ||| · ||| are equivalent norms on X and |||x||| = ‖x‖ for all

x ∈ C. More generally, if C is a closed cone in a Banach space (X, ‖ · ‖) and if Y := {u− v |u, v ∈ C},

then Y is a real Banach space in the norm ||| · ||| defined by (1.1), and again |||x||| = ‖x‖ for all x ∈ C.



VERSION OF JANUARY 22, 2010 3

If C is a closed cone in a Banach space X , we shall write

C∗ := {φ ∈ X∗ | Re(φ(x)) ≥ 0 for all x ∈ C},

where X∗ denotes the dual space of X and Re(φ(x)) denotes the real part of φ(x). In general C∗ is a

closed wedge; and if C is total, C∗ is a closed cone. It is known (see [8], [35]) that C is normal if and

only if C∗ is reproducing and C is reproducing if and only if C∗ is normal.

If C is a complete cone in an NLS (X, ‖ · ‖), a map f : C → C will be called “homogeneous of

degree one” or simply “homogeneous” if, for all t ≥ 0 and for all x ∈ C,

f(tx) = tf(x).

A map f : C → C will be called C-linear if

f(ax+ by) = af(x) + bf(y),

for all nonnegative scalars a and b and for all x, y ∈ C. As will be seen later, it may happen that a

continuous, C-linear map f : C → C, where C is a total cone in a Banach space X , does not have a

continuous extension F : X → X as a linear map. A map f : C → C will be called C-order-preserving

if, whenever 0 ≤C x≤C y,

f(x)≤C f(y).

It is sometimes the case that one has a complete cone C, a map f : C → C and a cone C1 ⊃ C

such that for all x, y ∈ C with x≤C1
y one has f(x) ≤C1

f(y); and in this situation we shall say that

f is “C1-order-preserving.” If f : C → C is C-linear, f is automatically C-order-preserving; but in

general it may easily happen that f : C → C is continuous, homogeneous, C1-order-preserving but

not C-order-preserving. See the discussion of “reproduction-decimation operators” in [17].

If Y is a complex Banach space and Λ : Y → Y is a bounded, (complex) linear operator, σ(Λ)

will denote the spectrum of Λ, so σ(Λ) := {z ∈ C | zI − Λ is not one-one and onto}. If X is a real

Banach space and L : X → X is a bounded, (real) linear map, one can form the complexification X̃

of X and the complexification L̃ of L, so L̃ : X → X̃ is a bounded, complex linear map. We define

σ(L) := σ(L̃). Recall that we have lim
n→∞

‖Ln‖1/n = lim
n→∞

‖L̃n‖1/n and

r(L) := sup{|z| | z ∈ σ(L)} = lim
n→∞

‖Ln‖1/n = inf
n≥1

‖Ln‖1/n. (1.2)

We shall use the notation of equation (1.2). As usual, r(L) is called the spectral radius of L.
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If Y is a complex Banach space and Λ : Y → Y is a bounded, linear map, there are several

inequivalent definitions of the essential spectrum ess(Λ) of Λ. For example, T. Kato [14] defines

ess1(Λ) by

ess1(Λ) := {z ∈ C | zI − Λ is not semi-Fredholm}.

F. Browder [5] gives a different definition, ess2(Λ), while F. Wolf [37] defines ess3(Λ) by

ess3(Λ) := {z ∈ C | zI − Λ is not Fredholm}.

If Y is infinite dimensional, it is known that the essential spectrum is nonempty. Furthermore, the

quantity sup{|z| | z ∈ essj(Λ)} is independent of j = 1, 2, 3. We shall write

ρ(Λ) := sup{|z| | z ∈ essj(Λ)} (1.3)

and call ρ(Λ) the “essential spectral radius of Λ.” Note that ρ(Λ) = 0 if ΛN is compact for some integer

N ≥ 1. If δ > 0, there are at most finitely many elements λ ∈ σ(Λ) with |λ| ≥ ρ(Λ) + δ and each

such λ is an eigenvalue of finite algebraic multiplicity. If X is a real Banach space and L : X → X is

a bounded linear map, we consider the complexification X̃ of X and the complexification L̃ : X̃ → X̃

of L, and we define ρ(L) := ρ(L̃).

With these preliminaries we can describe the basic questions of interest in this paper. Suppose

that C is a complete cone in an NLS (X, ‖ · ‖). Suppose that f : C → C is continuous, homogeneous

and either C-order-preserving or C1-order-preserving for some complete cone C1 ⊃ C. If g : C → C is

continuous and homogeneous, define ‖g‖C by

‖g‖C := sup{‖g(x)‖ | x ∈ C and ‖x‖ ≤ 1}. (1.4)

Define the “Bonsall cone spectral radius” r̃C(f) by

r̃C(f) := lim
m→∞

‖fm‖
1/m
C = inf

m≥1
‖fm‖

1/m
C . (1.5)

We note that (1.5) is well-defined even if f is not order-preserving; however, in this paper we generally

shall assume that our functions are order-preserving.

Question A. Under what further conditions on f is it true that there exists v ∈ C \ {0} with

f(v) = rv, where r := r̃C(f)?
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Question B. If f : C → C is continuous and C-linear, under what further conditions on f is it true

that there exists v ∈ C \ {0} with f(v) = rv, where r := r̃C(f)?

It is easy to see that some sort of compactness condition will be necessary to obtain the desired

eigenvectors in Questions A and B. The hope is to find a condition which is optimal or close to

optimal. If f in Question A or B is compact, the existing theory is satisfactory; but there are many

interesting noncompact maps (see, for example, [18] and the linear maps in Sections 5 and 6 of [31]),

and here the situation is much less satisfactory. Indeed, it is not generally recognized that the existing

theory is inadequate even to handle Question B in the stated generality.

The historical starting point of our work here is the classical Krein-Rutman Theorem [15].

Theorem 1.1 (Krein and Rutman [15]). Let C be a closed, total cone in a real Banach space X

and L : X → X a bounded, compact linear map such that LC ⊂ C. If r(L) > 0 (see equation (1.2)),

there exists u ∈ C \ {0} with Lu = ru, where r := r(L).

It is interesting to note that the original Krein-Rutman paper [15] already has some discussion of

eigenvectors of nonlinear maps f : C → C; see Section 9 of [15].

F.F. Bonsall [3] has given a generalization of Theorem 1.1. If X is a real Banach space, C is

a closed, total cone in X and L : X → X is a bounded, compact linear map, Bonsall proves that

r̃C(L) = r(L) (see equation (1.5)). However, if L : X → X is not compact, Bonsall gives a simple

example of a bounded linear map L : X → X and a parameterized family of closed, total cones Cγ ,

for γ > 0, such that LCγ ⊂ Cγ , with L|Cγ compact, such that r̃Cγ (L) = 2−γ and r(L) = 1.

Theorem 1.2 (Bonsall [3]). Let C be a complete cone in an NLS (X, ‖ · ‖) and L : C → C a

continuous, C-linear map. Assume that L|C is compact and r̃C(L) > 0. Then there exists u ∈ C \ {0}

with Lu = ru, where r := r̃C(L).

Notice in Theorem 1.2 that even if L has a continuous linear extension L̂ : X → X , it is only

assumed that L̂|C is compact, not that L̂ is compact.

Many authors have given generalizations of Theorems 1.1 and 1.2; see, for example, [10], [18], [28],

[29], [30], [31], [33], [34], [36] and the references in these papers.

To describe some of these theorems we need to recall the definition of a “measure of noncompact-
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ness” or MNC. If (X, d) is a metric space and S is a bounded subset of X , then K. Kuratowski [16]

has defined α(S), the Kuratowski measure of noncompactness of S by

α(S) := inf{δ > 0 | S =
n⋃

i=1

Si for some Si with diam(Si) ≤ δ, for 1 ≤ i ≤ n <∞}.

Here diam(Si) := sup{d(u, v) | u, v ∈ Si}. If (X, d) is a complete metric space, one can easily verify

that the Kuratowski MNC α satisfies the following properties:

(A1) α(S) = 0 if and only if S is compact, for all bounded sets S ⊂ X ;

(A2) α(S) ≤ α(T ) for all bounded sets S ⊂ T ⊂ X ;

(A3) α(S ∪ {x0}) = α(S) for all bounded sets S ⊂ X and all x0 ∈ X ; and

(A4) α(S) = α(S) for all bounded sets S ⊂ X .

Property (A1) explains the terminology “measure of noncompactness.” Properties (A2)-(A4) are true

for a general metric space (X, d).

If (X, ‖ · ‖) is an NLS and S is a bounded subset of X , we shall denote by co(S) the convex hull of

S, that is, the smallest convex set containing S. If T is also a bounded subset of X and λ is a scalar,

we shall write

λS := {λs | s ∈ S}, S + T := {s+ t | s ∈ S and t ∈ T}.

More generally, if Sj for 1 ≤ j ≤ m are bounded subsets of X , we shall write

m∑

j=1

Sj := {

m∑

j=1

sj | sj ∈ Sj for 1 ≤ j ≤ m}.

G. Darbo [7] first observed that if (X, ‖ · ‖) is an NLS with metric d(x, y) := ‖x− y‖, then α satisfies

the following additional properties:

(A5) α(co(S)) = α(S) for all bounded sets S ⊂ X ;

(A6) α(S + T ) ≤ α(S) + α(T ) for all bounded sets S, T ⊂ X ; and

(A7) α(λS) = |λ|α(S) for all bounded sets S ⊂ X and all scalars λ.
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Properties (A5)-(A7) have made α a very useful tool in functional analysis and fixed point theory.

Indeed, Darbo’s immediate motivation for establishing properties (A5)-(A7) was to use them to prove

an elegant new fixed point theorem; see [7].

Notice that in a Banach space the properties (A1)-(A7) are not independent. For example, (A2),

(A6) and (A7) imply (A4).

For general metric spaces (X, d), the Kuratowski MNC also satisfies the so-called “set-additivity

property,” namely

(A8) α(S ∪ T ) = max{α(S), α(T )} for all bounded sets S, T ⊂ X .

For our purposes here, (A8) will, for the most part, be irrelevant.

If W is a complete wedge in an NLS (X, ‖ · ‖) then B(W ) will denote the collection of all bounded

subsets ofW . If (X, ‖·‖) is a Banach space then a map β : B(X) → [0,∞) will be called a “homogeneous

measure of noncompactness” on X , or “homogeneous MNC” on X , if β satisfies properties (A1)-(A7)

with β replacing α in the statements of these properties. If β also satisfies (A8) with β replacing α

there, then β will be called a “homogeneous, set-additive MNC.”

If W is a complete wedge in an NLS (X, ‖ · ‖), a map β : B(W ) → [0,∞) will be called “weakly

homogeneous” if it satisfies the following property:

(A7w) β(λS) = λβ(S) for every S ∈ B(W ) and every λ ≥ 0.

A map β : B(W ) → [0,∞) will be called a “weakly homogeneous MNC” on W if it satisfies (A7w)

and also satisfies (A1)-(A6), with β replacing α and W replacing X in the statements of (A1)-(A6).

If β also satisfies (A8), with β replacing α and W replacing X there, then β will be called a “weakly

homogeneous, set-additive MNC” on W .

If β and γ are homogeneous MNC’s on a Banach space (X, ‖ · ‖), we say that β dominates γ if

there exists a constant c such that, for all S ∈ B(X),

γ(S) ≤ cβ(S).

We say that β and γ are equivalent if β dominates γ and γ dominates β, that is, if there exist positive

constants b and c such that, for all S ∈ B(X),

bβ(S) ≤ γ(S) ≤ cβ(S). (1.6)
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There are many examples known of MNC’s, and in a given problem it may be important to work

with an MNC which is natural for that problem. See, for example, [18] and [31]. For given equivalent

homogeneous MNC’s β and γ on an infinite dimensional Banach space X , considerable effort has been

devoted (see [1] and [2] and the references there) to finding optimal constants b and c in equation (1.6).

Curiously, it has only very recently been proven (see [20] and [21]) that for a wide variety of infinite

dimensional classical Banach spaces X (in particular, for any infinite dimensional Hilbert space; for

any infinite dimensional space Lp(Ω,Σ, µ) where 1 ≤ p ≤ ∞ and where (Ω,Σ, µ) is a general measure

space; and for any infinite dimensional C(K) where K is a compact Hausdorff space) that there exist

uncountably many pairwise inequivalent homogeneous MNC’s on X . The question of whether there

exist inequivalent homogeneous MNC’s on every infinite dimensional Banach space X remains open.

We shall use later some special cases of results from [20] and [21].

If W is a complete wedge in an NLS (X, ‖ · ‖) and β and γ are weakly homogeneous MNC’s on W ,

the definitions of “β dominates γ” or “β and γ are equivalent” remain essentially the same and will

not be repeated.

If W is a complete wedge in an NLS (X, ‖ · ‖) and β is a weakly homogeneous MNC on W , and

if f : W → W is a continuous map such that f(tx) = tf(x) for all x ∈ W and t ≥ 0, then f maps

bounded subsets of W to bounded subsets of W . In this case one defines

β(f) := inf{λ ≥ 0 | β(f(S)) ≤ λβ(S) for all S ∈ B(W )}, (1.7)

where we set β(f) = ∞ if the set in the right-hand side of (1.7) is empty. As is proved in [20], even if

W = X is a Banach space, f : X → X is a bounded linear map and βX is a homogeneous, set-additive

MNC on X , it may happen that βX(fm) = ∞ for all m ≥ 1. In general, we follow notation in [20]

and define β# by

β#(f) := lim sup
m→∞

(β(fm))1/m, (1.8)

where β#(f) = ∞ is allowed. If β(f) < ∞, then for all j ≥ 1 and k ≥ 1, it is the case that β(f j),

β(fk) and β(f j+k) are finite and

β(f j+k) ≤ β(f j)β(fk).

