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Abstract. We study the nonlinear eigenvalue problem f(x) = λx for a class of maps
f : K → K which are homogeneous of degree one and order-preserving, where K ⊆ X is a
closed convex cone in a Banach space X. Solutions are obtained, in part, using a theory of
the “cone spectral radius” which we develop. Principal technical tools are the generalized
measure of noncompactness and related degree-theoretic techniques. We apply our results
to a class of problems

max
t∈J(s)

a(s, t)x(t) = λx(s)

arising from so-called “max-plus operators,” where we seek a nonnegative eigenfunction
x ∈ C[0, µ] and eigenvalue λ. Here J(s) = [α(s), β(s)] ⊆ [0, µ] for s ∈ [0, µ], with a, α, and
β given functions, and the function a nonnegative.

1. Introduction. This paper is concerned with maps f : K → K, where K is
a closed convex cone in a Banach space X. We assume that f is homogeneous of
degree one, namely that f(θx) = θf(x) for every x ∈ K and every nonnegative real
θ, and we seek nontrivial solutions x ∈ K \ {0} to the problem

f(x) = λx (1.1)

for some λ ≥ 0. Often, we assume additionally that f is order-preserving with
respect to the order on X induced by the cone K. In the simplest finite-dimensional
case we have a linear map f(x) = Ax where A is an n×n matrix with nonnegative
entries, and we seek a solution x ∈ IRn \ {0} to (1.1) with x ≥ 0. Very broadly, in
this paper we wish to generalize the well-known theory of such matrices, and the
corresponding theory of positive linear operators in Banach spaces, to a class of
nonlinear infinite-dimensional maps. We note that there is an extensive literature
concerning eigenvectors and fixed points of linear and nonlinear cone-preserving
maps. We refer to the classic paper [24] and the book [23]. See also [4], [32], [33],
[40], and [41].

We develop our theory from both an abstract point of view, and also as it applies
to a specific class of maps. The abstract theory is contained in Sections 2 and 3
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of this paper, while in Section 4 we apply these results to a class of maps f = F :
C[0, µ] → C[0, µ] of the form

(F (x))(s) = max
t∈J(s)

a(s, t)x(t), (1.2)

which arise from the so-called “max-plus operators” as described below. The max-
imization in (1.2) is taken over the compact interval

J(s) = [α(s), β(s)], (1.3)

where α, β : [0, µ] → [0, µ] are given continuous functions satisfying α(s) ≤ β(s) in
[0, µ]. The kernel a : S → [0,∞) is a given nonnegative continuous function, where
we denote

S = {(s, t) ∈ [0, µ] × [0, µ] | t ∈ J(s)}, (1.4)

which is a compact set. We have in particular that F : K → K where K denotes
the cone of nonnegative functions in X = C[0, µ].

In Section 2 we develop the notion of the cone spectral radius r = r(f) ≥ 0 for
a general homogeneous cone map f , where roughly rn is the typical growth rate of
iterates fn(x) of a point x ∈ K. Several possible definitions for r are presented, and
we provide conditions under which they are equal. In Section 3 we define the cone
essential spectral radius ρ = ρ(f) ≥ 0 for f . The definition of ρ depends not only on
the map f , but also on a so-called “generalized measure of noncompactness” which
must initially be chosen. We prove in Theorem 3.4, under quite general conditions,
that if ρ < r then the problem (1.1) has a nontrivial solution in K with λ = r. Even
if ρ = r, we obtain the same conclusion in Corollary 3.11 under dynamical conditions
(essentially a compactness condition) on the orbit {fn(e)}∞n=0 of a particular point
e ∈ K.

In Section 4 we apply the theory of Sections 2 and 3 to maps F of the form (1.2).
A main result is Theorem 4.1, which asserts the existence of an eigenfunction for F
with eigenfunction λ = r(F ) under certain conditions on α, β, and a. The following
theorem gives the flavor of this result.

Theorem 1.1. Assume that α, β : [0, µ] → [0, µ] are C1 and monotone increasing,
that

α(s) < s < β(s) in (0, µ), (1.5)

and also that α′(0) < 1 and α(µ) < µ, and that β′(µ) < 1 and β(0) > 0. Also
assume the function a : S → (0,∞) is C1 and strictly positive. Then there exists
x ∈ C[0, µ] with x(s) > 0 in [0, µ] such that F (x) = rx, where r = r(F ) > 0 is the
cone spectral radius of F .

Let us remark that by a monotone increasing function g we mean that g(s1) ≤
g(s2) whenever s1 ≤ s2, that is, g is nondecreasing. Similarly, the term monotone
decreasing is used for nonincreasing.

We shall not explicitly prove Theorem 1.1, as this result will be superseded
by the more general Theorem 4.1. Key components in the proof of this result
are Theorem 4.5 and Corollary 4.9, which provide the value of ρ = ρ(F ) and a
lower bound for r = r(F ) respectively, and from which one concludes that ρ < r
under appropriate conditions. Theorem 4.1 also covers cases in which ρ = r, where
the existence of an eigenfunction follows from Corollary 3.11. On the other hand,
Proposition 4.23 provides a class of examples for which no eigenfunction exists,
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and this result serves to illustrate to some extent the sharpness of some of the
conditions of Theorem 4.1. Propositions 4.12 and 4.13 provide conditions under
which eigenfunctions of F are strictly positive or monotone.

A crucial part of the analysis in Section 4 involves sequences si of points in [0, µ]
which satisfy the admissibility condition si ∈ J(si−1) over some range of i, say for
1 ≤ i ≤ n for some n. The value of the product

a(s0, s1)a(s1, s2) · · · a(sn−1, sn) (1.6)

along such sequences, or equivalently of the sum

w(s0, s1) + w(s1, s2) + · · · + w(sn−1, sn) (1.7)

where w(s, t) = log a(s, t), plays an important role in many of the proofs. Indeed,
the product (1.6) arises when one takes iterates Fn(x) of F , and in particular
appears in Theorem 4.3 where a formula for r is given. Of course the sum (1.7) is
reminiscent of the type of sums encountered in ergodic theory. More formally, one
might consider the set

S∞ = {s : ZZ → [0, µ] | si ∈ J(si−1) for every i ∈ ZZ}

of bi-infinite sequences satisfying the admissibility condition, and define the shift
map J : S∞ → S∞ by

J (s)i = si+1, i ∈ ZZ.

The map J is a homeomorphism of S∞ endowed with the compact-open topology
onto itself, and thus can be viewed as a dynamical system. This provides a natural
generalization of a dynamical system generated by an interval map J : [0, µ] → [0, µ]
to one generated by a multi-valued map J : [0, µ] → 2[0,µ] as we have above. We
believe that many of the more subtle properties of our eigenvalue problem, and more
generally questions involving the asymptotic behavior of iterates Fn(x) of points
x ∈ K, are intimately related to properties of the map J . This clearly represents
an area for further study.

The operator F in (1.2) and eigenvalue problem (1.1) with f = F arise in the
study of periodic solutions of a class of differential-delay equations

εy′(t) = g(y(t), y(t − τ)), τ = τ(y(t)), (1.8)

with state-dependent delay. Here g : IR2 → IR is a given nonlinearity, τ : IR →
[0,∞) is a given delay function which is evaluated at the state y(t), and ε > 0 is a
singular perturbation parameter which is taken to be small. As described in [27],
following the theory of “limiting profiles” developed in [26], the analysis of periodic
solutions of equation (1.8) for small ε leads to the study of the additive eigenvalue
problem

z(s) + p = max
t∈J(s)

(w(s, t) + z(t)). (1.9)

In this equation, which is considered in the interval [0, µ], the quantity p ∈ IR is
unknown, a so-called additive eigenvalue, which along with the unknown function
z : [0, µ] → IR is sought. The kernel function w : S → IR is given, along with
α and β as above. By letting (F̃ (z))(s) denote the right-hand side of (1.9), we
thereby define a nonlinear operator F̃ : C[0, µ] → C[0, µ] which is sometimes called
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a max-plus operator. The paper [28], which is a companion to [27], describes
very explicitly the general solution to a particular class of problems (1.9).