A well-known calculus lemma now implies that, if β(f) <∞, then

β#(f) = lim
m→∞

(β(fm))1/m = inf
m≥1

(β(fm))1/m. (1.9)
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If W = C is a complete cone in an NLS (X, ‖ · ‖), the quantity β#(f) is defined in [18] on page 531

to be the “cone essential spectral radius of f .” If β and γ are equivalent, weakly homogeneous MNC’s

on C, it is easy to see that β#(f) = γ#(f); but in general we shall see that it may happen that

β#(f) 6= γ#(f). For this and other reasons we shall argue that β#(f) is not an appropriate definition

of the cone essential spectral radius of f .

If (X, ‖ · ‖) is a real or complex Banach space, L is a bounded linear map and α denotes the

Kuratowski MNC on X , it is shown in [24] that ρ(L), the essential spectral radius of L, is given by

ρ(L) = α#(L) = lim
m→∞

(α(Lm))1/m = inf
m≥1

(α(Lm))1/m, (1.10)

and it follows easily that if β is any homogeneous MNC on X which is equivalent to α, then β#(L) =

ρ(L).

One might conjecture that β#(L) = ρ(L) for any homogeneous MNC. However, if Z := `p(N×N),

where 1 ≤ p ≤ ∞ and Λ : Z → Z is defined by Λz = x, where x(i, j) = z(i + 1, j) for i, j ∈ N, then

‖Λm‖ = 1 for all m ≥ 1, so r(Λ) = 1. Furthermore, it is proved in Theorem 8 of [20] that for each

s with 1 < s ≤ ∞, there exists a homogeneous, set-additive MNC γs on Z such that γ#
s (Λ) = s. In

particular, for s = ∞, it is the case that γ∞(Λm) = ∞ for all m ≥ 1.

If X is a Banach space, β is a homogeneous MNC on X and L : X → X is a bounded linear

operator, one can also define

β∗(L) := lim sup
m→∞

(β(LmB1(0)))1/m,

where we write Br(x) := {y ∈ X | ‖y − x‖ < r}. Notice that because LmB1(0) ⊂ B‖Lm‖(0) =

‖Lm‖B1(0), we have

β(LmB1(0)) ≤ ‖Lm‖β(B1(0)),

so, as opposed to β#(L), one has β∗(L) ≤ lim
m→∞

‖Lm‖1/m = r(L). More generally, suppose that C is a

complete cone in an NLS (X, ‖ · ‖) and that f : C → C is continuous and homogeneous. If we define

Vr := {x ∈ C | ‖x‖ ≤ r} and if β is a weakly homogeneous MNC on C, we can define

β∗(f) := lim sup
m→∞

(β(fm(V1)))
1/m. (1.11)

Notice that fm(V1) ⊂ ‖fm‖CV1, so

β(fm(V1)) ≤ ‖fm‖Cβ(V1).
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Using equations (1.5) and (1.11), one obtains, in contrast to β#(f), that

β∗(f) ≤ r̃C(f).

If X is a Banach space, L : X → X is a bounded linear operator and β is any homogeneous MNC on

X , it is proved in [20] that

β∗(L) = ρ(L). (1.12)

With these preliminaries we can describe some results from [29] which represent our proximate

starting point; see also Proposition 6 on page 252 of [28] and Sections 2 and 3 of [18].

Theorem 1.3 (See Theorem 2.1 in [29]). Let C be a complete cone in an NLS (X, ‖ · ‖) and

f : C → C a continuous, homogeneous map which is C-order-preserving. Assume that there exists a

weakly homogeneous MNC β on C such that β(f) < 1. Assume also that there exists u ∈ C such that

{‖fm(u)‖ |m≥ 1} is unbounded. Then there exists λ ≥ 1 and v ∈ C \ {0} with f(v) = λv. If f(x) 6= x

for all x ∈ C with ‖x‖ = 1 and if V := {x ∈ C | ‖x‖ < 1}, the fixed point index of f : U → C satisfies

iC(f, V ) = 0.

Theorem 2.1 is stated slightly less generally in [29], but the same proof applies. The relevant

fixed point index is described in [6], [9] and [12], with generalizations in [19], [25], [27] and [30]. An

examination of the proof in [29] shows that Theorem 1.3 remains true under the weaker assumption

that f is C1-order-preserving for some closed cone C1 ⊃ C.

Theorem 1.4 (See Theorem 2.2 in [29]). Let C be a closed cone in a Banach space X and β

a weakly homogeneous MNC on C. Let L : X → X be a bounded linear map with LC ⊂ C. If

β#(L) < r̃C(L), where these quantities are defined by equations (1.8) and (1.5), then there exists

v ∈ C \ {0} with Lv = rv, where r := r̃C(L).

Theorem 1.4 is stated slightly less generally in [29], but the same proof applies. It is remarked

in [29] that if C is reproducing, one can prove that α#

C(L) ≤ r̃C(L), where αC denotes the Kuratowski

MNC on C. However, as we shall see, if C is a closed, total cone in X , it may easily happen that

α#

C(L) > r̃C(L), in which case Theorem 1.4 provides no information.

Corollary 1.5 (See Corollary 2.2 in [29]). Let X be a real Banach space and L : X → X a
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bounded linear map with ρ(L) < r(L) := r (see equations (1.2), (1.3) and (1.10)). If C is a closed,

total cone in X with LC ⊂ C, then r̃C(L) = r(L) and there exists v ∈ C \ {0} with Lv = rv. If C∗

denotes the dual cone of C, there exists ψ ∈ C∗ \ {0} with L∗ψ = rψ.

If C in Corollary 1.5 is reproducing, part of Corollary 1.5 was obtained by a different argument by

Edmunds, Potter and Stuart in [10].

2 The Cone Essential Spectral Radius: Counterexamples

If C is a complete cone in an NLS (X, ‖ · ‖) and f : C → C is continuous, homogeneous and C-order-

preserving, we want to give a “reasonable” definition of ρC(f), the “cone essential spectral radius of

f .” We take the viewpoint that whatever definition is given, ρC(f) should satisfy ρC(f) ≤ r̃C(f).

Also, if a definition of ρC(f) is given in terms of a weakly homogeneous MNC β on C, the number

ρC(f) should be independent of β; see equation (1.12).

Recall that if β is a weakly homogeneous MNC on a complete cone C and f : C → C is continuous,

homogeneous and C-order-preserving, then ρC(f ; β), a cone essential spectral radius of f , possibly

dependent on β, is defined in [18] by

ρC(f ; β) := β#(f),

where β#(f) is defined by equation (1.8). If α denotes the Kuratowski MNC onX and αC its restriction

to C, one might hope that α#

C(f) ≤ r̃C(f). We shall show, in Theorem 2.8 below, that it may happen

that α#

C(f) > r̃C(f) even if f : C → C is continuous and C-linear where C is a closed, total cone in a

Banach space. To this end we introduce several spaces and maps which will be used below, as stated:

(B1) (X, | · |) is an infinite dimensional Banach space;

(B2) Y := c0(X) denotes the Banach space of sequences y = {xj}j≥1, with xj ∈ X for all j ≥ 1 and

lim
j→∞

|xj| = 0, endowed with the norm

‖y‖Y := sup
j≥1

|xj| = max
j≥1

|xj|;

(B3) Z := R×Y is the Banach space of all pairs (t, y) with t ∈ R and y ∈ Y endowed with the norm

‖(t, y)‖Z := max{|t|, ‖y‖Y },
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where we view Y as a closed linear subspace of Z via the isometric embedding j(y) := (0, y);

and

(B4) we define bounded linear projections Q : Z → Z and Pn, P̂n : Z → Z, and πn : Z → X , for

n ≥ 1, by Q(t, y) = (0, y) and Pn(t, y) = P̂n(0, y), where

P̂n(t, y) = (t, η) and πj(t, η) =





πj(t, y) for 1 ≤ j ≤ n,

0 for j > n,

where πj(t, y) = xj and y := (x1, x2, . . . , xn, . . .).

The setting given in (B1)-(B4), as well as in (B5) and (B6) below, will only be employed where explicitly

stated. Since we identify Y with {0} × Y ⊂ Z via the isometry j, we may write πjy := πj(0, y) for

y ∈ Y .

Lemma 2.1. Assuming (B1)-(B4), let α denote the Kuratowski MNC on Z and let γ denote the

Kuratowski MNC on X . If S is a bounded subset of Z, we have that

(a) α(S) = α(QS); and

(b) α(PnS) = max{γ(πjS) | 1 ≤ j ≤ n}.

Proof. We let ‖Q‖ and ‖πj‖ denote the usual operator norms of these maps.

If M is chosen so that ‖z‖Z ≤M for all z ∈ S and K := {(t, 0) | |t| ≤M}, then S ⊂ QS+K. Since

K is compact, α(S) ≤ α(QS) + α(K) = α(QS). On the other hand, ‖Q‖ ≤ 1, so α(QS) ≤ α(S), and

we conclude that α(S) = α(QS).

Because ‖πj‖ = 1, and πjPnS = πjS for 1 ≤ j ≤ n,

γ(πjS) ≤ ‖πj‖α(PnS) = α(PnS)

for such j. On the other hand, let d := max{γ(πjS) | 1 ≤ j ≤ n} and select ε > 0. Then for

1 ≤ j ≤ n there exists an integer nj ≥ 1 and sets Sij ⊂ X , for 1 ≤ i ≤ nj, such that πjS =
n⋃

i=1
Sij

and diam(Sij) ≤ d + ε for 1 ≤ i ≤ nj . Let In denote the finite collection of all n-tuples of integers

I := (i1, i2, . . . , in) with 1 ≤ ij ≤ nj for 1 ≤ j ≤ n. Define SI ⊂ j(Z) by (0, y) ∈ SI if and only

if πjy ∈ Sij ,j for 1 ≤ j ≤ n and πjy = 0 for j > n. By our construction, PnS ⊂
⋃

I∈In

SI and
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diam(SI) ≤ d + ε. This shows that α(PnS) ≤ d + ε, and since ε > 0 was arbitrary, the proof is

complete.

We introduce some addititional notation:

(B5) a = {aj}j≥1 denotes a sequence of reals with 0 < aj ≤ 1 for all j ≥ 1 and lim
j→∞

aj = 0; and

(B6) Ca ⊂ Z is defined by

Ca := {(t, y) ∈ Z | |πjy| ≤ ajt for j ≥ 1}.

Lemma 2.2. Assume (B1)-(B6). Then Ca is a closed, normal and total cone in Z, but Ca is not

reproducing.

Proof. We leave to the reader the proof that Ca is a closed cone in Z. If (s, u) ∈ Ca, then s ≥ 0 and

‖(s, u)‖Z = s because 0 < aj ≤ 1 for all j. If (s, u), (t, v) ∈ Ca and (s, u)≤Ca
(t, v), it follows that

s ≤ t, so ‖(s, v)‖Z = s ≤ t = ‖(t, u)‖Z, and thus Ca is normal.

If (τ, y) ∈ Z, then lim
n→∞

‖(τ, y)− P̂n(τ, y)‖Z = 0, so to prove that Ca is total, it suffices to prove

that if (τ, y) ∈ Z and n ≥ 1, then there exist (s, u), (t, v) ∈ Ca with

(s, u)− (t, v) = P̂n(τ, y).

With (τ, y) and n fixed as above, select s ≥ τ such that ajs ≥ |πjy| for 1 ≤ j ≤ n and define t := s−τ .

Then P̂n(s, y) ∈ Ca, and t ≥ 0 so (t, 0) ∈ Ca. Thus P̂n(s, y)− (t, 0) = P̂n(τ, y), and it follows that Ca

is total.

To see that Ca is not reproducing, select xj ∈ X with |xj| = a
1/2
j for all j ≥ 1 and define

y := (x1, x2, . . . , xn, . . .) ∈ Y and z := (0, y) ∈ Z. Suppose that there exist (s, u), (t, v) ∈ Ca with

(s, u) − (t, v) = (0, y). Denoting uj := πju and vj := πjv for j ≥ 1, then by the definition of Ca we

have that |uj| ≤ ajs and |vj| ≤ ajt = ajs, so for all j ≥ 1,

a
1/2
j = |xj| = |uj − vj | ≤ |uj|+ |vj| ≤ 2ajs.

Since we assume that lim
j→∞

aj = 0 and aj > 0, the above inequality is impossible for large j. Thus Ca

is not reproducing.
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We also need to recall a result which was obtained independently by Furi and Vignoli in [11] and

by Nussbaum in Section A of [25].

Lemma 2.3 (See [11] and Section A of [25]). If (X, ‖·‖) is an infinite dimensional Banach space,

V := {x ∈ X | ‖x‖ ≤ 1} and α is the Kuratowski MNC on (X, ‖ · ‖), then α(V ) = 2.

For (X, ‖ · ‖) an infinite dimensional Banach space, it follows from Lemma 2.3 that α(Vr(x0)) = 2r,

where α is the Kuratowski MNC on X and Vr(x0) := {x | ‖x− x0‖ ≤ r}.

Lemma 2.4. Assume (B1)-(B6). If {(tn, yn)}n≥1 is a sequence of vectors in Ca and also (t, y) ∈ Ca,

then lim
n→∞

‖(tn, yn) − (t, y)‖Z = 0 if and only if lim
n→∞

tn = t and lim
n→∞

|πiyn − πiy| = 0 for all i ≥ 1.

Proof. Because πi is a continuous linear map for 1 ≤ i <∞, the implication in one direction is clear.

To prove the implication in the other direction, select M such that 0 ≤ tn ≤ M for all n, and so

0 ≤ t ≤M . It follows from the definition of Ca that

|πiyn|, |πiy| ≤Mai, for i ≥ 1 and n ≥ 1. (2.1)

Select ε > 0. Since lim
i→∞

ai = 0, equation (2.1) implies that there exists an integer i0 such that

|πiyn| < ε/2 and |πiy| < ε/2 for all i > i0. Because lim
n→∞

|πiyn − πiy| = 0 and lim
n→∞

|tn − t| = 0, there

exists an integer n0 such that |πiyn − πiy| < ε and |tn − t| < ε for 1 ≤ i ≤ i0 and for all n ≥ n0.

Combining these estimates we find that

‖(tn, yn) − (t, y)‖Z < ε

for all n ≥ n0, which completes the proof.

With πi, a and Ca as in (B4)-(B6), we define a Ca-linear map L : Ca → Ca by L(t, y) = (t, η),

where

πiη :=

(
ai

ai+1

)
πi+1y, (2.2)

for i ≥ 1.

Lemma 2.5. If L : Ca → Ca is defined as above, L is a continuous, Ca-linear map. If m ≥ 1, and

Lm(t, y) = (t, ζ),

πiζ =

(
ai

ai+m

)
πi+my. (2.3)
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For m ≥ 1 we have (see equations (1.4) and (1.5)) that ‖Lm‖Ca = 1 and r̃Ca(L) = 1.

Proof. We leave to the reader the verification that LCa ⊂ Ca, that equation (2.3) holds and that L

is Ca-linear. The fact that L : Ca → Ca is continuous follows easily with the aid of Lemma 2.4.

Because ‖(t, y)‖Z = t for all (t, y) ∈ Ca and L(t, y) = (t, η), we see that ‖Lm‖Ca = 1 for all m and

thus r̃Ca(L) = 1.

Lemma 2.6. Assume (B1)-(B6). Let β denote the restriction of the Kuratowski MNC α on Z to

bounded subsets of Ca, so β is a weakly homogeneous MNC on Ca. If L : Ca → Ca is defined by

equation (2.2), we have (see equation (1.7))

β(Lm) = sup
i≥1

(
ai

ai+m

)
, (2.4)

where we allow the possibility that β(Lm) = ∞.

Proof. Let Sj := {(1, y) ∈ Ca | πiy = 0 for i 6= j and |πjy| ≤ aj}. Since Sj is isometric to

{x ∈ X | |x| ≤ aj}, Lemma 2.3 and the comment following Lemma 2.3 imply that β(Sj) = 2aj.

Lemma 2.5 implies that LmSj+m = Sj, and since β(Sj)/β(Sj+m) = aj/aj+m, we conclude that

β(Lm) ≥ sup
j≥1

(aj/aj+m). If sup
j≥1

(aj/aj+m) = ∞, we are done. If sup
j≥1

(aj/aj+m) := M < ∞, we can

extend Lm to a bounded linear map Λ of Z to Z by Λ(t, y) = (t, ζ), where πjζ = (aj/aj+m)πj+my.

Because we assume that lim
j→∞

aj = 0 and aj > 0 for all j, it must be the case that M > 1, and one can

see that

‖Λ‖ = sup
j≥1

(
aj

aj+m

)
= M,

where ‖Λ‖ denotes the usual operator norm. It follows that for all bounded S ⊂ Z,

α(ΛS) ≤Mα(S),

so this same inequality must hold for all bounded S ⊂ Ca. This proves equation (2.4).

Remark 2.7. As was shown in Lemma 2.6, if sup
j≥1

(aj/aj+m) < ∞ then the continuous Ca-linear

map Lm : Ca → Ca has a continuous linear extension Λ : Z → Z to all of Z. Conversely, if

sup
j≥1

(aj/aj+m) = ∞ we claim that such an extension Λ of Lm does not not exist. If such Λ did exist,
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choose ej ∈ Y to satisfy πiej = 0 for i 6= j and |πjej| = 1. Then (1, ajej) ∈ Ca, and

Λ(0, aj+mej+m) = Λ(1, 0)− Λ(1, aj+mej+m)

= Lm(1, 0)− Lm(1, aj+mej+m) = (1, 0)− (1, ηj) = (0,−ηj),

where ‖ηj‖Y = aj. But then ‖Λ‖ ≥ ‖Λ(0, ej+m)‖Z = aj/aj+m, so ‖Λ‖ = ∞, a contradiction.

Our next theorem shows that even if C is a closed total cone in a Banach space Z, with f : C → C

a continuous, C-linear map and αC the restriction of the Kuratowski MNC α on Z to the bounded

subsets of C, it may still happen (see equations (1.5) and (1.9)) that

α#

C = lim
m→∞

(αC(fm))1/m > r̃C(f). (2.5)

Equation (2.5) suggests that the definition of cone essential spectral radius in [18], [29] has serious

defects.

Theorem 2.8. Assume (B1)-(B3). Then the Banach space (Z, ‖ · ‖Z) given there with Kuratowski

MNC α has the following property: For each µ ∈ (1,∞], there exists a closed, total cone Kµ ⊂ Z and

a continuous, Kµ-linear map Lµ : Kµ → Kµ such that (see equations (1.5), (1.8) and (1.9))

α#

Kµ
(Lµ) = lim

m→∞
(αKµ(Lm

µ ))1/m = µ > r̃Kµ(Lµ) = 1.

Here αKµ is the weakly homogeneous MNC on Kµ obtained by restricting α to the bounded subsets of

Kµ.

Proof. Assume additionally (B4)-(B6), where the sequence a in (B5) will depend on µ and will be

given shortly, and where we take Kµ := Ca with Ca as in (B6). Also let Lµ : Kµ → Kµ be the linear

map L as defined in the sentence preceding Lemma 2.5. Then by Lemma 2.5, we have r̃Kµ(Lµ) = 1;

and by Lemma 2.6,

αKµ(Lm
µ ) = sup

i≥1

(
ai

ai+m

)
.

If 1 < µ < ∞ we choose ai := µ−i for i ≥ 1, and we find that αKµ(Lm
µ ) = µm and α#

Kµ
(Lµ) = µ. If

on the other hand µ = ∞ we choose ai := i−i for i ≥ 1, and we find that αKµ(Lm
µ ) = ∞ for all m, so

α#

Kµ
(Lµ) = ∞.

Remark 2.9. In equation (1.8), we have defined β#(f) = lim sup
m→∞

(β(fm))1/m, and we have noted that

the limsup can be replaced by a limit (1.9) if β(f) <∞. One might hope that the limsup can always
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be replaced by a limit, at least if one allows the value ∞ for the limit. However, this hope is false

even for continuous, C-linear maps and total cones. To see this, we work in the setting of (B1)-(B6),

as in Theorem 2.8 above. Select µ1 and µ2 with µ1 > µ2 > 1 and define a2i−1 := µ−i
1 and a2i := µ−i

2

for i ≥ 1, to give the sequence a as in (B5). Also let Ca ⊂ Z be as in (B6), and let L : Ca → Ca be

as defined in the sentence preceding Lemma 2.5. Letting αCa denote the weakly homogeneous MNC

on Ca obtained by restricting the Kuratowski MNC α on Z to bounded sets of Ca, one easily checks

that for k ≥ 1,

αCa(L2k) = sup
j≥1

(
aj

aj+2k

)
= µk

1 , αCa(L2k−1) = sup
j≥1

(
aj

aj+2k−1

)
= ∞,

where Lemma 2.6 has been used. It follows that

µ
1/2
1 = lim inf

m→∞
αCa(Lm)1/m < lim sup

m→∞
αCa(Lm)1/m = ∞.

Remark 2.10. Even if Y is an infinite dimensional Banach space, U : Y → Y is a bounded linear

map and β is a homogeneous MNC on Y , it may happen that β(U2k−1) = ∞ for all k ≥ 1 while

ck ≤ β(U2k) ≤ 1 for all k ≥ 1, where 0 < c < 1. Thus the limsup in equation (1.8) is, in general,

necessary. To see this, consider again the setting (B1)-(B6), with Y as in (B2). Let Pn : Y → Y be

as in (B4), where here we identify Y with {0} × Y ⊂ Z via the isometry j. Thus Pny = η where

πjη = πjy for 1 ≤ j ≤ n and πjη = 0 for j > n. Define U : Y → Y by Uy = η, where π1η = 0 and

πjη = πj−1y for j ≥ 2, so U is just the right translation. Let α denote the Kuratowski MNC on Y

and let

A(Y ) := {S ∈ B(Y ) | lim
n→∞

α((I − Pn)S) = 0}.

Again select µ1 and µ2 with µ1 > µ2 > 1 and define a2i−1 := µ−i
1 and a2i := µ−i

2 for i ≥ 1, to give the

sequence a as in (B5). Define a Banach space (Ŷ , ‖ · ‖bY
) by

Ŷ := {y = (x1, x2, . . . , xn, . . .) | xj ∈ X for all j ≥ 1

and lim
j→∞

aj|xj| = 0, with ‖y‖bY
:= sup

j≥1
aj|xj|},

(2.6)

and let α̂ denote the Kuratowski MNC on Ŷ . Theorem 2.4 in [21] implies that we can define a

homogeneous MNC β on Y by setting

β(S) := inf{α̂(A) + α(B) | S ⊂ A+B for some A ∈ A(Y ) and B ∈ B(Y )},
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for any S ∈ B(Y ). Further, it is the case that β(S) = α̂(S) for all S ∈ A(Y ).

For j ≥ 1 let

Sj := {y ∈ Y | πiy = 0 for i 6= j and |πjy| ≤ 1}

so UmSj = Sj+m and Sj ∈ A(Y ) for all j ≥ 1 and m ≥ 1. It follows easily using Lemma 2.3 that

β(Sj) = α̂(Sj) = 2aj and thus β(UmSj) = 2am+j, and therefore

β(Um) ≥ sup
j≥1

(
am+j

aj

)
.

Taking m odd, say m := 2k− 1 where k ≥ 1, we have for j := 2i+ 1 where i ≥ 0, that

β(U2k−1) ≥
a2(k+i)

a2i+1
=
µi+1

1

µk+i
2

→ ∞

as i→ ∞. Thus β(U2k−1) = ∞. On the other hand, taking m := 2k even, where k ≥ 1, one can easily

show that

β(U2k) ≥ sup
j≥1

(
a2k+j

aj

)
= µ−k

2 ,

Further, a calculation shows that U2k extends to a continuous linear map of Ŷ to Ŷ with operator

norm ‖U2k‖bY = µ−k
2 ≤ 1 in this space. Since ‖U2k‖Y = 1 for the norm in the space Y , it follows from

the formula for β(S) that β(U2kS) ≤ β(S) for all S ∈ B(Y ). Thus ck ≤ β(U2k) ≤ 1 for all k ≥ 1,

where c := µ−1
2 , as claimed.

In view of equation (1.12), one might hope that the number β∗(f) defined in equation (1.11) is

independent of the weakly homogeneous MNC β on a cone C, at least if f : C → C is continuous

and C-linear. However, this conjecture fails badly, as is described in the following theorem. Note

(recall Lemma 2.2) that the cone Ca ⊂ Z appearing there is in fact normal and total (although not

reproducing).

Theorem 2.11. Fix µ > 1 and assume (B1)-(B6), taking the sequence aj = µ−j for j ≥ 1 in (B5).

Define U : Z → Z by U(t, y) = (t, η), where π1η = 0 and πjη = µ−1πj−1y for j ≥ 2. Then we have

UCa ⊂ Ca and

α∗
Ca

(U) = lim
m→∞

(α(UmV1))
1/m = µ−1,

where α denotes the Kuratowski MNC on Z and αCa its restriction to Ca, with V1 ⊂ Z given by

V1 := {z ∈ Ca | ‖z‖Z ≤ 1} = {(t, y) ∈ Ca | 0 ≤ t ≤ 1}.
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Further, for each s with 0 ≤ s < 1, there exists a homogeneous, set-additive MNC δs on Z with

γ∗s (U) = lim
m→∞

(δs(U
mV1))

1/m = µ−1s, (2.7)

where γs denotes the restriction of δs to Ca.

Proof. Let {âj}j≥1 be a decreasing sequence of positive reals with â1 ≤ 1 and lim
j→∞

âj = 0. Define a

Banach space (Ŷ , ‖ · ‖bY
) as in (2.6), but with âj in place of aj. Let α̂ denote the Kuratowski MNC on

Ẑ := R ⊕ Ŷ , where the norm is defined by

‖(t, y)‖ bZ := max{|t|, ‖y‖bY },

and thus Ŷ is isometrically embedded in Ẑ by y → (0, y). For any bounded set S ⊂ Ca, one can easily

check that lim
n→∞

α((I − Pn)S) = 0. It now follows from Theorems 2.4 and 2.8 in [21] that there exists

a homogeneous, set-additive MNC β on Z such that β(S) = α̂(S) for all bounded sets S ⊂ Z such

that lim
n→∞

α((I − Pn)S) = 0. In particular, β(S) = α̂(S) for all bounded S ⊂ Ca.

An easy calculation shows that

UmV1 = {(t, y) ∈ Z | πjy = 0 for 1 ≤ j ≤ m, and |πjy| ≤ µ−j t for j > m}.

Because diam((I − Pn)(UmV1)) approaches zero as n→ ∞, Lemma 2.1 implies that

α(UmV1) = max{γ(πjU
mV1) | j ≥ 1},

where γ denotes the Kuratowski MNC on X . Since, for j > m,

πjU
mV1 = {x ∈ X | |x| ≤ µ−j},

Lemma 2.3 implies that

α(UmV1) = 2µ−m−1, lim
m→∞

(α(UmV1))
1/m = µ−1.

Define a linear isometry Γ : Ẑ → Z by setting Γ(t, y) = (t, η), where πjη = âjxj and y =

(x1, x2, . . . , xn, . . .) ∈ Ŷ . It follows that α̂(UmV1) = α(ΓUmV1). But we have

ΓUmV1 = {(t, η) ∈ Z | πjη = 0 for 1 ≤ j ≤ m, and |πjη| ≤ âjµ
−j for j > m},
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so the same argument used above shows that

α̂(UmV1) = α(ΓUmV1) = âm+1µ
−m−1.