(We remark that the independent variables t and s in equation (1.9) are not the
time t in (1.8), but rather correspond to the vertical axis y. That is, the graph of z
depicts the limiting graphs of solutions of (1.8) as ε → 0, but with the t and y axes
interchanged.)

The problem (1.9) is easily reduced to the framework of our paper by exponen-
tiating. Namely, upon setting a(s, t) = exp(w(s, t)) and x(s) = exp(z(s)) and also
λ = ep in (1.9), one arrives at the equation

λx(s) = max
t∈J(s)

a(s, t)x(t), (1.10)

which is simply the eigenvalue problem (1.1) with f = F as in (1.2). In this respect
the paper [28], which provides a detailed analysis of some very special systems,
complements the present paper, which develops a general theory. We remark that
in the system (1.9) as it arises in the delay equation problem, it is sometimes the
case that a solution takes on the value z(s) = −∞ at points, which corresponds
to the value x(s) = 0 in the exponentiated problem. It is of interest to avoid such
situations, and indeed we provide conditions under which x(s) > 0 holds for every
s ∈ [0, µ], that is, x ∈ int(K). Generally however, x(s) ≥ 0 in [0, µ], and so x ∈ K.

Equation (1.9) and thus the operator F in (1.2) have arisen in other contexts for
the case where α(s) = 0 and β(s) = µ are constant functions over the interval [0, µ].
See [7], [8], [18], and [37]. It is known [7], [37], in this case that F is a continuous
compact map on C[0, µ]. However, as we shall see below, compactness fails in
general when α and β are not constant; and indeed, this failure of compactness is
the motivation for much of the work here.

Discrete finite dimensional versions of (1.9) arise in many applications (see, for
example, [2], [9], [11], [12], and [19]) wherein this equation takes the form

zi + p = max
j∈J(i)

(wij + zj).

Here W = (wij) is an n×n matrix, z ∈ IRn, and J(i) ⊆ {1, 2, . . . , n} is a nonempty
subset for every 1 ≤ i ≤ n. See also [17] and [21] for algorithms to solve this
problem.

Max-plus operators arise quite generally in problems of optimal and stochastic
control; see, for example, [13], [14], [15], and [16]. For some general references on
max-plus analysis see the book [22].

2. The Cone Spectral Radius. Let X be a Banach space. By a cone in X we
mean a convex set K ⊆ X such that

K ∩ (−K) = {0}, λK ⊆ K for every λ ≥ 0,

both hold. Here −K = {−x | x ∈ K} and λK = {λx | x ∈ K}. By a closed cone
we mean a cone which is a closed set. Any cone K induces a partial ordering ≤K

defined to be x ≤K y if and only if y − x ∈ K. If confusion seems unlikely we shall
write ≤ instead of ≤K . If W is a compact Hausdorff space and we set X = C(W ),
the Banach space of continuous real-valued functions x : W → IR with the norm
‖x‖ = max{|x(s)| | s ∈ W}, then the set K = {x ∈ X | x(s) ≥ 0 for every s ∈ W}
of nonnegative functions in X is a closed cone.
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Let K ⊆ X be a cone in a Banach space. Then a map f : D ⊆ X → X from
a subset D of X into X is called order-preserving (in the partial ordering ≤
induced by K) if f(x) ≤ f(y) whenever x, y ∈ D and x ≤ y. A map f : K → K
is called homogeneous of degree one if f(λx) = λf(x) for every x ∈ K and
every nonnegative real λ. In this paper we shall be interested in maps f : K → K
which are continuous and homogeneous of degree one; and we shall usually need to
assume that f is order-preserving. We make the following formal definition.

Definition. Let K be a cone in a Banach space and let f : K → K be a map. We
say that f satisfies Hypothesis A if f is continuous and homogeneous of degree
one, and also the cone K is closed. We say that f satisfies Hypothesis B if f
satisfies Hypothesis A, and in addition f is order-preserving in the partial ordering
induced by K.

Suppose now that f : K → K satisfies Hypothesis A. We want to associate to f
a nonnegative real number called the cone spectral radius of f , but as we shall
see, there is more than one reasonable definition of this quantity. Let fn denote
the composition of f with itself n times. Because fn is continuous at 0, there exists
δ = δn > 0 such that ‖fn(x)‖ ≤ 1 for every x ∈ K with ‖x‖ ≤ δ. It follows by
homogeneity that fn maps bounded subsets of K to bounded subsets of K, and
thus we can define a finite quantity

bn = sup{‖fn(x)‖ | x ∈ K and ‖x‖ ≤ 1}. (2.1)

The homogeneity of f implies that

‖fn(x)‖ ≤ bn‖x‖ for every x ∈ K, (2.2)

and one sees easily from (2.2) that for all positive integers n and m we have

bn+m ≤ bnbm. (2.3)

A well-known calculus lemma asserts that for any sequence of nonnegative real
numbers which satisfy the inequalities (2.3) we have that

lim
n→∞ b1/n

n = inf
n≥1

b1/n
n < ∞. (2.4)

With this, we make the following definition.

Definition. If f : K → K satisfies Hypothesis A, then we define Bonsall’s cone
spectral radius of f to be the quantity r̃(f) given by

r̃(f) = lim
n→∞ b1/n

n = inf
n≥1

b1/n
n , (2.5)

where bn is as in (2.1).

If X is a Banach space containing a closed cone K, and if f : X → X is a bounded
linear map such that f(K) ⊆ K, then Bonsall [4] introduced what we have called
Bonsall’s cone spectral radius under the name “the partial spectral radius of f (as
a map of K to K).” Recall that a cone K in a Banach space X is called total if
X equals the closure of its span {ax + by | a, b ∈ IR and x, y ∈ K}. One might
hope that if K is a closed total cone and f : X → X is a bounded linear map with
spectral radius r for which f(K) ⊆ K, then r̃(f) = r. However, Bonsall [4] has
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given a simple example which shows this is false in general. On the other hand, if
ρ denotes the essential spectral radius of f (see [29] and [32]) and if ρ < r, then it
is proved in [32] that r = r̃(f).

If f : K → K satisfies Hypothesis A there is an alternate possible definition of
the cone spectral radius. Namely, first denote for any x ∈ K the quantity

µ(x) = sup{λ > 0 | sup
n≥1

λ−n‖fn(x)‖ = ∞}

= inf{λ > 0 | sup
n≥1

λ−n‖fn(x)‖ < ∞}, (2.6)

where the reader easily observes that the above sup and inf are identical, and where
we make the convention for the empty set that supφ = 0 and inf φ = ∞. The
quantity µ(x) in a crude sense measures the growth rate of ‖fn(x)‖ as n → ∞. We
mention here a third formula

µ(x) = lim sup
n→∞

‖fn(x)‖1/n (2.7)

for the quantity µ(x). The equivalence of (2.6) and (2.7) is easily established.

Definition. If f : K → K satisfies Hypothesis A, then we define the cone spectral
radius of f to be the quantity r(f) given by

r(f) = sup
x∈K

µ(x), (2.8)

where µ(x) is as in (2.6).

Another way of defining a cone spectral radius is in terms of eigenvalues. This
definition is most useful when the map f enjoys an appropriate compactness con-
dition.

Definition. If f : K → K satisfies Hypothesis A, then we define the cone eigen-
value spectral radius of f to be the quantity r̂(f) given by

r̂(f) = sup{λ ≥ 0 | there exists x ∈ K \ {0} with f(x) = λx},

where supφ = 0.

The spectral radii r̃(f), r(f), and r̂(f) defined above of course depend on the
choice of cone K as well as on the map f . However, as we generally work with
a fixed cone, in our notation we shall usually suppress the dependence of these
quantities on K. We shall write r̃K(f), rK(f), and r̂K(f) when we need to indicate
which cone is taken.