If s := lim
k→∞

â
1/k
k+1 exists, it follows that

lim
m→∞

(α̂(UmV1))
1/m = µ−1s.

Thus given s satisfying 0 ≤ s < 1, in order to obtain (2.7) it suffices to take âm = sm if s 6= 0 and

âm = m−m if s = 0, where in either case we take δs := β.

Notice that in Theorem 2.11, δs is a homogeneous, set-additive MNC on Z, not just a weakly

homogeneous MNC on C, the bounded subsets of C. One might hope that a weakly homogeneous

MNC β on C, where C is a closed, total cone in a (general) Banach space Z, necessarily has an

extension to a homogeneous MNC β̂ on Z. The next theorem shows that this hope is false.

We note that in the following theorem, we do not specifically use the setting of (B1)-(B6). In

particular, the space (Z, ‖ · ‖Z) and the cone C are not as in these conditions.

Theorem 2.12. There exists a Banach space (Z, ‖ · ‖Z), a closed, total cone C ⊂ Z and a weakly

homogeneous MNC γ on C with the property that if β is any homogeneous MNC on Z, then the

restriction of β to to C is not equivalent to γ. In particular, there does not exist an extension of γ as

a homogeneous MNC on the Banach space (Z, ‖ · ‖Z).

Proof. Let (X, | · |) be an infinite dimensional Banach space. For µ > 1, let (Yµ, ‖ · ‖Yµ) be the Banach

space (Ŷ , ‖ · ‖bY
) as in (2.6) with the choice aj = µ−j for j ≥ 1. Also let Zµ := R ⊕ Yµ with the norm

‖(t, y)‖Zµ := max{|t|, ‖y‖Yµ}, and observe that Yµ is isometrically embedded in Zµ by y → (0, y). Let

αµ denote the Kuratowski MNC on Zµ. Finally, let

C := {(t, y) ∈ Zµ | |πjy| ≤ t for j ≥ 1},

where we denote πjy = xj for y = (x1, x2, . . . , xn, . . .).

We leave to the reader the simple argument (compare Lemma 2.2) that C is a closed, total cone in

Zµ. Let us observe here that C, as a set, is in fact independent of µ. Denote by dµ(u, v) = ‖u− v‖Zµ

the metric induced on C from (Zµ, ‖ · ‖Zµ). Then one can verify that if µ1 > 0 and µ2 > 0, it is

the case that a subset S ⊂ C is compact (respectively, closed or bounded) in the dµ1
-metric if and
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only if it is compact (respectively, closed or bounded) in the dµ2
-metric. In particular, it follows that

αµ2
, restricted to (C, dµ1

), namely to C taken with the dµ1
metric, is a weakly homogeneous MNC on

(C, dµ1
).

Now fix numbers µ1 and µ2 with µ1 > µ2 > 1. We claim that there does not exist a homogeneous

MNC β on Zµ1
such that the restriction of β to C is equivalent to αµ2

restricted to C. (Here and below

we are taking C with the dµ1
metric.) If there existed such a homogeneous MNC β, then Proposition 2

in [20] would imply that there is a constant M such that β(S) ≤ Mαµ1
(S) for all S ∈ B(Zµ1

). In

particular this would be true for all S ∈ B(C), and there would exist a constant M ′ such that for all

S ∈ B(C),

αµ2
(S) ≤M ′αµ1

(S). (2.8)

However, if Sj := {(1, y) ∈ C | πiy = 0 for i 6= j and |πjy| ≤ 1}, it follows from Lemma 2.3 that

αµ1
(Sj) = 2µ−j

1 and αµ2
(Sj) = 2µ−j

2 . This contradicts (2.8), and so β does not have an extension as

above. This proves the result with Z := Zµ1
and γ := αµ2

.

We have given a variety of examples of continuous C-linear maps L : C → C, where C is a

closed, total cone in a Banach space Z; and we have indicated why, in this generality, certain plausible

definitions of the cone essential spectral radius of L are, in fact, inappropriate. We should note,

however, that if C is reproducing and L : C → C is continuous and C-linear, it is clear how the

cone essential spectral radius of L should be defined. For the sake of brevity we omit the proofs of

Lemma 2.13 and Theorem 2.14.

Lemma 2.13. Let (Z, ‖ · ‖) be a real Banach space and C ⊂ Z a closed, reproducing cone. Let α

denote the Kuratowski MNC on Z and αC the restriction of α to C. For each bounded set R ⊂ Z

define β(R) by

β(R) := inf{αC(S) + αC(T ) | R ⊂ S + (−T ), where S, T ∈ B(C)}.

Then β is a homogeneous MNC on Z and β is equivalent to α.

Theorem 2.14. Let (Z, ‖ · ‖) be a real Banach space and C ⊂ Z a closed, reproducing cone, and

let L : C → C be a continuous, C-linear map. Then there exists a unique, continuous linear map

L̂ : Z → Z such that L̂|C = L|C. If r(L̂) denotes the spectral radius of L̂ and r̃C(L) the Bonsall cone
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spectral radius of L (see equations (1.2) and (1.5)), then

r(L̂) = r̃C(L).

If α denotes the Kuratowski MNC on Z and αC the restriction of α to C, then (see equation (1.8)),

α#

C(L) := lim
m→∞

(αC(Lm))1/m = ρ(L̂),

where ρ(L̂) denotes the essential spectral radius of L̂.

Theorem 2.14 suggests that if C ⊂ Z is a closed, reproducing cone and L : C → C is continuous

and C-linear, then ρ(L̂) is the appropriate definition of the cone essential spectral radius of L.

3 A Definition for the Cone Essential Spectral Radius

Let C be a complete cone in a normed linear space (X, ‖·‖) and f : C → C a continuous, homogeneous,

C-order-preserving map. We shall propose here a possible reasonable definition of the cone essential

spectral radius of f . The definition we shall give avoids the inadequacies described in Section 2.

Note that C is a metric space in the metric d(x, y) := ‖x − y‖ inherited from (X, ‖ · ‖), so if

U ⊂ C we shall say that U is “relatively open in C” if it is open as a subset of the metric space (C, d).

Equivalently, U ⊂ C is relatively open in C if there exists an open subset O ⊂ X such that O∩C = U .

If U ⊂ C is relatively open in C and 0 ∈ C, we shall say that U is a “relatively open neighborhood of

0 in C.” If U ⊂ C is relatively open in C and tU ⊂ U for 0 ≤ t ≤ 1, we shall say that U is a “radial,

relatively open neighborhood of 0 in C.”

Now suppose that C is a complete cone in an NLS (X, ‖ · ‖), that g : C → C is continuous and

homogeneous, and that V is a bounded, relatively open neighborhood of 0 in C. Define C1(g; V ) by

C1(g; V ) = g(V ), (3.1)

and for k > 1 define Ck(g; V ) inductively by

Ck(g; V ) = g(V ∩ Ck−1(g; V )). (3.2)

A simple induction on k, which we leave to the reader, shows that

Ck(g; V ) = {gk(x) | gj(x) ∈ V for 0 ≤ j < k}. (3.3)
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If f : C → C is continuous and homogeneous and λ > 0, we shall always denote by fλ the map

fλ(x) := λ−1f(x). (3.4)

If V is a bounded and radial relatively open neighborhood of 0 in C and 0 < λ < λ1, we claim

that, for k ≥ 1

Ck(fλ1
; V ) ⊂ Ck(fλ; V ).

To see this, write g = fλ1
, so fλ = (λ1/λ)g. If y ∈ Ck(fλ1

; V ), then y = gk(x), where gj(x) ∈ V

for 0 ≤ j < k. If ξ := (λ/λ1)
kx, then ξ ∈ V , because V is radial. Also, f j

λ(ξ) = (λ/λ1)
k−jgj(x), so

f j
λ(ξ) ∈ V for 0 ≤ j < k and fk

λ (ξ) = gk(x) ∈ Ck(fλ; V ), which proves the desired inclusion.

If (Y, d) is a complete metric space, let Y denote the collection of closed, bounded nonempty sets

A ⊂ Y . For A ∈ Y and y ∈ Y , and r > 0, let d(y, A) := inf{d(y, a) | a ∈ A} and let Nr(A) := {y ∈

Y | d(y, A) < r}. If A,B ∈ Y, define the Hausdorff metric D on Y by

D(A,B) := inf{r > 0 |A ⊂ Nr(B) and B ⊂ Nr(A)}.

It is known (see [23], pages 280-281) that (Y, D) is a complete metric space.

An old theorem of Kuratowski [16] gives conditions in terms of the Kuratowski MNC under which

a decreasing sequence of closed, bounded, nonempty sets in a complete metric space (Y, d) converges

in the Hausdorff metric to a nonempty, compact set. The same result holds for general measures of

noncompactness; see [1], page 19, for a proof.

Proposition 3.1 (Compare Kuratowski [16]). Let (Y, d) be a complete metric space and let

B(Y ) denote the bounded subsets of Y . Suppose that β : B(Y ) → [0,∞) is a map which satisfies

properties (A1)-(A4) in Section 1, with β replacing α in the statements of (A1)-(A4). Let Ak, for k ≥

1, be a decreasing sequence of closed, bounded, nonempty sets in Y and assume that lim
k→∞

β(Ak) = 0.

Then A∞ :=
⋂

k≥1

Ak is a compact, nonempty set and Ak converges to A∞ in the Hausdorff metric.

Let C be a complete cone in an NLS (X, ‖ · ‖), let V be a bounded, relatively open neighborhood

of 0 in C and let f : C → C be a continuous, homogeneous map.

Definition 3.2. The cone essential spectral radius of f , denoted ρC(f), is defined by

ρC(f) := inf{λ > 0 | lim
k→∞

α(Ck(fλ, V )) = 0}, (3.5)
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where α denotes the Kuratowski MNC on C and the notation is as in equations (3.1)-(3.4).

In Definition 3.2, it is easy to show, using Proposition 3.1, that ρC(f) is the infimum of numbers λ >

0 such that Ck(fλ, V ) converges in the Hausdorff metric to a compact, nonempty set, so Definition 3.2

can be phrased without reference to MNC’s. Also, it is the case that ρC(f) ≤ α∗(f) ≤ r̃C(f), as the

reader can easily show. If X is a Banach space and β is any homogeneous MNC on X , one can see

that

ρC(f) = inf{λ > 0 | lim
k→∞

β(Ck(fλ; V )) = 0}.

If γ is a weakly homogeneous MNC on C and if lim
k→∞

γ(Ck(fλ; V )) = 0 for some λ > 0, then ρC(f) ≤ λ.

Definition 3.2 ostensibly depends on V . However, if V and W are bounded, relatively open neigh-

borhoods of 0 in C, there are positive constants a and b with W ⊂ aV and V ⊂ bW . It is easy

to check that Ck(fλ;W ) ⊂ Ck(fλ; aV ) = aCk(fλ; V ) and Ck(fλ; V ) ⊂ bCk(fλ, W ). It follows that

α(Ck(fλ;W )) → 0 if and only if α(Ck(fλ, V )) = 0, so Definition 3.2 is independent of the bounded,

relatively open neighborhood of 0 which is used.

If V is a bounded and radial relatively open neighborhood of 0 in C and 0 < λ < λ1, we have

already observed that Ck(fλ1
; V ) ⊂ Ck(fλ; V ) for all k ≥ 1. It follows easily that if λ > ρC(f) and α

denotes the Kuratowski MNC, then

lim
k→∞

α(Ck(fλ; V )) = 0.

This, in turn, implies that if λ > ρC(f) and W is any bounded, relatively open neighborhood of 0 in

C, then

lim
k→∞

α(Ck(fλ;W )) = 0.

If C is a complete cone in an NLS (X, ‖ · ‖) and f : C → C is continuous and homogeneous, we

have already defined the Bonsall cone spectral radius r̃C(f) of f . For our purposes it will be useful to

give a variant definition. If x ∈ C, define µ(x) by

µ(x) := lim sup
n→∞

‖fn(x)‖1/n.

We define rC(f), the “cone spectral radius of f ,” by

rC(f) := sup{µ(x) | x ∈ C}.
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Under the above hypotheses, the same argument used in Proposition 2.1 on page 525 of [18] shows

that

rC(f) ≤ r̃C(f)

and, for all positive integers m,

rC(fm) = (rC(f))m, r̃C(fm) = (r̃C(f))m. (3.6)

Without further restrictions on f , it may happen (see the remark on page 526 of [18]) that rC(f) = 0

and r̃C(f) = 1.

Our next theorem, although stated for a complete cone in an NLS instead of a closed cone in a

Banach space, follows by the same arguments used in Theorems 2.2 and 2.3 of [18] and the remark on

page 528 of [18].

Theorem 3.3 (Compare Section 2 of [18]). Let C be a complete cone in an NLS (X, ‖ · ‖) and

f : C → C a continuous, homogeneous map. Then rC(f) = r̃C(f) if any one of the following additional

conditions holds:

(a) f is C-linear;

(b) there exists m ≥ 1 such that fm is compact; or

(c) there exists a complete, normal cone D with C ⊂ D such that f : C → C is D-order-preserving,

that is, f preserves the partial ordering ≤D .

In the statement of Theorem 3.3, recall that a continuous map g : C → C is called compact if g(V )

is compact for every bounded set V ⊂ C.

The next theorem gives another condition under which rC(f) = r̃C(f).

Theorem 3.4. Let C and D be complete cones in an NLS (X, ‖ · ‖) and assume that C ⊂ D. Let

f : C → C be continuous, homogeneous and D-order-preserving. Assume that ρC(f) < r̃C(f). Then

it follows that rC(f) = r̃C(f).

Proof. Since we know that rC(f) ≤ r̃C(f), assume, by way of contradiction, that rC(f) < r̃C(f).

Select λ satisfying both rC(f) < λ < r̃C(f) and also ρC(f) < λ. In the first part of the proof of
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Theorem 2.2 in [18], a Baire category argument is used to prove that there exist a > 0 and x0 ∈ C

with

sup{‖fk
λ (y)‖ | k ≥ 0 and y ∈ C, with ‖y − x0‖ ≤ a} <∞.