Let us note that the inequalities

r̂(f) ≤ r(f), r̂(f) ≤ r̃(f), r̂(f) ≤ r̂(fm)1/m, (2.9)

always hold. The cone spectral radius will be more convenient for us than Bonsall’s
cone spectral radius, but if f satisfies Hypothesis B and if K is a so-called normal
cone, then we shall see below that r(f) = r̃(f). Under appropriate compactness
conditions, including the finite dimensional case (see [34, Definition 3.2, page 89]),
we will show that

r(f) = r̃(f) = r̂(f).
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Our next proposition lists some elementary properties of the cone spectral radius
and Bonsall’s cone spectral radius.

Proposition 2.1. If f : K → K satisfies Hypothesis A, then

r(f) ≤ r̃(f) < ∞. (2.10)

If m is a positive integer then

r(fm) = r(f)m, r̃(fm) = r̃(f)m. (2.11)

If λ > r(f) and x ∈ K, then limn→∞ λ−n‖fn(x)‖ = 0.

Proof. Assuming that r(f) > 0, fix 0 < λ < r(f). Then there exists x ∈ K with
µ(x) > λ by the definition (2.8) of r(f). Thus supn≥1 λ−n‖fn(x)‖ = ∞ by (2.6),
so in particular there exists a subsequence ni → ∞ for which

‖fni(x)‖ ≥ λni , (2.12)

and thus from (2.2) and (2.12) we have that

bni
≥ λni‖x‖−1. (2.13)

Upon taking the nth
i root in (2.13) and passing to the limit we conclude that r̃(f) ≥

λ. As λ is arbitrary, we conclude that r̃(f) ≥ r(f), as desired. The finiteness of
r̃(f) was noted earlier (2.4), and so this establishes (2.10).

We shall show that the first equation in (2.11) follows from the formula

µ(x) = max
0≤i≤m−1

µm(f i(x))1/m, (2.14)

where µm(x) denotes the quantity as in (2.6) or (2.7), but with fm replacing f ,
that is, with fmn replacing fn in (2.6) and (2.7) and so

µm(x) = lim sup
n→∞

‖fmn(x)‖1/n. (2.15)

To prove (2.14) we first note that by (2.15)

µm(f i(x))1/m = lim sup
n→∞

‖fmn+i(x)‖1/mn

= lim sup
n→∞

(
‖fmn+i(x)‖1/(mn+i)

)1+i/mn

= lim sup
n→∞

‖fmn+i(x)‖1/(mn+i).

(2.16)

Taking the maximum of the quantities µm(f i(x))1/m over the range 0 ≤ i ≤ m − 1
yields the lim sup of the sequence which is the union of the sequences in the right-
hand side of (2.16), namely µ(x) = lim supk→∞ ‖fk(x)‖1/k, as one easily sees. This
establishes (2.14).

To prove now that (2.14) implies the first equation in (2.11), we first observe
the upper bound µm(fk(x))1/m ≤ r(fm)1/m by (2.8). Applying this bound to the
right-hand side of (2.14) and then taking the supremum of the left-hand side over all
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x ∈ K yields r(f) ≤ r(fm)1/m. To obtain the opposite inequality we first note that
µm(x)1/m ≤ µ(x) ≤ r(f) by (2.14) and (2.8). Taking the supremum of µm(x)1/m

thus gives r(fm)1/m ≤ r(f), as desired.
The second equation in (2.11) follows directly from (2.1) and (2.5) applied to

fm, which gives

r̃(fm) = lim
n→∞ b1/n

mn =
(

lim
n→∞ b1/mn

mn

)m

= r̃(f)m.

The proof of the final sentence in the statement of the proposition is straightforward,
and is omitted. �

A closed cone K in a Banach space X is called normal if there exists a constant
C such that ‖x‖ ≤ C‖y‖ whenever 0 ≤ x ≤ y. If K is normal, it is known [41]
that there exists an equivalent norm ||| · ||| on X such that |||x||| ≤ |||y||| whenever
0 ≤ x ≤ y. It is known that K is normal if X is finite dimensional. Also, the set
K of nonnegative functions in C(W ) is normal, where W is a compact Hausdorff
space.

Theorem 2.2. If f : K → K satisfies Hypothesis B and the cone K is normal,
then

r(f) = r̃(f). (2.17)

If in addition y ∈ int(K) where int(K) denotes the interior of K, then

r(f) = r̃(f) = µ(y). (2.18)

Also, if e ∈ K is such that e ≥ x for every x ∈ K with ‖x‖ ≤ 1, then

r(f) = r̃(f) = µ(e), (2.19)

and in fact limn→∞ ‖fn(e)‖1/n exists in this case.

Remark. It may be that int(K) = φ in which case the statement (2.18) is vacuous,
and likewise with (2.19) if the element e does not exist. If K is the cone of non-
negative functions in C(W ), then we can take e in Theorem 2.2 to be the function
identically equal to 1.

Remark. The assumption that f is order-preserving (which is part of Hypoth-
esis B) is essential in Theorem 2.2, as the following example shows. Let X be
the space of all bounded bi-infinite sequences {xi}∞i=−∞ of real numbers for which
limi→±∞ xi = 0, endowed with the norm ‖x‖ = supi∈ZZ |xi|, and let K ⊆ X be the
set of all x ∈ X for which xi ≥ 0 for every i ∈ ZZ. Certainly, the cone K is closed
and normal. Define f : K → K by

f(x)i = |x0| ‖x‖−1xi+1, f(0) = 0,

that is, f is a shift followed by a rescaling by a factor |x0| ‖x‖−1. Clearly f is
continuous and homogeneous of degree one. One can check that

fn(x)i = |x0x1 · · ·xn−1| ‖x‖−nxi+n, ‖fn(x)‖ = |x0x1 · · ·xn−1| ‖x‖−n+1,

for x 	= 0 and every n ≥ 1, and it follows from this and the fact that limi→∞ xi = 0
that we have limn→∞ λ−n‖fn(x)‖ = 0 for every λ > 0. Thus µ(x) = 0 and so
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r(f) = 0. On the other hand, for any m ≥ 1 consider the particular element
xm ∈ K given by

xm
i =

{ 1, for 0 ≤ i ≤ m − 1,

0, otherwise.

Then ‖xm‖ = 1 and ‖fm(xm)‖ = 1, which implies that bm ≥ 1 for the quantity
(2.1). In fact, bm = 1 as ‖fm(x)‖ ≤ ‖x‖ holds for every x, and so r̃(f) = 1.

Remark. One might also ask whether the normality of K is essential to Theo-
rem 2.2, that is, whether there exists an example of a continuous map f : K → K,
which is homogeneous of degree one and order-preserving, and for which r(f) <
r̃(f). For such an example K cannot be normal. Moreover, f cannot be linear or
compact by remarks later in this section. At this point, we do not know whether
such an example exists.

Proof of Theorem 2.2. We know from Proposition 2.1 that r(f) ≤ r̃(f), so it
suffices to prove that r̃(f) ≤ r(f). Fix λ > r(f) and define p, pn : K → [0,∞) by

p(x) = sup
n≥1

pn(x), pn(x) = λ−n‖fn(x)‖,

where the choice of λ implies the finiteness of p(x). Then for each m ≥ 1 the set
Wm ⊆ K defined to be

Wm = {x ∈ K | p(x) ≤ m} =
∞⋂

n=1

{x ∈ K | pn(x) ≤ m}

is closed as each function pn is continuous. Also, as p(x) < ∞ for each x ∈ K we
have that

K =
∞⋃

m=1

Wm.

As K is a complete metric space, the Baire category theorem implies that for some
m0 ≥ 1 the set Wm0 has nonempty interior in the relative topology on K. That is,
there exists x0 ∈ Wm0 and ε > 0 such that Bε(x0) ∩ K ⊆ Wm0 , where Bε(x0) =
{x ∈ X | ‖x − x0‖ < ε}. This implies that x0 + z ∈ Wm0 for every z ∈ Bε(0) ∩ K
with ‖z‖ < ε, so for every n ≥ 1 and all such z we obtain

λ−n‖fn(x0 + z)‖ ≤ m0. (2.20)

Because f is order-preserving, 0 ≤ fn(z) ≤ fn(x0 + z) for z ∈ K, so the inequality
(2.20) and the normality of K imply that

λ−n‖fn(z)‖ ≤ Cm0

for every n ≥ 1 and z ∈ Bε(0) ∩ K. With bn defined as in (2.1), it follows that

bn ≤ Cm0ε
−1λn,

implying that r̃(f) ≤ λ. Since λ > r(f) was arbitrary, we conclude that r̃(f) ≤ r(f),
as desired.
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Suppose next that y ∈ int(K). If x ∈ K then there exists a constant δ > 0
(depending on x) such that y − δx ∈ K, and so x ≤ δ−1y. Because f is order-
preserving and K is normal we have that

‖fn(x)‖ ≤ Cδ−1‖fn(y)‖

for every n ≥ 1, and thus µ(x) ≤ µ(y). From (2.8) it follows that r(f) = µ(y),
which gives (2.18).