It follows that

sup{‖fk
λ (x0 + z)‖ | k ≥ 0 and z ∈ C, with ‖z‖ ≤ a} <∞.

Since λ < r̃C(f) we have lim
n→∞

‖fn
λ ‖C = ∞, so there exists an increasing sequence ni → ∞ of integers

with ‖fni

λ ‖C > ‖f j
λ‖C for 0 ≤ j < ni. It follows that there exists wi ∈ C with ‖wi‖ = a and

‖fni

λ (wi)‖ > a‖f j
λ‖C , for 0 ≤ j < ni. (3.7)

Because fλ is D-order-preserving, we see that

fni

λ (wi) ≤ fni

λ (x0 +wi),

where ≤ denotes the partial ordering on X induced by D. For notational convenience, we define

Ri := ‖fni

λ (wi)‖ → ∞ and

ui := R−1
i fni

λ (wi), zi := R−1
i fni

λ (x0 +wi).

Our construction insures that lim
i→∞

zi = 0 and ‖ui‖ = 1, with

zi − ui ∈ D. (3.8)

Define S := {ui | i ≥ 1}. If we can prove that S has compact closure, then by taking a subsequence,

which we also label ui, we can assume ui → u ∈ C ⊂ D and ‖u‖ = 1. On the other hand, by taking

limits in equation (3.8), we obtain −u ∈ D; and since u ∈ D and −u ∈ D, we have a contradiction.

Thus it suffices to prove that α(S) = 0, where α denotes the Kuratowski MNC. If we write

Γk := {ui | i > k}, we see that α(S) = α(Γk). We claim that

Γk ⊂ Cnk+1
(fλ; V1), (3.9)

where V1 := {x ∈ C | ‖x‖ < 1}. To see this, note by (3.7) that if i > k, the norm of R−1
i f

j
λ(wi) is

strictly less than +1 for 0 ≤ j < ni. For i > k, this implies that

R−1
i f j

λ(wi) ∈ Cj(fλ; V1) ∩ V1
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for 0 < j < ni, so

R−1
i fni

λ (wi) ∈ Cni
(fλ; V1) ⊂ Cnk+1

(fλ, V1),

which proves equation (3.9). Because ρC(f) < λ, we see that lim
k→∞

α(Cnk
(fλ; V1)) = 0; and we conclude

that

α(S) = lim
k→∞

α(Γk) ≤ lim
k→∞

α(Cnk
(fλ; V1)) = 0,

so α(S) = 0.

There are naturally occurring examples of maps f : C → C which are D-order-preserving but

not necessarily C-order-preserving. See, for instance, [17] and the “renormalization operators” which

occur in discussing diffusion on fractals.

Question C. If C is a complete cone in an NLS (X, ‖ · ‖) and f : C → C is continuous, homogeneous

and C-order-preserving, does it follow that rC(f) = r̃C(f)?

The assumption that ρC(f) < r̃C(f) is a compactness assumption, so the following compactness

result concerning eigenvectors of f is unsurprising.

Theorem 3.5. Let the hypotheses and notation be as in the statement of Theorem 3.4. If ρC(f) <

λ < r̃C(f), define

T := {x ∈ C | ‖x‖ = 1 and f(x) = tx for some t ≥ λ}.

Then T is compact (possibly empty).

Proof. If t ∈ T , it is easy to see that µ(x) = t, so t ≤ rC(f) = r̃C(f). Take λ1 with ρC(f) < λ1 < λ.

If x ∈ T with f(x) = tx and n ≥ 1, set ε := (λ1/t)
n. Then one has that

fn
λ1

(εx) = x.

Since t ≥ λ > λ1, one has f j
λ1

(εx) = (λ1/t)
n−jx ∈ V1 := {y ∈ C | ‖y‖ < 1} for 0 ≤ j < n. This shows

that x ∈ Cn(fλ1
; V1) and thus T ⊂ Cn(fλ1

; V1). If α denotes the Kuratowski MNC, it follows that

α(T ) ≤ α(Cn(fλ1
; V1))

for all n ≥ 1. Since ρC(f) < λ1, we conclude that α(T ) = 0; and since T is clearly closed, T is

compact.
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Corollary 3.6. Let hypotheses and notation be as in Theorem 3.4. Assume that sk → rC(f) and

f(xk) = skxk, where xk ∈ C and ‖xk‖ = 1. Then there exists a sequence of integers ki → ∞ with

xki
→ x and f(x) = rx, where r := rC(f).

Proof. By Theorem 3.5, the set {xk | k ≥ 1} has compact closure, so there is a sequence ki → ∞ with

xki
→ x; and the corollary follows from the continuity of f .

If ρ(L) denotes the essential spectral radius of a bounded linear operator L on a Banach space X ,

it is well-known (use equation (1.10)) that ρ(Lm) = ρ(L)m. An analogous result is true for continuous,

homogeneous cone mappings.

Theorem 3.7. Let C be a complete cone in an NLS (X, ‖ · ‖) and f : C → C continuous and

homogeneous. Then

ρC(fm) = (ρC(f))m

for every positive integer m.

Proof. Fix m. For notational convenience we write g = fm; and if λ > 0, we shall write σ := λm so

λ = σ1/m. In the notation of equation (3.4), we have gσ = fm
λ . Let V be a bounded, relatively open

neighborhood of 0 in C and, for λ > 0, let W = Wλ be a bounded, relatively open neighborhood of 0

in C such that f j
λ(W ) ⊂ V for 0 ≤ j < m. Let λ > ρC(f). Then equation (3.3) shows that

Ck(gσ;W ) = {gk
σ(x) | gj

σ(x) ∈W for 0 ≤ j < k}.

Because gj
σ(x) = f jm

λ (x) and fp
λ(W ) ⊂ V for 0 ≤ p < m, we see that if gj

σ(x) ∈W for 0 ≤ j < k, then

fs
λ(x) ∈ V for 0 ≤ s < km, so fkm

λ (x) ∈ Ckm(fλ; V ). It follows that

Ck(gσ;W ) ⊂ Ckm(fλ; V ). (3.10)

Since we assume that λ > ρC(f), equation (3.10) implies (denoting the Kuratowski MNC by α) that

lim
k→∞

α(Ckm(fλ; V )) = 0, hence lim
k→∞

α(Ck(gσ;W )) = 0,

so σ = λm > ρC(g). Letting λ approach ρC(f), we conclude that

(ρC(f))m ≥ ρC(g) = ρC(fm). (3.11)
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Using equation (3.3) again yields

Ck(gσ; V ) = {gk
σ(x) = fkm

λ (x) | fkj
λ (x) ∈ V for 0 ≤ j < m},

and it follows that

Ck(gσ; V ) ⊃ Ckm(fλ; V ).

If σ > ρC(g) then lim
k→∞

α(Ck(gσ; V )) = 0, so we conclude that

lim
k→∞

α(Ckm(fλ; V )) = lim
n→∞

α(Cn(fλ; V )) = 0

and hence that λ = σ1/m > ρC(f) so σ > (ρC(f))m. Letting σ approach ρC(f) yields that

ρC(fm) ≥ (ρC(f))m, (3.12)

and combining equations (3.11) and (3.12) completes the proof.

4 Positive Eigenvectors of Homogeneous, Order-Preserving Non-

compact Operators

The starting point of this section is the following conjecture.

Conjecture 4.1. Let C and D be complete cones with C ⊂ D in an NLS (X, ‖ · ‖). Let f : C → C

be continuous, homogeneous, and D-order-preserving. Assume that ρC(f) < r̃C(f). Then there exists

x ∈ C with ‖x‖ = 1 satisfying f(x) = rx, where r := r̃C(f).

If f in Conjecture 4.1 is nonlinear and noncompact, we are very far from proving the conjecture.

However, we know of no counterexample.

Lemma 4.2. Let C, D, X and f be as in Conjecture 4.1. Select λ satisfying ρC(f) < λ < r̃C(f) and

define fλ(x) := λ−1f(x). Then there exists u ∈ C with lim sup
k→∞

‖fk
λ (u)‖ = ∞. Further, if s > 0 then

the equation fλ(x) + su = x has no solution in C.

Proof. By Theorem 3.4 we have rC(f) = r̃C(f), so the definition of rC(f) implies the existence of u

with the stated property.
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Assume by way of contradiction that s > 0 and that fλ(x)+su = x, where x ∈ C. If ≤ denotes the

partial ordering on X induced by D, then su ≤ x. We claim that sfn
λ (u) ≤ x for all n ≥ 0. Assume,

by mathematical induction, that sfn
λ (u) ≤ x for some n ≥ 0. Because fλ is D-order-preserving,

sfn+1
λ (u) + su ≤ fλ(x) + su = x,

which proves that sfn+1
λ (u) ≤ x. This establishes the claim. Because of the assumption on u in the

statement of the lemma, there exists a strictly increasing sequence of integers ni, for i ≥ 1, such that

‖f j
λ(u)‖ < ‖fni

λ (u)‖, for 0 ≤ j < ni.

Define vi := R−1
i fni

λ (u) where Ri := ‖fni

λ (u)‖, and let S := {vi | i ≥ 1}. Because sf j
λ(u) ≤ x for all

j ≥ 1, we have that

R−1
i x− svi ∈ D, for i ≥ 1. (4.1)

If S is compact, we can assume by taking a further subsequence that vi → v ∈ C where ‖v‖ = 1. Then

taking the limit as i → ∞ in equation (4.1), we then obtain that −v ∈ D. But since v ∈ C ⊂ D and

D is a cone, this is a contradiction.

Thus it suffices to prove that S is compact, or, equivalently, that α(S) = 0 where α is the Kura-

towski MNC. We argue as in Theorem 3.4. If we let V := {x ∈ C | ‖x‖ < 1}, then by our definition

of ni

R−1
i f j

λ(u) ∈ V, for 0 ≤ j < ni.

Since ni ≥ i, we have vi ∈ Ck(fλ; V ) for all i ≥ k and it follows that

α(S) = α({vi | i ≥ k}) ≤ α(Ck(fλ; V )).

Since α(Ck(fλ; V )) → 0 as k → ∞, we have α(S) = 0, as desired.

Our approach to Conjecture 4.1 will be through the “fixed point index.” We refer the reader

to [6], [9], [12], [19], [25] and [30] for descriptions of the classical fixed point index and some of its

generalizations. If we could define a “reasonable” fixed point index for maps f as in Conjecture 4.1,

then we could prove Conjecture 4.1. The problem is that no such generalization of the fixed point

index is known; and even if f is C-linear, there are some technical difficulties.

For purposes of describing situations in which a reasonable fixed point index is defined, it will

be useful to establish some notation. For the remainder of this section the following hypotheses and

notation will generally be assumed:
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(C1) C ⊂ D are complete cones in an NLS (X, ‖ · ‖) and f : C → C is continuous, homogeneous and

D-order-preserving.

If C is a complete cone in an NLS (X, ‖ · ‖) and V is a bounded, relatively open neighborhood of 0

in C, and if u ∈ C \ {0} and g : C → C is continuous and homogeneous, we define Gm := Gm(g; V, u)

for m ≥ 0 inductively by

G0(g; V, u) := {tu | 0 ≤ t ≤ 1} := Su (4.2)

and

Gm(g; V, u) := co(Su + g(V ∩Gm−1(g; V, u))), for m ≥ 1. (4.3)

Recall that co(T ) denotes the convex hull of a set T ⊂ X . In general, if S is a bounded subset of C,

we define Kn := Kn(g; V, S) for n ≥ 1 inductively by

K1(g; V, S) := co(S + g(V )) (4.4)

and

Kn(g; V, S) := co(S + g(V ∩Kn−1(g; V, S)), for n ≥ 2. (4.5)

Sets like Kn have been used extensively in [25], and sets like Gm have been used by H. Mönch; see

Theorem 2.1 in [22]. It is easy to see that Su ⊂ Gm for all m, that Gm ⊂ Gm+1 for all m, and that

Su + g(V ∩Gm) ⊂ Gm+1 for all m. Similarly, we have that S ⊂ Kn for all n, that Kn ⊃ Kn+1 for all

n, and that g(V ∩Kn) + S ⊂ Kn+1 for all n.

Lemma 4.3. If C, V , u and g are as above, and S := {tu | 0 ≤ t ≤ 1}, then Gm ⊂ Kn for all m ≥ 0

and n ≥ 1, where Gm and Kn are as in (4.2)-(4.5).

Proof. Since S ⊂ Kn for all n ≥ 1, we have that G0 = S ⊂
⋂

n≥1
Kn. Now assume that Gm ⊂

⋂
n≥1

Kn

for some m ≥ 0. Then Gm ⊂ Kn for all n ≥ 1, so

Gm+1 = co(S + g(V ∩Gm)) ⊂ co(S + g(V ∩Kn)) = Kn+1

for all n ≥ 1, and since Kn ⊃ Kn+1 for all n, we have that Gm+1 ⊂
⋂

n≥1
Kn. By mathematical

induction, the lemma follows.
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It will be convenient to define G∞ := G∞(g; V, u) and K∞ := K∞(g; V, S) by

G∞(g; V, u) =
⋃

m≥0

Gm(g; V, u)

and

K∞(g; V, S) =
⋂

n≥0

Kn(g; V, S).

The reader can verify that if 0 ≤ t ≤ 1 then

g(x) + tu ∈ G∞(g; V, u)

for x ∈ V ∩G∞(g; V, u), and that

g(x) + tu ∈ K∞(g; V, u)

for x ∈ V ∩K∞(g; V, u), where the horizontal bar as usual denotes the closure of a set.

With this notation we can state a hypothesis which ensures the existence of eigenvectors for maps

f : C → C as in (C1):

(C2) Assume that (C1) is satisfied and that ρC(f) < r̃C(f) := r, where ρC(f) and r̃C(f) are given

by equations (3.5) and (1.5), respectively. For λ > 0 define fλ : C → C by fλ(x) := λ−1f(x).

Assume that there exist a bounded, relatively open neighborhood V of 0 in C, a sequence {λk}k≥1

with ρC(f) < λk < r for all k and lim
k→∞

λk = r, and a sequence of vectors uk ∈ C for k ≥ 1 such

that lim sup
j→∞

‖f j
λk

(uk)‖ = ∞ and G∞(fλk
; V, uk) is compact for k ≥ 1.

Theorem 4.4. Assume that (C2) is satisfied. Then there exists v ∈ C \ {0} with f(v) = rv.

Proof. By Corollary 3.6 it suffices to prove that fλk
has an eigenvector in C with eigenvalue sk ≥ 1,

for each k ≥ 1. Note in particular that this means λksk is an eigenvalue of f , and thus must satisfy

λk ≤ λksk ≤ r. For notational convenience we define Dk := G∞(fλk
; V, uk), so Dk is compact and

convex. By our previous remarks, if x ∈ V ∩Dk and 0 ≤ t ≤ 1, then fλk
(x)+ tuk ∈ Dk, so the same is

true if x ∈ V ∩Dk. If fλk
(x) = x for some x ∈ V ∩Dk\(V ∩Dk), then we have the desired eigenvector,

so we assume that fλk
(x) 6= x for all x ∈ V ∩Dk \ (V ∩Dk). Lemma 4.2 implies that fλk

(x)+ tuk 6= x

for all x ∈ V ∩Dk and 0 < t ≤ 1. Because Dk is compact and convex, the fixed point index is defined

for continuous functions h : V ∩Dk → Dk with h(x) 6= x for all x ∈ V ∩Dk \ (V ∩ Dk). It follows
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by considering the homotopy fλk
(x) + tuk, for 0 ≤ t ≤ 1, and using the properties of the fixed point

index, that

iDk
(fλk

, V ∩Dk) = 0.

On the other hand, suppose that fλk
(x) 6= sx for s ≥ 1 and x ∈ V ∩Dk \ (V ∩Dk). Then it follows,

by considering the homotopy tfλk
(x) for 0 ≤ t ≤ 1, that

iDk
(fλk

, V ∩Dk) = 1,

a contradiction. Thus fλk
has an eigenvector with eigenvalue sk ≥ 1, and we are done.

Corollary 4.5. Assume that (C2) is satisfied, but replace the assumption that G∞(fλk
; V, uk) is

compact for k ≥ 1 by the assumption that K∞(fλk
; V, Sk) is compact for k ≥ 1, where Sk := {tuk | 0 ≤

t ≤ 1}. Then there exists v ∈ C \ {0} with f(v) = rv.

Proof. If K∞(fλk
; V, Sk) is compact, then Lemma 4.3 implies that G∞(fλk

; V, uk) is compact, and

thus Corollary 4.5 follows from Theorem 4.4.

Our next corollary gives the main results of Section 2 of [29]; see also Section 3 of [18] and

Proposition 6 on page 525 of [28].

Corollary 4.6 (See Section 2 of [29]). Assume that (C1) holds. Also assume that r := r̃C(f) > 0

and that there exist µ with 0 < µ < r, a weakly homogeneous MNC β on C and a quantity k < 1, such

that

β(fµ(S)) ≤ kβ(S) (4.6)

for all bounded sets S ⊂ C. Then ρC(f) ≤ kµ, and f has an eigenvector in C with eigenvalue r.

Proof. If V is a bounded, relatively open neighborhood of 0 in C, it is clear that Cn(fµ; V ) ⊂ fn
µ (V ),

so

β(Cn(fµ; V )) ≤ knβ(V ) → 0,

and ρC(f) ≤ kµ. Note that equation (4.6) remains true if fµ is replaced by fλ and λ ≥ µ. By

Theorem 3.4 we have that rC(f) = r̃C(f), so by Lemma 4.2 there exists a sequence {λj}j≥1, with µ <

λj < r and lim
j→∞

λj = r, and uj ∈ C for j ≥ 1 with lim sup
n→∞

‖fn
λj

(uj)‖ = ∞. Let V := {x ∈ C | ‖x‖ < 1}
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and Sj := {tuj | 0 ≤ t ≤ 1}. By Corollary 4.5, it suffices to prove that, for j ≥ 1,

lim
n→∞

β(Kn(fλj
; V, Sj) = 0,

as that implies that K∞(fλj
; V, Suj

) is compact. Fix j, write g := fλj
and S := Sj, and let Kn :=

Kn(g; V, S). We have that

β(K1) = β(co(S + g(V ))) = β(S + g(V )) = β(g(V )) ≤ kβ(V ).

Assume, by induction, that β(Kn) ≤ knβ(V ). Then we have

β(Kn+1) = β(co(S + g(V ∩Kn))) = β(S + g(V ∩Kn)) = β(g(V ∩Kn)) ≤ kβ(Kn).

Since β(Kn) ≤ knβ(V ), this completes the inductive step and proves the corollary.

Remark 4.7. Assume all the hypotheses of Corollary 4.6 hold, except that in place of (4.6) assume

that for some integer p ≥ 1 we have

β(fp
µ(S)) ≤ kβ(S)

for all bounded sets S ⊂ C. (Here fp
µ denotes the pth iterate of the map fµ.) Then Corollary 4.6

implies (since fp
µ = µ−pfp) that ρC(fp) ≤ kµp; and Theorem 3.7 implies that ρC(f) < µ. Since (see

equation (3.6) and [18]) we have r̃C(fp) = (r̃C(f))p, Corollary 4.6 implies that there exists x ∈ C \{0}

with fp(x) = rpx.

However, Conjecture 4.1 suggests that there exists u ∈ C \ {0} with f(u) = ru, which is not

known. The discrepancy here is closely analogous to an old and apparently intractable conjecture in

“asymptotic fixed point theory.” If G is a closed, bounded convex set in a Banach space and f : G→ G

is a continuous map such that fp is compact for some integer p ≥ 2, then it has long been conjectured

that f has a fixed point. Although a variety of partial results are known (see [19], [26] and [27]),

the general conjecture remains open. The difficulties in proving this conjecture are analogous to the

difficulties in studying Conjecture 4.1.

We shall now consider the case in which our map f : C → C is a compact perturbation of a

C-linear map. In this case, as we shall see, Conjecture 4.1 is essentially true. We collect some relevant

assumptions in the following hypothesis:
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(C3) C ⊂ D are complete cones in an NLS (X, ‖ · ‖). The map g : C → C is continuous, C-linear

and D-order-preserving, and the map h : C → C is continuous, compact, homogeneous and

D-order-preserving.

Lemma 4.8. Assume that (C3) holds. Define f(x) := g(x) + h(x) for x ∈ C. Then with hj : C → C

defined by the equation f j(x) = gj(x) + hj(x) for j ≥ 1, it is the case that hj is continuous, compact,

homogeneous and D-order-preserving for j ≥ 1. If additionally D is normal, then ρC(f) ≤ ρC(g) and

r̃C(g) ≤ r̃C(f).

Proof. We prove the first claim, concerning the map hj, by mathematical induction. This claim is

true for j = 1 by (C3), so assume for some j ≥ 1 that the map hj is continuous, compact, homogeneous

and D-order-preserving. Because g is C-linear, it follows that

f j+1(x) = gj+1(x) + g(hj(x)) + hj(g
j(x) + hj(x)) = gj+1(x) + hj+1(x).

The composition of two continuous, homogeneous maps from C to C, with one of the maps being

compact, is necessarily compact, so hj+1 is a sum of compact maps and is continuous, compact and

homogeneous. The composition of D-order-preserving maps from C to C is D-order-preserving, and

thus hj+1 satisfies the required properties. The proves the first claim of the lemma.

Now assumingD is normal, we can assume that the norm ‖·‖ onX satisfies ‖u‖ ≤ ‖v‖whenever 0 ≤

u ≤ v, where ≤ denotes the partial ordering induced on X by the cone D. Let V := {x ∈ C | ‖x‖ < 1}.

By definition, we have, recalling equations (3.1)-(3.3) and defining fλ(x) := λ−1f(x) := gλ(x) + hλ(x)

for λ > 0,

fλ(V ) = C1(fλ; V ) ⊂ gλ(V ) + hλ(V ) = C1(gλ; V ) + S1,

where S1 := hλ(V ) and S1 is compact. We claim that for every k ≥ 1

Ck(fλ; V ) ⊂ Ck(gλ; V ) + Sk, (4.7)

where Sk ⊂ C and Sk is compact. Assume, using mathematical induction, that (4.7) is true for some

k ≥ 1. If y ∈ Ck+1(fλ; V ) we know that y = fk+1
λ (x) where f

j
λ(x) ∈ V for 0 ≤ j ≤ k. By the first part

of the lemma

f j
λ(x) = gj

λ(x) + hλ,j(x) ∈ V
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for 0 ≤ j ≤ k; and using the normality of D we conclude that for such j

‖gj
λ(x)‖ ≤ ‖f j

λ(x)‖ < 1.

It follows that gk+1
λ (x) ∈ Ck+1(gλ; V ) and

fk+1
λ (x) = gk+1

λ (x) + hλ,k+1(x).

If we define Sk+1 := hλ,k+1(V ), we conclude that

Ck+1(fλ; V ) ⊂ Ck+1(gλ; V ) + Sk+1,

where Sk+1 ⊂ C and Sk+1 is compact.

If λ > ρC(g) and α denotes the Kuratowski MNC on X , it follows from equation (4.7) that

lim
k→∞

α(Ck+1(fλ; V )) = 0,

which implies that λ > ρC(f) and thus ρC(f) ≤ ρC(g).

Because C is normal, the fact that f j(x) = gj(x)+hj(x), where hj(x) ∈ C, implies that ‖f j(x)‖ ≥

‖gj(x)‖ for all x ∈ C and j ≥ 1. This, in turn, implies that ‖gj‖C ≤ ‖f j‖C for j ≥ 1 and r̃C(g) ≤

r̃C(f).

Theorem 4.9. Assume that (C3) holds and define f(x) := g(x) + h(x) for x ∈ C. Also assume that

D is normal and that either

(a) ρC(g) < r̃C(g); or

(b) r̃C(g) < r̃C(f).

Then we have that

ρC(f) ≤ ρC(g), rC(f) = r̃C(f) ≥ r̃C(g), r̃C(f) > ρC(f)

and that f has an eigenvector in C with eigenvalue equal to rC(f).

Proof. By Lemma 4.8 we have ρC(f) ≤ ρC(g) and r̃C(f) ≥ r̃C(g). In either case (a) or case (b) of the

theorem it follows that r̃C(f) > ρC(f), and Theorem 3.3 or Theorem 3.4 implies that rC(f) = r̃C(f).

Select a sequence of positive reals {λk}k≥1 with ρC(g) < λk < rC(f) for all k in case (a), or with
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r̃C(g) < λk < rC(f) for all k in case (b), and which also satisfies lim
k→∞

λk = rC(f) in either case. By

definition of rC(f), there exist uk ∈ C such that ‖uk‖ = 1 for k ≥ 1 and lim sup
j→∞

‖f j
λk

(uk)‖ = ∞.

Since D is normal, we may assume that ‖u‖ ≤ ‖v‖ whenever 0 ≤ u ≤ v, where ≤ denotes the partial

ordering induced on X by the cone C; and we define V := {x ∈ C |‖x‖ < 1} and Sk := {tuk |0 ≤ t ≤ 1}

for k ≥ 1.

By Corollary 4.5, it suffices to prove that K∞(fλk
; V, Sk) is compact for k ≥ 1. If α denotes the

Kuratowski MNC on X , it suffices (see equation (4.5)) to prove that

lim
n→∞

α(Kn(fλk
; V, Sk)) = 0. (4.8)

Now fix k ≥ 1. Because λk > ρC(g) in case (a) or case (b), we know that

lim
n→∞

α(Cn(gλk
; V )) = 0,

so to prove equation (4.8) it suffices to prove that, for n ≥ 1,

α(Kn(fλk
; V, Sk)) ≤ α(Cn(gλk

; V )). (4.9)

Equation (4.9) will hold if we prove that, for n ≥ 1,

Kn(fλk
; V, Sk) ⊂ Cn(gλk

; V ) + Tn, (4.10)

where Tn is a convex subset of C and T n is compact. We shall prove this by mathematical induction.

Define T1 := co(hλk
(V ) + Sk). Then T1 ⊂ C is convex and T 1 is compact because hλk

(V ) and Sk are

compact. Also,

fλk
(V ) + Sk ⊂ gλk

(V ) + co(hλk
(V ) + Sk) = gλk

(V ) + T1.

Because gλk
(V ) and T1 are convex, so is gλk

(V ) + T1 and

K1(fλk
; V, Sk) = co(fλk

(V ) + Sk) ⊂ gλk
(V ) + T1 = C1(gλk

; V ) + T1.

This establishes equation (4.10) for n = 1. Now assume that (4.10) holds for some n ≥ 1, with

Tn ⊂ C convex and T n compact. If y ∈ Kn(fλk
; V, Sk) ∩ V , it follows that ‖y‖ < 1 and y = u + v

there u ∈ Cn(gλk
; V ) and v ∈ Tn. Since C is normal, ‖u‖ ≤ ‖y‖ < 1, so u ∈ Cn(gλk

; V ) ∩ V and

gλk
(u) ∈ Cn+1(gλk

; V ). It follows that

fλk
(y) = gλk

(y) + hλk
(y) = gλk

(u) + gλk
(v) + hλk

(y) ⊂ Cn+1(gλk
; V ) + gλk

(Tn) + hλk
(V ).
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This implies that

Sk + fλk
(Kn(fλk

; V, Sk) ∩ V ) ⊂ Cn+1(gλk
; V ) + gλk

(Tn) + co(hλk
(V ) + Sk).