If there exists e as in the statement of the theorem, then x ≤ ‖x‖e and hence
fn(x) ≤ ‖x‖fn(e) for every x ∈ K and n ≥ 1. By normality we have ‖fn(x)‖ ≤
C‖x‖‖fn(e)‖ and we conclude that µ(x) ≤ µ(e). As before, r(f) = µ(e), which
gives (2.19). Taking in particular x = fm(e) gives ‖fn+m(e)‖ ≤ C‖fn(e)‖‖fm(e)‖,
and hence an+m ≤ anam where ak = C‖fk(e)‖ for every k ≥ 1. With this the
existence of the limit limn→∞ ‖fn(e)‖1/n = limn→∞ a

1/n
n is established. �

Remark. If X is a Banach space and K ⊆ X, then K is called a closed wedge
if K is closed and convex, and if λK ⊆ K for every λ ≥ 0. Closed cones in X and
closed linear subspaces of X are all closed wedges. If K is a closed wedge in X and
if f : K → K is continuous and homogeneous of degree one, then one can still define
r̃(f) by equation (2.5) and r(f) by equation (2.8). An examination of the proof of
Proposition 2.1 shows that this result remains true when K is a closed wedge.

Remark. Suppose that K ⊆ X is a closed wedge and f : X → X is a bounded
linear map such that f(K) ⊆ K. We claim that r(f) = r̃(f). Since r(f) ≤ r̃(f),
it suffices to take λ > r(f) and prove that λ ≥ r̃(f). The same argument as in
the proof of Theorem 2.2 shows that there exist x0 ∈ K and ε > 0, and an integer
m0, such that (2.20) holds for every n ≥ 1 and every z ∈ Bε(0) ∩ K. In particular,
taking z = 0 in (2.20) gives

λ−n‖fn(x0)‖ ≤ m0. (2.21)

Using the triangle inequality and the linearity of fn, we conclude from (2.20) and
(2.21) that

λ−n‖fn(z)‖ ≤ 2m0

for every n ≥ 1 and every z ∈ Bε(0)∩K, and so r̃(f) ≤ λ by arguing as in the proof
of Theorem 2.2. Thus r̃(f) = r(f). In particular, this shows that for a bounded
linear map f Theorem 2.2 is true without any assumption of normality for K.

Remark. A slight generalization of Theorem 2.2, in which we have two cones
K1 ⊆ K, can be given and is sometimes useful. Namely, we assume that f satisfies
the conditions of Theorem 2.2 with respect to the cone K as stated. Additionally,
we assume that f(K1) ⊆ K1, where the cone K1 ⊆ K is closed. Then one concludes
(2.17), (2.18), and (2.19), but with r(f) = rK(f) and r̃(f) = r̃K(f) replaced with
rK1(f) and r̃K1(f), with y ∈ int(K1) assumed in (2.18), and where e ∈ K1 is
assumed to satisfy e ≥K x for every x ∈ K1 with ‖x‖ ≤ 1. The proof of these facts
is essentially the same as the proof of Theorem 2.2.

Note that all the assumptions involving order, in particular Hypothesis B, are
taken with respect to the order ≤K induced by the larger cone. The conclusions
about growth rates, on the other hand, are made with respect to the smaller cone
K1. Note also that there is no assumption that f is order-preserving with respect
to ≤K1 , and indeed, this provides the motivation for this generalization. Namely, it
may happen that while a nonlinear map f is not order-preserving with respect to a
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cone K1, it is order-preserving with respect to a larger cone K. It may also happen
that verifying the order-preserving property with respect to ≤K is easy, but that
checking whether it is order-preserving with respect to ≤K1 is harder.

It is possible to remove both the assumptions in Theorem 2.2 that f is order-
preserving and that K is normal, at the expense of assuming a compactness con-
dition, and conclude that r(f) = r̃(f). Generally, we say that f : K → K is a
compact map if the set f(B) is compact whenever the set B ⊆ K is bounded.
The approach in the proof below is typically associated with asymptotic fixed point
results [5], [6] and point dissipative maps [20].

Theorem 2.3. If f : K → K satisfies Hypothesis A and if for some m ≥ 1 the
map fm is compact, then (2.17) holds.

Proof. By (2.11) of Proposition 2.1 it is enough to consider the case m = 1, and
by (2.10) of that result it is enough to prove that r̃(f) ≤ r(f). Fix any λ > r(f).
We must prove that λ ≥ r̃(f). Letting g(x) = λ−1f(x), we see that r(g) < 1 hence
limn→∞ gn(x) = 0 for every x ∈ K. Let B = {x ∈ K | ‖x‖ < 1} and denote
Q = g(B). Then Q ⊆ K is a compact set, and for every x ∈ Q there exists an
integer n = n(x) ≥ 1 such that gn−1(x) ∈ B and hence gn(x) ∈ Q. By continuity,
there exists an open neighborhood Ux ⊆ K of x (open in the relative topology on
K) such that gn−1(y) ∈ B and hence gn(y) ∈ Q for every y ∈ Ux. By compactness,
there exists a finite collection of points xi ∈ Q, for 1 ≤ i ≤ k, such that

Q ⊆
k⋃

i=1

Uxi
.

Let us define n0 = max1≤i≤k ni where for ease of notation we write ni = n(xi).
Also set

Q0 =
n0−1⋃
i=0

gi(Q),

which is a compact subset of K. We claim that g(Q0) ⊆ Q0. Clearly, it is sufficient
to prove that gn0(Q) ⊆ Q0 to establish this fact. Taking any x ∈ Q, denote
y = gn0(x), which is a typical point in gn0(Q). We have that x ∈ Uxi

for some
1 ≤ i ≤ k and so gni(x) ∈ Q. Denoting z = gni(x), we have that

y = gn0−ni(z) ∈ gn0−ni(Q),

and as 0 ≤ n0 − ni ≤ n0 − 1 we conclude that y ∈ Q0. This establishes the claim.
Therefore, if x ∈ B then g(x) ∈ Q ⊆ Q0 and so gi(x) ∈ Q0 for every i ≥ 1.

As Q0 is compact and hence bounded, we have that r̃(g) ≤ 1, or equivalently, that
r̃(f) ≤ λ, as desired. �
Remark. As is the case with Theorem 2.2, the above result remains true when K
is merely a closed wedge instead of a closed cone.

3. Eigenvectors for the Cone Spectral Radius. Suppose that K is a closed
cone in a Banach space X and that f : K → K is a map which satisfies Hypothesis B.
Letting r = r(f), one may ask whether there exists x ∈ K \ {0} with f(x) = rx.
Without some sort of compactness condition on f the answer is negative, even for
bounded linear maps. For example, consider the cone K of nonnegative functions in
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C[0, 1] and define f : K → K by (f(x))(s) = sx(s) for each x ∈ K, where 0 ≤ s ≤ 1.
One easily checks that r(f) = 1 but that f(x) 	= x for every x ∈ K \ {0}.

The kinds of compactness conditions we shall need are best described in terms
of “generalized measures of noncompactness.” Recall (see [33, page 28]) that if ν is
a map which assigns to each bounded subset A of a Banach space X a nonnegative,
finite number ν(A), then ν is called a generalized measure of noncompactness
if ν satisfies the following four conditions:

ν(A) = 0 if and only if A is compact; (3.1)

ν(A + B) ≤ ν(A) + ν(B); (3.2)

ν(co(A)) = ν(A); and (3.3)

ν(A ∪ B) = max{ν(A), ν(B)}. (3.4)

Here we denote A+B = {a+b | a ∈ A and b ∈ B}, and co(A) denotes the smallest
closed convex set containing A. We mention the books [1] and [3] as references for
generalized measures of noncompactness.

Example. If (X, d) is a complete metric space and A is a bounded subset of X,
then C. Kuratowski [25] has defined a quantity ν(A) by

ν(A) = inf{δ > 0 | there exist Si ⊆ X for 1 ≤ i ≤ k,

for some k ≥ 1, such that A =
k⋃

i=1

Si and diam(Si) ≤ δ},

where diam(·) denotes the diameter of a set. He proved that if An, for n ≥ 1, is a
monotone decreasing sequence of closed bounded nonempty sets, and if ν(An) → 0
as n → ∞, then the intersection

A∞ =
∞⋂

n=1

An

is compact and nonempty. Moreover, for any open set U ⊇ A∞, there exists an
integer m = m(U) such that An ⊆ U for every n ≥ m.

One easily verifies (3.1) and (3.4) for the above example, and G. Darbo [10] has
observed that if X is a Banach space then (3.2) and (3.3) are also satisfied. One
can also see that if X is a Banach space then for any nonnegative real number λ
and any bounded set A ⊆ X one has that

ν(λA) = λν(A). (3.5)

In general, if a generalized measure of noncompactness ν on a Banach space X
satisfies equation (3.5) for all bounded sets A and every λ ≥ 0, we say that ν is a
homogeneous generalized measure of noncompactness. It is not difficult to
show that if ν is a homogeneous generalized measure of noncompactness then there
exists a constant C > 0 such that

ν(A) ≤ Cα(A)

for every bounded set A ⊆ X, where α is the Kuratowski-Darbo generalized measure
of noncompactness of the example above. Indeed, for any ε > 0 one can cover A
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with a finite number of balls of radius α(A) + ε, and so ν(A) ≤ C(α(A) + ε) using
(3.4), where C = ν(B) with B the unit ball. We are unfortunately not aware of any
result which provides the opposite inequality α(A) ≤ C̃ν(A) for general ν. If such a
result were available then one could conclude that the definition below of the cone
essential spectral radius would be independent of the choice of ν.

Example. Let (W,d) be a compact metric space and let X = C(W ). If A ⊆ X is
bounded and if δ > 0, we define ωδ(A) by

ωδ(A) = sup{|x(t) − x(s)| | x ∈ A, with t, s ∈ W satisfying d(t, s) ≤ δ}, (3.6)

and we define ω(A) by

ω(A) = inf
δ>0

ωδ(A) = lim
δ→0+

ωδ(A). (3.7)

If α(A) denotes the Kuratowski-Darbo generalized measure of noncompactness de-
fined in the previous example, then it is a special case of Theorem 1 in [30] that

α(A) ≤ ω(A) ≤ 2α(A) (3.8)

for every bounded set A ⊆ X. Equation (3.8) implies that ω(A) = 0 if and only
if A is compact, which is the Ascoli-Arzelà theorem. We leave to the reader the
routine verifications that ω satisfies (3.2), (3.3), (3.4), and (3.5), and so ω is a
homogeneous generalized measure of noncompactness. We shall always write ω for
this generalized measure of noncompactness.

Quite generally, suppose that f : K → K satisfies Hypothesis A and that ν is
a homogeneous generalized measure of noncompactness on the underlying Banach
space X. We may define a quantity

ν(f) = inf{λ > 0 | ν(f(A)) ≤ λν(A) for every bounded set A ⊆ K}, (3.9)

where we set inf φ = ∞. By analogy with (2.1) we may now define quantities

cn = ν(fn) (3.10)

for n ≥ 1. One easily checks that cn+m ≤ cncm for every n,m ≥ 1 for which both
cn and cm are finite. (In contrast to the quantities bn which are easily seen to be
finite, it is not evident that cn < ∞, although this will always be the case for the
examples we study.) With this, and with a slight extension of the calculus lemma
mentioned in the previous section to deal with the case where some cn are infinite,
we may make the following definition.

Definition. Let f : K → K satisfy Hypothesis A and let ν be a homogeneous gen-
eralized measure of noncompactness on X. We define the cone essential spectral
radius of f to be the quantity ρ(f) given by

ρ(f) = lim
n→∞ c1/n

n = inf
n≥1

c1/n
n , (3.11)

provided cn < ∞ except for finitely many n, where cn is as in (3.9), (3.10). (If
cn = ∞ for infinitely many n then one might define ρ(f) = ∞, although as noted
this case will not arise in our work.)
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As noted above, the quantity ρ(f) would seem to depend on the choice of the gen-
eralized measure of noncompactness ν. We shall refrain from explicitly indicating
this dependence as typically ν will be fixed throughout our analysis.

We may now state our first main result of this section.

Theorem 3.1. Let f : K → K satisfy Hypothesis B. Denoting r = r(f), sup-
pose there exists a homogeneous generalized measure of noncompactness ν such that
c
1/m
m < r for some m ≥ 1, with cm as in (3.10). Then there exists xm ∈ K with
‖xm‖ = 1 satisfying

fm(xm) = rmxm. (3.12)

In particular, if we have the inequality

ρ(f) < r(f) (3.13)

between the cone essential spectral radius and the cone spectral radius, then there
exists m0 ≥ 1 such that for every m ≥ m0 there exists xm as above.

The following lemma is given as Theorem 2.1 of [32]. The reader should also
compare Proposition 6 on page 252 of [31], which, if the cone is normal, provides a
more general result.

Lemma 3.2 ([32, Theorem 2.1]). Let f : K → K satisfy Hypothesis B. Suppose
there exists a homogeneous generalized measure of noncompactness ν and a constant
0 ≤ λ < 1 such that ν(f(A)) ≤ λν(A) for every bounded set A ⊆ K. Assume also
that there exists y ∈ K such that the set {‖fn(y)‖ | n ≥ 1} is unbounded. Then
there exists z ∈ K with ‖z‖ = 1, and θ ≥ 1, such that f(z) = θz.

Further, if f(x) 	= x for every x ∈ K with ‖x‖ = 1, and if we denote B = {x ∈
K | ‖x‖ < 1}, then iK(f,B) = 0 where iK(f,B) denotes the fixed point index of
f : B → K.

Remark. The proof of the above lemma is an exercise in the fixed point index
for maps in cones. In fact, the final statement of this result, that iK(f,B) = 0, is
the crucial step in the proof of the rest of the result. An exposition of the basic
properties of the fixed point index can be found in Section 1 of [33].

Proof of Theorem 3.1. First observe that it is sufficient to prove the existence of
xm satisfying (3.12) in the case m = 1. Indeed, from the first equation in (2.11) one
has that c

1/m
m < r(f) if and only if cm < r(fm), and so one may argue by replacing

f with fm. We therefore take m = 1 below.
Assuming that c1 < r, fix a quantity λ satisfying c1 < λ < r and choose a

sequence of numbers λk such that λ < λk < r and limk→∞ λk = r. Consider the
map fk defined as fk(x) = λ−1

k f(x). Then ν(fk(A)) ≤ λ−1
k c1ν(A) for every bounded

set A ⊆ K by the definition (3.10) of c1. Also, by the definition (2.8) of r(f) there
exists an element yk ∈ K for which λk < µ(yk) ≤ r, with µ as in (2.6) for the map
f . It follows that for every k ≥ 1 the sequence

λ−n
k ‖fn(yk)‖ = ‖fn

k (yk)‖

is unbounded as n → ∞. Applying Lemma 3.2 to the map fk, we see that there
exist zk ∈ K and θk ≥ 1, with ‖zk‖ = 1, such that fk(zk) = θkzk, that is,

f(zk) = λkθkzk. (3.14)
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We claim that the set A = {zk | k ≥ 1} has compact closure. To prove this it
suffices to show that ν(A) = 0. Since λkθk ≥ λk > λ, we have that

A = {(λkθk)−1f(zk) | k ≥ 1} ⊆ co(λ−1f(A) ∪ {0})

and hence

ν(A) ≤ ν(co(λ−1f(A) ∪ {0})) = λ−1ν(f(A)) ≤ λ−1c1ν(A).