If we define

Tn+1 := gλk
(Tn) + co(hλk

(V ) + Sk),

then Tn+1 ⊂ C is convex and T n+1 is compact, where we have used C-linearity and continuity of gλk

and compactness of hλk
. Since Cn+1(gλk

; V ) is convex, so is Cn+1(gλk
; V ) + Tn+1, and (4.10) holds

with n+ 1 in place of n. This completes the proof.

The argument in Theorem 4.9 uses the normality of D. The following variant theorem does not

require that D be normal but imposes a stronger condition on g.

Theorem 4.10. Assume that (C3) holds and define f(x) := g(x) + h(x) for x ∈ C. Let V := {x ∈

C | ‖x‖ < 1}, and assume there exists a weakly homogeneous MNC β on C and a quantity λ satisfying

0 < λ < r̃C(g) such that

lim
j→∞

β((gj
λ(V )) = 0.

Then it follows that ρC(f) ≤ λ and r̃C(f) = rC(f) ≥ r̃C(g). Also, there exists v ∈ C with ‖v‖ = 1

and f(v) = rv where r := r̃C(f).

Proof. We first prove the theorem in the case h(x) ≡ 0. For t ≥ λ, our hypothesis implies that

lim
j→∞

β(gj
t (V )) = 0. It is easy to see that

Cn(gt; V ) ⊂ gn
t (V ),

so lim
n→∞

β(Cn(gt; V )) = 0 for t ≥ λ, which implies that ρC(g) ≤ λ. By Theorem 3.4, it follows that

rC(g) = r̃C(g), so there exists a sequence {tk}k≥1 with λ < tk < rC(g) and lim
k→∞

tk = rC(g) and a

sequence of vectors uk ∈ C with ‖uk‖ = 1 and

lim sup
j→∞

‖gj
tk

(uk)‖ = ∞.

By Corollary 4.5, if Sk := {suk | 0 ≤ s ≤ 1} and K∞(gtk; V, Sk) is compact, then there exists v ∈ C

with ‖v‖ = 1 and g(v) = rC(g)v. Thus it suffices to prove that if u ∈ C with ‖u‖ = 1, and

S := {su | 0 ≤ s ≤ 1} and t > λ, then

lim
n→∞

β(Kn(gt; V, S)) = 0.
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The latter equation will hold if we prove that for each n ≥ 1, there exists a convex set Tn ⊂ C with

T n compact such that

Kn(gt; V, S) ⊂ gn
t (V ) + Tn. (4.11)

If n = 1 we have

K1(gt; V, S) = co(gt(V ) + S) = gt(V ) + S,

which proves equation (4.11) for n = 1. Arguing by mathematical induction, assume that equa-

tion (4.11) holds for some n ≥ 1. Then we have

Kn+1(gt; V, S) = co(gt(Kn(gt; V, S)∩ V ) + S)

⊂ co(gt(g
n
t (V ) + Tn) + S) ⊂ gn+1

t (V ) + gt(Tn) + S.

If we define Tn+1 := gt(Tn) + S, this completes the inductive step. It follows that there exists v ∈ C

with ‖v‖ = 1 such that

g(v) = rC(g)v. (4.12)

The reason for establishing (4.12) is to prove that rC(f) ≥ rC(g), which is trivially true with D

is normal. Letting ≤ denote the partial ordering induced on X by D, then because f is D-order-

preserving, we obtain from equation (4.12) that, for k ≥ 1,

v ≤ (rC(g))−kfk(v). (4.13)

If rC(f) < rC(g), then (4.13) implies, by letting k → ∞, that −v ∈ D, which contradicts the fact that

D is a cone. It follows that rC(f) ≥ rC(g).

Another straightforward induction argument, which we leave to the reader, shows that for each

n ≥ 1,

Cn(ft; V ) ⊂ gn
t (V ) + Γn,

where Γn ⊂ C is convex and Γn is compact. It follows that ρC(f) ≤ λ < rC(f), so r̃C(f) = rC(f).

Select a sequence {tk}k≥1 with λ ≤ tk < rC(f) and tk → rC(f), and for each k select uk ∈ C with

‖uk‖ = 1 with

lim sup
j→∞

‖f j
tk

(uk)‖ = ∞.

If Sk := {suk | 0 ≤ s ≤ 1}, Corollary 4.5 implies that to complete the proof it suffices to prove that

K∞(ftk ; V, Sk) is compact for every k ≥ 1. As in Theorem 4.9, if λ ≤ t < rC(f), and u ∈ C and
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S := {su | 0 ≤ s ≤ 1}, it suffices to prove that

lim
n→∞

β(Kn(ft; V, S)) = 0,

and the latter equation will hold if, for each n ≥ 1, there exists a convex set Γn ⊂ C with Γn compact

such that

Kn(ft; V, S)⊂ gn
t (V ) + Γn. (4.14)

If we define Γ1 := co(ht(V ) + S), we clearly have

K1(ft; V, S)⊂ gt(V ) + Γ1,

and Γ1 ⊂ C is convex with Γ1 compact. If we argue by induction and assume that equation (4.14) is

satisfied, the reader can verify that

Kn+1(ft; V, S) ⊂ gn+1
t (V ) + Γn+1,

where

Γn+1 := gt(Γn) + co(ht(V )) + S,

and that Γn+1 ⊂ C is convex and Γn+1 is compact. This completes the proof.

Aside from the assumption that D is normal, Theorem 4.9 is essentially the best possible result

concerning positive eigenvalues and eigenvectors of a continuous C-linear map g : C → C.

Question D. Is Theorem 4.9 true without the assumption that D is normal?

5 A Class of Examples: Max-Type Operators

We shall briefly discuss in this concluding section some new results concerning concrete classes of

operators for which Conjecture 4.1 remains unresolved. The operators we consider generalize max-

type operators treated in Section 4 of [18]. In a limiting case, our own operators become so-called linear

“Perron-Frobenius operators,” which arise in a variety of applications. See, for example, Sections 5

and 6 of [30] and [32].

Throughout this section (M, d) will always denote a compact metric space M with metric d, and

M will always denote the collection of closed, nonempty subsets of M . If Dd denotes the Hausdorff
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metric on M, recall that (M, Dd) is also a compact metric space. A map J : M → M will be called

Lipschitzian with Lipschitz constant L if

Dd(J(s), J(t)) ≤ Ld(s, t) (5.1)

for all s, t ∈ M . As usual, Lip(J) will denote the infimum of numbers L for which equation (5.1) is

satisfied for all s, t ∈M . If J : M → M is continuous, we shall define a map Ĵ : M → M by

Ĵ(A) :=
⋃

s∈A

J(s).

We leave to the reader the exercise of proving that Ĵ(A) is compact and nonempty for A ∈ M and

that Ĵ is continuous as a map from (M, Dd) to itself. The reader can also verify that if J : M → M

is Lipschitz with Lipschitz constant L, then Ĵ : M → M is also Lipschitz with Lipschitz constant

L, and thus Lip(J) = Lip(Ĵ). Also, if Φj : M → M are Lipschitz maps for j = 1, 2, then so is the

composition Φ2 ◦ Φ1 and one has

Lip(Φ2 ◦ Φ1) ≤ Lip(Φ1) Lip(Φ2).

If J : M → M is continuous, we shall usually abuse notation and write J : M → M instead of Ĵ,

and we shall also let Jn : M → M denote the composition of J with itself n times, for n ≥ 1. Note

that Lip(Jn) ≤ (Lip(J))n. Let us also define the set S(J) ⊂M ×M by

S(J) := {(s, t) ∈M ×M | t ∈ J(s) and s ∈M},

so S(J) is a compact subset of M ×M .

We shall denote by C(M) the (real) Banach space of real-valued, continuous functions x : M → R

with the usual norm

‖x‖ := max
s∈M

|x(s)|.

If 0 < δ ≤ 1, then Cδ(M) will denote the (real) Banach space of real-valued, Hölder continuous

functions x : M → R with Hölder exponent δ and norm ‖x‖δ given by

‖x‖δ := max
s∈M

|x(s)|+ sup
s,t∈M
s6=t

(
|x(s) − x(t)|

d(s, t)δ

)
.

We also let

C+(M) := {x ∈ C(M) | x(s) ≥ 0 for all s ∈M}, Cδ
+(M) := Cδ(M) ∩C+(M),



VERSION OF JANUARY 22, 2010 42

so C+(M) and Cδ
+(M) are closed cones in C(M) and Cδ(M), respectively. For notational convenience,

if δ = 0 we shall write C0(M) := C(M) and C0
+(M) := C+(M).

If S ⊂ M × M is a closed set and if a : S → R is continuous, we shall say that a is Hölder

continuous with Hölder exponent δ, for 0 ≤ δ ≤ 1, if there exists a constant C ≥ 0 such that

|a(s1, t1) − a(s2, t2)| ≤ C

(
d(s1, s2) + d(t1, t2)

)δ

whenever (sj, tj) ∈ S for j = 1, 2 are distinct points. Note that for δ = 0, any such continuous

function is automatically Hölder continuous with Hölder exponenent 0. If additionally the function a

satisfies a(s, t) > 0 for all (s, t) ∈M ×M , then one easily checks that the function loga(s, t) is Hölder

continuous with Hölder exponent δ if and only if there exists C ≥ 0 such that

a(s1, t1) ≤ exp

(
C

(
d(s1, s2) + d(t1, t2)

)δ)
a(s2, t2)

whenever (sj, tj) ∈ S for j = 1, 2 are distinct points.

With these preliminaries we can describe some continuous, homogeneous, order-preserving maps

of interest. For 1 ≤ i ≤ N , assume that Ji, J̃i : M → M are Lipschitz, and also assume that ai, ãi :

S(Ji) → [0,∞) are nonnegative and Hölder continuous with Hölder exponent δ, where δ is independent

of the map ai or ãi and satisfies 0 ≤ δ ≤ 1. Also define maps Fi, F, F̃i, F̃ : Cδ(M) → Cδ(M), for

1 ≤ i ≤ N , by

(Fi(x))(s) := max
t∈Ji(s)

ai(s, t)x(t), (F (x))(s) :=
N∑

i=1

(Fi(x))(s), (5.2)

and

(F̃i(x))(s) := min
t∈ eJi(s)

ãi(s, t)x(t), (F̃ (x))(s) :=

N∑

i=1

(F̃i(x))(s).

Under the above assumptions, if x ∈ Cδ(M) one can prove that F (x), F̃(x) ∈ Cδ(M), and that

further, both maps F, F̃ : Cδ(M) → Cδ(M) are continuous. Additionally, F (Cδ
+(M)) ⊂ Cδ

+(M) and

F̃ (Cδ
+(M)) ⊂ Cδ

+(M), and the restrictions F |Cδ
+(M) and F̃ |Cδ

+(M) are homogeneous and preserve

the partial ordering induced by Cδ
+(M). We omit the proofs. If follows that one can consider the

smallest class F of functions Φ : Cδ(M) → Cδ(M) containing all maps F, F̃ : Cδ(M) → Cδ(M),

and which is closed under the operations of composition, addition, maximum, and minimum; that

is, if Φ1,Φ2 ∈ F then all the maps Φ2 ◦ Φ1, Φ1 + Φ2, Φ1 ∨ Φ2 and Φ1 ∧ Φ2 belong to F . (Here,

as usual, (Φ1 ∨ Φ2)(x) := max{Φ1(x),Φ2(x)} and (Φ1 ∧ Φ2)(x) := min{Φ1(x),Φ2(x)}.) It follows
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that if Φ ∈ F , then Φ is homogeneous and preserves the partial ordering induced by Cδ
+(M), and in

particular, Φ(Cδ
+(M)) ⊂ Cδ

+(M).

Question E. For a fixed δ with 0 ≤ δ ≤ 1, let F be the collection of functions Φ : Cδ(M) → Cδ(M)

described above. Suppose that K ⊂ Cδ
+(M) is a closed cone. Is Conjecture 4.1 true for all Φ ∈ F for

which Φ(K) ⊂ K? In other words, if Φ ∈ F and Φ(K) ⊂ K and ρK(Φ) < r := r̃K(Φ), does there

exist u ∈ K \ {0} with Φ(u) = ru?

If Ji(s) is a single point for each s ∈M , say Ji(s) = {θi(s)}, then the function F in equation (5.2)

becomes a linear “Perron-Frobenius operator,” and we have

(F (x))(s) =

N∑

i=1

ai(s, θi(s))x(θi(s)). (5.3)

This linear case is already non-trivial; see Sections 5 and 6 of [31].

If the functions ai(s, θi(s)) in equation (5.3) are Hölder continuous on M and strictly positive (as

opposed to nonnegative), and if Lip(θi) < 1 for 1 ≤ i ≤ N , a relatively simple argument (see Sections 5

and 6 of [31]) shows that F has a strictly positive eigenvector which is Hölder continuous. We wish to

show that a similar observation applies to the map F in equation (5.2).

We shall make the following assumptions:

(D1) Ji : (M, d) → (M, Dd) is Lipschitz with Lipschitz constant κ < 1 for 1 ≤ i ≤ N , so

Dd(Ji(s), Ji(t)) ≤ κd(s, t)

for all s, t ∈M ; and

(D2) ai : S(Ji) → R is a strictly positive continuous function. Also, there exists δ satisfying 0 < δ ≤ 1,

and a constant C > 0 such that

ai(s1, t1) ≤ exp

(
C

(
d(s1, s2) + d(t1, t2)

)δ)
ai(s2, t2) (5.4)

for all (s1, t1), (s2, t2) ∈ S(Ji) and 1 ≤ i ≤ N .

For a given constant C0 > 0 and δ with 0 < δ ≤ 1, we define a closed cone K(C0, δ) ⊂ C+(M) ⊂

C(M) by

K(C0, δ) := {u ∈ C+(M) | u(t1) ≤ exp(C0d(t1, t2)
δ)u(t2) for all t1, t2 ∈M}. (5.5)
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An easy argument (see Lemma 5.4 in [31]) shows, using the norm from C(M), that the closed unit

ball {u ∈ K(C0, δ) | ‖u‖ ≤ 1} is compact in C(M).

The essential observation is contained in the following lemma.

Lemma 5.1. Assume (D1) and (D2) hold and let F be defined by equation (5.2). Then there exists

a constant C0 such that F (x) ∈ K(C0, δ) for all x ∈ K(C0, δ).

Proof. If Fi(x) is defined by equation (5.2), it suffices to show that for all sufficiently large C0 > 0 it

is the case that Fi(x) ∈ K(C0, δ) whenever x ∈ K(C0, δ), for 1 ≤ i ≤ N . Let i be fixed. For C, κ, and

δ as in (D1) and (D2), select C0 so that

C(1 + κ)δ

1− κδ
≤ C0.

Given s, s̃ ∈ M and x ∈ K(C0, δ), select s1 ∈ Ji(s) such that ai(s, s1)x(s1) = (Fi(x))(s). By (D1)

there exists s̃1 ∈ J(s̃) with d(s1, s̃1) ≤ κd(s, s̃). By (D2) we know that

ai(s, s1) ≤ exp

(
C

(
d(s, s̃) + d(s1, s̃1)

)δ)
ai(s̃, s̃1) ≤ exp

(
C(1 + κ)δd(s, s̃)δ

)
ai(s̃, s̃1).

Because x ∈ K(C0, δ) we have that

x(s1) ≤ exp

(
C0d(s1, s̃1)

δ

)
x(s̃1) ≤ exp

(
C0κ

δd(s, s̃)δ

)
x(s̃1).

Combining these two inequalities, we see that

ai(s, s1)x(s1) = (Fi(x))(s) ≤ exp

((
C(1 + κ)δ +C0κ

δ

)
d(s, s̃)δ

)
ai(s̃, s̃1)x(s̃1).

Now ai(s̃, s̃1)x(s̃1) ≤ (Fi(x))(s̃) by definition of Fi, and our choice of C0 shows that C(1+κ)δ +C0κ
δ ≤

C0, so

(Fi(x))(s) ≤ exp

(
C0d(s, s̃)

δ

)
(Fi(x))(s̃)

and thus Fi(x) ∈ K(C0, δ).

Using Corollary 4.6, we obtain the following result.

Lemma 5.2. Let K := K(C0, δ) be defined by equation (5.5), where C0 > 0 and 0 < δ ≤ 1, and write

K1 := C+(M). Assume that Φ : K → K is continuous, homogeneous and K1-order-preserving. If
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r := rK(Φ) > 0, there exists u ∈ K \ {0} with Φ(u) = ru. If further Φ has an extension Φ1 : K1 → K1

which is continuous, homogeneous and K1-order-preserving, then rK1
(Φ1) = rK(Φ).

Proof. Because {u ∈ K | ‖u‖ ≤ 1} is compact, Φ is compact, so Corollary 4.6 implies there exists

u ∈ K \ {0} with Φ(u) = ru. Because u(t) > 0 for all t ∈ M , the fact that rK1
(Φ1) = rK(Φ) follows

easily.

Theorem 5.3. Assume that (D1) and (D2) hold and take C0 ≥ C(1 + κ)δ(1 − κδ)−1. If K :=

K(C0, δ) is given by equation (5.5) and K1 := C+(M), and if F : C(M) → C(M) is defined by

equation (5.2), then F is continuous, F (K) ⊂ K and F (K1) ⊂ K1, and F |K1 is homogeneous and

K1-order-preserving. Denoting Φ := F |K and Φ1 := F |K1, we have that r := rK(Φ) = rK1
(Φ1) > 0

and there exists u ∈ K \ {0} with F (u) = ru.

Proof. The facts that F (K1) ⊂ K1 and that Φ1 is K1-order-preserving are obvious. If e(t) ≡ 1 for all

t ∈M , it is easy to see that F (e) ≥K1
ηe for some η > 0, so rK(Φ) ≥ η. The remainder of the theorem

follows directly from Lemmas 5.1 and 5.2.

If N = 1 in equation (5.2) there is a much sharper result than Theorem 5.3. We collect assumptions

in the following hypotheses:

(D3) J : (M, d) → (M, Dd) is Lipschitz with Lipschitz constant Q. There exists an integer n ≥ 1

and a constant κ with 0 < κ < 1 such that the iterate Jn is Lipschitz with Lipschitz constant κ;

and

(D4) a : S(J) → R is a strictly positive continuous function. Also, there exists δ satisfying 0 < δ ≤ 1,

and a constant C such that a satisfies equation (5.4) with a replacing ai there.

Under assumptions (D3) and (D4) we define F : C(M) → C(M) by

(F (x))(s) = max
t∈J(s)

a(s, t)x(t), (5.6)

as in equation (5.2).

Theorem 5.4. Assume (D3) and (D4) hold and let F : C(M) → C(M) be given by equation (5.6).

Then there exists a constant C0 such that, for n as in (D3), we have Fn(K(C0, δ)) ⊂ K(C0, δ) where
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K(C0, δ) is as in equation (5.5). Further, there exists u ∈ K(C0, δ) \ {0} such that F (u) = ru where

r := rK1
(F ) > 0 and K1 := C+(M).

Proof. If e is the function identically equal to +1, there exists η > 0 such that F (e) ≥ ηe in the partial

ordering from K1. Our previous remarks show that F : K1 → K1 is continuous, homogeneous and

K1-order-preserving. It follows that rK(F ) = rK1
(F ), with rK(Fn) = (rK(F ))n > 0 and rK1

(Fn) =

(rK1
(F ))n > 0.

We use the notation of (D3) and (D4). We claim that for C0 sufficiently large, Fn(K(C0, δ)) ⊂

K(C0, δ). Take v ∈ K(C0, δ), where C0 will be chosen later. By increasing Q in (D3), we can assume

that Q ≥ κ. By our previous remarks, Lip(J i) ≤ Qi for i ≥ 1 and by (D3) we have Lip(Jn) ≤ κ < 1.

Take s, s̃ ∈ M and x ∈ K(C0, δ). Be relabelling, we can assume that (Fn(x))(s̃) ≤ (Fn(x))(s). One

can see, for s0 := s, that

(Fn(x))(s0) = max{

( n∏

i=1

a(si−1, si)

)
x(sn) | si ∈ J(si−1) for 1 ≤ i ≤ n},

so there exist si for 1 ≤ i ≤ n such that si ∈ J(si−1) and

(Fn(x))(s0) =

( n∏

i=1

a(si−1, si)

)
x(sn).

Take s̃0 := s̃ and choose s̃i ∈ J(s̃i−1), for 1 ≤ i ≤ n, to be a point in J(s̃i−1) closest to si, that is,

d(s̃i, si) ≤ d(ŝi, si) for every ŝi ∈ J(s̃i−1). (Such a point s̃i exists, but may not be unique.) By our

construction, si ∈ J i(s) and s̃i ∈ J i(s̃) so

d(si, s̃i) ≤ Dd(J
i(s), J i(s̃)) ≤ Qid(s, s̃), for 1 ≤ i ≤ n,

and

d(sn, s̃n) ≤ Dd(J
n(s), Jn(s̃)) ≤ κd(s, s̃).

Using the above inequalities in conjunction with (D4) gives, for 1 ≤ i ≤ n,

a(si−1, si) ≤ exp

(
C

(
d(si−1, s̃i−1) + d(si, s̃i)

)δ)
a(s̃i−1, s̃i)

≤ exp

(
CQ(i−1)δ(1 +Q)δd(s, s̃)δ

)
a(s̃i−1, s̃i).
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Because we assume that x ∈ K(C0, δ),

x(sn) ≤ exp

(
C0d(sn, s̃n)δ

)
x(s̃n) ≤ exp

(
C0κ

δd(s, s̃)δ

)
x(s̃n).

Combining these inequalities gives

( n∏

i=1

a(si−1, si)

)
x(sn)

≤ exp

(( n∑

i=1

C(1 +Q)δQ(i−1)δ +C0κ
δ

)
d(s, s̃)δ

)( n∏

i=1

a(s̃i−1, s̃i)

)
x(s̃n).

It follows that if C0 is chosen so that

C(1 +Q)δ

( n−1∑

j=0

Qjδ

)
(1 − κδ)−1 ≤ C0, (5.7)

then for x ∈ K(C0, δ)

(Fn(x))(s) ≤ exp

(
C0d(s, s̃)

δ

)( n∏

i=1

a(s̃i−1, s̃i)

)
x(s̃n) ≤ exp

(
C0d(s, s̃)

δ

)
(Fn(x))(s̃),

so Fn(K(C0, δ)) ⊂ K(C0, δ) if equation (5.7) is satisfied. If we now apply Lemma 5.2 to Φ := Fn, we

see that there exists v ∈ K(C0, δ) \ {0} with Fn(v) = rnv, where r := rK1
(F ) = rK(F ) > 0.

We leave to the reader the exercise of proving that if x, y ∈ K(C0, δ), then x∨y ∈ K(C0, δ) for the

maximum of these two functions. The reader can also verify that, for F as in equation (5.4), we have

F (x ∨ y) = F (x) ∨ F (y). If v ∈ K(C0, δ) is as above and we define wi := r−iF i(v) for 0 < i < n and

w0 := v, it follows from these observations that w := w0∨w1∨· · ·∨wn−1 ∈ K(C0, δ) and F (w) = rw.

In [18] the authors studied the operator R in equation (5.6) for the special case M = [c, d] and for

J(s) = [α(s), β(s)], where α, β : [c, d] → [c, d] are continuous maps. Here we shall make the following

assumptions:

(D5) [c, d] is a compact interval and α, β : [c, d] → [c, d] are Lipschitz maps such that α(s) ≤ β(s) for

all s ∈ [c, d]. The maps α and β have unique fixed points s∗ and t∗, respectively. There exist

δ > 0 and k < 1 such that α∗ := α|[s∗− δ, s∗ + δ]∩ [c, d] and β∗ := β|[t∗− δ, t∗ + δ]∩ [c, d] satisfy

Lip(α∗) ≤ k and Lip(β∗) ≤ k.
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(D6) With α and β as in (H5), define J(s) := [α(s), β(s)] and S(J) := {(s, t)|c ≤ s ≤ d and t ∈ J(s)}.

Assume that a : S(J) → (0,∞) is a strictly positive Hölder continuous function with H older

exponent δ > 0.

As noted previously, (D6) implies that there is a constant C such that equation (5.4) is satisfied, with

a replacing ai in equation (5.4).

Lemma 5.5. Assume that (D5) holds and let J be defined as in (D6). Assume also that α and β are

nondecreasing in [c, d]. If k < k1 < 1, then there exists an integer n such that Lip(Jn) ≤ k1.

Proof. We follow the notation of (D5). Because Lip(α∗) ≤ k < 1, we have α(s) > s for s ∈

[s∗ − δ, s∗) ∩ [c, d] and α(s) < s for s ∈ (s∗, s∗ + δ]∩ [c, d]. As α(s) 6= s for all s 6= s∗, it further follows

from continuity that α(s) > s for s ∈ [c, s∗) and α(s) < s for s ∈ (s∗, d]. Because α is nondecreasing,

α(s∗) = s∗ ≤ α(s) < s for s ∈ (s∗, d], and upon iterating we find for such s that s∗ ≤ αj+1(s) ≤ αj(s)

for j ≥ 0, where αj denotes the jth iterate of α. Thus lim
j→∞

αj(s) := σ∗ exists with α(σ∗) = σ∗, and

therefore σ∗ = s∗ by the uniqueness of the fixed point. The analogous argument for s ∈ [c, s∗) shows

that αj(s) ≤ αj+1 ≤ s∗ for j ≥ 0 and lim
j→∞

αj(s) = s∗. Similarly, lim
j→∞

βj(s) = t∗ for all s ∈ [c, d].

Because α and β are nondecreasing and continuous, one can see that Jj(s) = [αj(s), βj(s)], and

because αj(c) ≤ αj(s) ≤ αj(d) for all j ≥ 1, there exists n1 such that αj(s) ∈ [s∗ − δ, s∗ + δ] ∩ [c, d]

and βj(s) ∈ [t∗ − δ, t∗ + δ] ∩ [c, d] for all j ≥ n1 and s ∈ [c, d]. Moreover, because αn1 and βn1 are

Lipschitz with, say, Lip(α),Lip(β) ≤ Q0 for some Q0, and because Lip(α∗),Lip(β∗) ≤ k < 1, we have

for all s, t ∈ [c, d] and j ≥ 0 that

|αn1+j(s) − αn1+j(t)| ≤ Q0k
j |s− t|, |βn1+j(s)− βn1+j(t)| ≤ Q0k

j|s− t|.

It follows that there exists an integer j1 such that Q0k
j1 ≤ k1 for, so letting n = n1 + j1 it follows that

|αn(s) − αn(t)| ≤ k1|s− t|, |βn(s)− βn(t)| ≤ k1|s− t|.

Thus

D(Jn(s), Jn(t)) ≤ k1|s− t|

where D denotes the Hausdorff metric, as desired.

Theorem 5.6. Assume that (D5) and (D6) hold and that α and β are nondecreasing. For M := [c, d],
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let F : C(M) → C(M) be defined by equation (5.6), and let K1 := C+(M) and r := rK1
(F ) > 0 Then

there exist C0 > 0 and u ∈ K(C0, δ) \ {0} (see equation (5.5)) with F (u) = ru.

Proof. With the aid of Lemma 5.5, the result follows directly from Theorem 5.4.

Theorem 5.6 directly generalizes Theorem 1.1 in [18]. It also generalizes, in a number of ways,

results in Section 4 of [18], although it demands slightly greater regularity of the functions α, β and

a then is usually assumed in [18].
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