As c1 < λ, it follows that ν(A) = 0 and that A has compact closure.
We may now take convergent subsequences zki

→ x1 and θki
→ θ ≥ 1, where

‖x1‖ = 1. Recalling that λk → r, and passing to the limit in (3.14), we obtain
f(x1) = σx1 for some σ ≥ r. Clearly µ(x1) = σ, and from the definition of r we
have σ ≤ r. Thus σ = r, and we have (3.12), as desired.

Let us finally note from the definition (3.11) of the cone essential spectral radius
that (3.13) implies that c

1/m
m < r for all large m, and hence the existence of xm. �

Corollary 3.3. Assume that f : K → K satisfies the conditions of Theorem 3.1,
in particular, that c

1/m
m < r(f) for some m ≥ 1. Then

r(f) = r̂(fm)1/m = sup
n≥1

r̂(fn)1/n

holds.

Proof. By (2.9) and (2.11) one has that

sup
n≥1

r̂(fn)1/n ≤ sup
n≥1

r(fn)1/n = r(f),

and so it is sufficient to prove that r(f) ≤ r̂(fm)1/m. But this is immediate from
Theorem 3.1, which asserts the existence of an eigenvector for fm in K with corre-
sponding eigenvalue r(f)m. �

We say that a Banach space X is a vector lattice with respect to the ordering
induced by a cone K (or we say that a cone K induces a vector lattice on X) if
for every x, y ∈ X there exists a least upper bound z ∈ X for x and y, that is, we
have x ≤ z and y ≤ z, and also z ≤ u for every u ∈ X for which x ≤ u and y ≤ u.
The element z, which one thinks of as the maximum of x and y, is clearly unique,
and we denote it by z = x ∨ y. We also define x ∧ y = −((−x) ∨ (−y)). Thus
w = x∧ y satisfies w ≤ x and w ≤ y, and w is the maximal such element. We shall
say that X is a topological vector lattice if it is a vector lattice for which the
mapping (x, y) → x ∨ y from X × X → X is continuous. One easily checks that if
X is a topological vector lattice then the associated cone K is closed. The cone K
of nonnegative functions in X = C(W ), where W is a compact Hausdorff space, is
a topological vector lattice. On the other hand, the cone of nonnegative functions
in C1[0, 1] is not a vector lattice as the maximum of two C1 functions need not be
C1.

Now suppose that a cone K induces a vector lattice on X. If f : K → K then it
may happen that

f(x ∨ y) = f(x) ∨ f(y) for every x, y ∈ K. (3.15)
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Indeed, if equation (3.15) holds (as will be the case for the class of examples studied
in the next section), then Theorem 3.1 takes a stronger form. Here we clearly see
the importance of verifying the inequality (3.13).

Theorem 3.4. Let f : K → K satisfy Hypothesis B. Suppose also that K induces a
vector lattice on X, and that (3.15) holds. Further, assume that ν is a homogeneous
generalized measure of noncompactness on X for which the inequality (3.13) holds.
Then there exists y ∈ K \ {0} for which

f(y) = ry, (3.16)

where we denote r = r(f).

Proof. Defining g(x) = r−1f(x), we see by Theorem 3.1 that there exists x0 ∈
K \ {0} and m ≥ 1 such that gm(x0) = x0. Define y ∈ K \ {0} by y = x0 ∨ g(x0)∨
g2(x0)∨ · · · ∨ gm−1(x0). One now sees from equation (3.15) that g(y) = y, and thus
(3.16) holds as desired. �
Remark. As with Theorem 2.2, one may generalize Theorems 3.1 and 3.4 and
Corollary 3.3 to the case of two cones K1 ⊆ K. We assume that f : K → K
satisfies Hypothesis B as stated, and in Theorem 3.4 that K induces a vector lattice
on X. Additionally we assume that f(K1) ⊆ K1 where K1 ⊆ K is a closed cone.
In the statement of these results the quantities r(f), r̂(f), and ρ(f) are replaced
with rK1(f), r̂K1(f), and ρK1(f), and cn = ν(fn) replaced with the corresponding
quantity ν(fn|K1) for the restriction of fn to K1. Then the conclusions of these
results hold, except that xm ∈ K1 in Theorem 3.1. In Theorem 3.4 we have only
y ∈ K and not y ∈ K1 in the absence of further information, as K1 is not assumed
to generate a lattice.

In making the generalization of Theorem 3.1 we require an appropriate extension
of Lemma 3.2, which is easily given following the proof in [32].

If the cone K in Theorem 3.1 or Theorem 3.4 has nonempty interior, it is fre-
quently important to know whether the map f has an eigenvector in the interior
of this cone. If such an eigenvector exists then the corresponding eigenvalue is
necessarily r(f), as follows from Proposition 3.8 below. We shall be interested in
this question for the class of examples in Section 4. However, it is known that, in
general, the question of existence of eigenvectors in int(K) may be quite difficult
even for finite dimensional cones. We refer the reader to [34], [35], [36], and [38] for
a discussion of this issue and some instructive examples.

The proofs of Theorems 3.1 and 3.4 involve the use of the fixed point index and
provide no hints as to how to construct the eigenvector. At the cost of somewhat
more restrictive hypotheses, we now present a variant of Theorem 3.4 which can be
proved without the use of the fixed point index, and which provides a construction
of the eigenvector. We begin by recalling a lemma from [39].

Lemma 3.5 ([39, page 954]). Let K be a closed normal cone which induces a
vector lattice on X, and suppose that int(K) 	= φ. Let A ⊆ X be compact and
let B ⊆ X denote the smallest closed set such that A ⊆ B and x ∨ y, x ∧ y ∈ B
whenever x, y ∈ B. Then B is compact.

An easy consequence of the above is the following result.

Lemma 3.6. Let K be a closed normal cone which induces a vector lattice on X,
and suppose that int(K) 	= φ. Let A ⊆ X be compact and let Q ⊆ X denote the
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smallest closed set such that A ⊆ Q and x ∨ y ∈ Q whenever x, y ∈ Q. Then Q is
compact.

If further K induces a topological vector lattice on X, and we let

D = {x1 ∨ x2 ∨ · · · ∨ xn | xi ∈ A for 1 ≤ i ≤ n, for some n ≥ 1},
then D = Q. �
Proof. Clearly Q ⊆ B with B as in Lemma 3.5. By that result B is compact,
hence so is Q. With D defined as in the statement of the lemma, we easily see that
D ⊆ Q. Assuming that K induces a topological vector lattice, we see also that
x ∨ y ∈ D whenever x, y ∈ D, and so the definition of Q implies that D = Q. �
Remark. The conclusions of Lemmas 3.5 and 3.6 can be false if K is not a normal
cone. For example, let X = W 1,∞(0, 1), the space of lipschitz functions x : [0, 1] →
IR with the norm ‖x‖ = maxs∈[0,1] |x(s)|+ess sups∈[0,1]|x′(s)|, and let K ⊆ X be the
set of nonnegative functions. As the maximum of two lipschitz functions is lipschitz,
one sees that K is a vector lattice. Taking xa(s) = s−a in [0, 1] and letting 0 denote
the zero function in X, one has that ya = 0 ∨ xa, namely ya(s) = max{0, s − a},
does not vary continuously in X with a ∈ [0, 1] even though xa does. Indeed, if
0 ≤ a1 < a2 ≤ 1, then ‖ya1 − ya2‖ ≥ ess sups∈[0,1]|y′

a1
(s) − y′

a2
(s)| = 1. Thus if

A ⊆ X denotes the compact set consisting of all xa for a ∈ [0, 1] together with the
zero function, then the sets B and Q in Lemmas 3.5 and 3.6 contain uncountably
many points ya which are pairwise separated by a distance at least 1. Thus neither
B nor Q is compact.

Another interesting point about Lemma 3.5 is that its conclusion can be false if
int(K) = φ. An example is given in [39, page 955] for the case that X = Lp[0, 1]
for 1 ≤ p < ∞, and where K is the cone of nonnegative functions in X.

It is useful here to recall some basic notions of dynamical systems. Generally,
if g : X → X is continuous where X is any metric space, one may consider the
forward orbit

γ+(x) = {gn(x) | n ≥ 0}
of any point x ∈ X. The omega limit set of a point x is defined to be the set

ω(x) = {y ∈ X | there exists ni → ∞ for which lim
i→∞

gni(x) = y}.

It is a well-known and easily proved result that ω(x) ⊆ γ+(x) ⊆ X is a closed set
which satisfies g(ω(x)) = ω(x). In addition, if the closure γ+(x) of the forward
orbit of x is compact, then ω(x) is compact and ω(x) 	= φ.

In order to make clear the map g in question, we shall write γ+
g (x) and ωg(x) for

the forward orbit and omega limit set of a point x.

Lemma 3.7. Let f : K → K satisfy Hypothesis A, and let ν be a homogeneous
generalized measure of noncompactness on X. Assume the inequality (3.13) holds,
and let g(x) = r−1f(x) where r = r(f). Suppose that A ⊆ K is a bounded set
for which g(A) ⊆ A and such that Z is compact, where Z = A \ g(A). Then A is
compact.

In particular, if the forward orbit γ+
g (y) of some point y ∈ K under g is bounded,

then γ+
g (y) is compact.

Proof. One easily shows by induction that the set gn−1(A) \ gn(A) has compact
closure for every n ≥ 1, and thus A \ gn(A) has compact closure. We may therefore
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write A = gn(A) ∪ Zn where ν(Zn) = 0. Now taking cn as in (3.10), one has from
(3.11) that c

1/m
m < r for some m ≥ 1. Fix this m and observe from the definition of

cm that ν(fm(A)) ≤ cmν(A). Then

ν(A) = ν(gm(A) ∪ Zm) = ν(gm(A)) = r−mν(fm(A)) ≤ r−mcmν(A),

and as cm < rm we conclude that ν(A) = 0. Thus A is compact.
The final sentence in the statement of the lemma is proved by taking A = γ+

g (y),
as g(A) ∪ {y} = A for this set. �

Our next proposition gives a necessary condition for a map to have an eigenvector
in the interior of a cone.

Proposition 3.8. Let f : K → K satisfy Hypothesis B, and suppose the cone K
is normal. Assuming that int(K) 	= φ, suppose there exists y ∈ int(K) and λ ≥ 0
for which f(y) = λy. Then λ = r(f), and for every x ∈ int(K) there exist positive
constants a1, a2 such that

a1r(f)n ≤ ‖fn(x)‖ ≤ a2r(f)n (3.17)

for every n ≥ 1. If only x ∈ K then there exists a2 such that the right-hand
inequality in (3.17) holds for every n ≥ 1.

Proof. Assuming first that both x, y ∈ int(K), we see that there exists ε > 0 such
that x− εy, y− εx ∈ K, and so εy ≤ x ≤ ε−1y. Because fn is order-preserving, we
have that

ελny = εfn(y) ≤ fn(x) ≤ ε−1fn(y) = ε−1λny, (3.18)

and it follows that

C−1ελn‖y‖ ≤ ‖fn(x)‖ ≤ Cε−1λn‖y‖ (3.19)

where C is the constant in the definition of cone normality. Noting that ‖fn(y)‖ =
λn‖y‖ and so µ(y) = λ, we have from (2.18) of Theorem 2.2 that λ = r(f). This
completes the result, with a1 = C−1ε‖y‖ and a2 = Cε−1‖y‖.

If x ∈ K then one has only that y − εx ∈ K for some ε > 0. This yields the
right-hand inequalities in (3.18) and (3.19), and hence the right-hand inequality in
(3.17). �
Lemma 3.9. Let K be a closed cone which induces a vector lattice on X. Let
Q ⊆ X be a compact set such that x ∨ y ∈ Q whenever x, y ∈ Q. Then there exists
z ∈ Q such that z ≥ x for every x ∈ Q.

Proof. Because Q is compact, there exists a countable subset D ⊆ Q which is
dense in Q. Denote D = {xn}∞n=1. For each n ≥ 1 let zn = x1 ∨ x2 ∨ · · · ∨ xn, so
that zn ∈ Q and zn ≥ xk for 1 ≤ k ≤ n. Take a subsequence zni

converging to a
point limi→∞ zni

= z ∈ Q, and observe that z ≥ xk for every k ≥ 1 follows from
the fact that K is closed. It follows further from the closedness of K that z ≥ x for
every x ∈ D = Q, as desired. �
Theorem 3.10. Let f : K → K satisfy both Hypothesis B and (3.15), and suppose
the cone K is normal and induces a topological vector lattice on X. Assume that
int(K) 	= φ and that there exist y ∈ K and positive constants a1 and a2 such that

a1r
n ≤ ‖fn(y)‖ ≤ a2r

n (3.20)
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for every n ≥ 1, where we denote r = r(f). Finally, assume either the inequality
(3.13) holds, or more generally that r > 0 and that the closure γ+

g (y) of the forward
orbit of y under the map g(x) = r−1f(x) is compact. Then there exists z ∈ K \ {0}
such that f(z) = rz and z ≥ x for every x ∈ ωg(y).

Proof. The inequalities (3.20) imply that a1 ≤ ‖x‖ ≤ a2 for every x ∈ γ+
g (y), so if

(3.13) holds then Lemma 3.7 implies that γ+
g (y) is compact. Thus ωg(y) is compact

and nonempty. Now let

D = {x1 ∨ x2 ∨ · · · ∨ xn | xi ∈ ωg(y) for 1 ≤ i ≤ n for some n ≥ 1},

and set Q = D. As g(ωg(y)) = ωg(y), one sees by (3.15) that g(D) = D. By
Lemma 3.6 the set D is compact, and so g(D) = g(D). Thus g(Q) = Q.

The set Q is closed under the operation ∨, and so Lemma 3.9 now implies that
there exists an element z ∈ Q such that z ≥ x for every x ∈ Q. Clearly such z
is unique. The order-preserving property of g implies that g(z) ≥ g(x) for every
x ∈ Q, and as g(Q) = Q it follows that g(z) ∈ Q and that g(z) ≥ x for every x ∈ Q.
The uniqueness of the maximal element z of Q now implies that g(z) = z, that is,
f(z) = rz. �

Remark. In most respects Theorem 3.10 is less general than Theorem 3.4. How-
ever, the elementary proof, which avoids the use of the fixed point index, may be of
interest. Moreover, if one can obtain information about the omega limit set ωg(y)
in Theorem 3.10, then this result may provide more information than Theorem 3.4.

Corollary 3.11. Let X = C(W ) where W is a compact Hausdorff space, and let
K ⊆ X denote the cone of nonnegative functions in X. Assume that f : K → K
satisfies both Hypothesis B and (3.15). Let e ∈ X denote the function identically
equal to 1 and assume that there exists a positive constant a such that

‖fn(e)‖ ≤ arn (3.21)

for every n ≥ 1, where we denote r = r(f). Finally, assume either the inequality
(3.13) holds, or more generally that r > 0 and that γ+

g (e) is compact where g(x) =
r−1f(x). Then there exists z ∈ K \ {0} such that f(z) = rz and z ≥ x for every
x ∈ ωg(e).

Proof. The result follows directly from Theorem 3.10 once one establishes the
existence of a constant a1 > 0 in (3.20), with y = e. One has x ≤ e for every x ∈ K
with ‖x‖ = 1, and hence fn(x) ≤ fn(e), which implies that ‖fn(x)‖ ≤ ‖fn(e)‖.
Therefore bn = ‖fn(e)‖ for the quantities (2.1). By (2.5) and also by (2.17) of
Theorem 2.2 one has that

rn = r̃(f)n ≤ bn = ‖fn(e)‖,

which provides a1 = 1. �

Under the hypotheses of Theorem 3.4 or Corollary 3.11 the map f may possess
a “dominant eigenvector.” To make this idea precise, we introduce a definition.

Definition. If K is a closed cone, A ⊆ K, and y ∈ K, we say that y dominates A
if there exists λ > 0 such that x ≤ λy for every x ∈ A.
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Proposition 3.12. Let f : K → K satisfy both Hypothesis B and (3.15), and
suppose the cone K is normal and induces a vector lattice on X. Assume also that
int(K) 	= φ. Let

A = {x ∈ K | ‖x‖ = 1 and f(x) = rx}
where we denote r = r(f), and assume either the inequality (3.13) holds, or more
generally that the set A is compact and nonempty. Then there exists y ∈ A such
that y dominates A.

Proof. We first note that (3.13) implies that A is compact and nonempty. Indeed,
A 	= φ by Theorem 3.4, and A is clearly closed and bounded. As f(A) = rA, we
have by Lemma 3.7 that A is compact.

Now let Q ⊆ K be the smallest closed set containing A and which is closed
under the operation ∨. Then Q is compact by Lemma 3.6. Thus by Lemma 3.9
there exists z ∈ Q such that z ≥ x for every x ∈ Q. We now claim that f(x) = rx
for every x ∈ Q, which we see implies that every element of Q is a multiple of some
element of A. Indeed, let R = {x ∈ Q | f(x) = rx}, and observe that A ⊆ R, that
R is closed, and that x ∨ y ∈ R whenever x, y ∈ R by (3.15). Thus R = Q from
the definition of Q. One easily sees now that the normalized element y = z‖z‖−1

belongs to A and dominates A. �

4. Positive Eigenfunctions for Some Max-Type Operators. As noted in
the Introduction, we are interested in finding solutions to equation (1.10) with
x(s) ≥ 0 and with λ ≥ 0. To this end we shall formulate equation (1.10) as a
nonlinear eigenvalue problem in a cone, and then apply the theory of the previous
two sections.

Standing Hypotheses and Notation. For the remainder of this section we shall
denote X = C[0, µ] where µ is a fixed positive number, and we let K ⊆ X denote
the cone of nonnegative functions in X. We let α, β : [0, µ] → [0, µ] denote given
continuous functions which satisfy α(s) ≤ β(s) in [0, µ]. We let a : S → [0,∞)
denote a given nonnegative continuous function where the set S ⊆ [0, µ] × [0, µ] is
defined by (1.4), and we denote

A− = min
(s,t)∈S

a(s, t), A+ = max
(s,t)∈S

a(s, t).

The interval J(s) is as in (1.3), and we denote

SL
δ = ([0, δ] × [0, δ]) ∩ S, SR

δ = ([µ − δ, µ] × [µ − δ, µ]) ∩ S

for any 0 < δ ≤ µ.

It will also be useful to state several additional hypotheses, to be assumed as
needed. In contrast to the above hypotheses which hold throughout this section,
the ones below are discretionary in that we do not assume them unless explicitly
indicated. The reason for the somewhat curious labeling of these hypotheses will
be apparent from the statement of Lemma 4.26.

Definition. We introduce several hypotheses defined as follows.

Hypothesis X. α(µ) < µ and β(0) > 0.

Hypothesis Y. α(µ) < µ and a(0, 0) < r = r(F ).
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Hypothesis Y′. α is lipschitz in [0, δ] with lipschitz constant c, and a is lipschitz
in SL

δ .

Hypothesis Z. β(0) > 0 and a(µ, µ) < r = r(F ).

Hypothesis Z′. β is lipschitz in [µ − δ, µ] with lipschitz constant c, and a is
lipschitz in SR

δ .

The quantities δ and c in Hypotheses Y′ and Z′ will always be indicated when these
hypotheses are made.

With the above, let the function F (x) be given by (1.2) for every x ∈ X, and so
F : X → X. We shall shortly show that F : K → K is continuous and homogeneous
of degree one, and with this there is defined the cone spectral radius r(F ) which
appears in Hypotheses Y and Z. However, let us first state the following theorem
on the map F , which is a principal result of this section.

Theorem 4.1. Assume that α and β are monotone increasing in [0, µ] and that
(1.5) holds. Also assume the function a is strictly positive in S and denote

a+ = max
s∈[0,µ]

a(s, s). (4.1)

Finally, if a(0, 0) = a+ then assume both Hypothesis X holds and Hypothesis Y ′

holds for some δ > 0 and c < 1, and if a(µ, µ) = a+ then assume both Hypothesis X
holds and Hypothesis Z ′ holds for some δ > 0 and c < 1. Then there exists x ∈ K
which is strictly positive in (0, µ) such that F (x) = rx, where r = r(F ) satisfies
r > 0. If also α(µ) < µ then x(µ) > 0, and if β(0) > 0 then x(0) > 0.

Another result, similar to the one above, is close to the examples considered
in [27] and [28].

Theorem 4.2. Assume for some β0 ∈ (0, µ] that α is monotone increasing in [0, β0]
with α(s) < s in (0, β0], that β(s) = β0 in [0, β0] with β(s) ≤ β0 in [β0, µ], and that
the function a is strictly positive in S. Denote

a0 = max
s∈[0,β0]

a(s, s),

and if a(0, 0) = a0 then assume Hypothesis Y ′ holds for some δ > 0 and c < 1, and
if a(β0, β0) = a0 then assume a is lipschitz in ([β0 − δ, β0] × [β0 − δ, β0]) ∩ S for
some δ > 0. Then there exists x ∈ K which is strictly positive in [0, µ] such that
F (x) = rx, where r = r(F ) satisfies r > 0.

Let us remark that below we shall give other conditions not covered by the
above theorems which also imply the existence of an eigenfunction x ∈ K \ {0} of
F with eigenvalue r = r(F ). In particular, Corollaries 4.21 and 4.22 provide such
conditions.

In order to apply our results of the previous sections to the map F , we must first
verify that F (x) indeed belongs to K for x ∈ K, and that F satisfies the appropriate
properties, in particular, Hypothesis B and condition (3.15). This will be done in
Proposition 4.7. We wish to obtain lower bounds for the cone spectral radius r(F )
and upper bounds for the cone essential spectral radius ρ(F ) in hopes of finding
conditions under which ρ(F ) < r(F ), so that Theorem 3.4 can be used (which is
basically reformulated for max-plus operators as Theorem 4.4). Theorem 4.3 below
is a crucial result by which such estimates can be obtained, and in particular it
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provides upper bounds for ρ(F ) and a formula for the quantities bn in (2.1) which
enter into the definition of r(F ). Corollary 4.9 provides lower bounds for r(F ) in
a form which is easy to use. In Lemma 4.11 the quantities cn = ω(Fn) in (3.10),
which enter into the definition of ρ(F ), are bounded cn ≤ λn by the quantities
appearing in Theorem 4.3. If the functions α and β are monotone increasing then
Lemma 4.16 gives an equality cn = λn, and in Theorem 4.5 we are able to give the
exact value of ρ(F ) in a very explicit form.

We note that Theorem 4.1 above applies even in some cases where ρ(F ) = r(F )
holds, as shown by an example below. On the other hand, Proposition 4.23 below
provides a class of examples for which ρ(F ) = r(F ) and for which no eigenfunction
in K exists. We shall in fact use Corollary 3.11 to prove some of the cases of
Theorem 4.1, wherein the compactness of γ+

g (e) must be verified rather than having
to check (3.13).

Results on the positivity and monotonicity of the eigenfunction x are given in
Propositions 4.12 and 4.13, respectively.

Except for Theorems 4.1 through 4.5, we shall generally prove results when
they are stated. The proofs of Theorems 4.3 and 4.4 are given after the proof
of Lemma 4.11, and the proof of Theorem 4.5 is given after that of Lemma 4.20, as
the necessary theory must first be developed. Similarly, Theorems 4.1 and 4.2 are
proved at the end of this section.

The definition of the cone essential spectral radius depends upon the choice of
a homogeneous generalized measure of noncompactness ν on X. In what follows
below, we shall always take ν = ω with ω as in (3.7), and with ωδ for each δ > 0 as
in (3.6). The notation ω(F ) denotes the quantity (3.9) with ω and F in place of ν
and f .

The estimates on the spectral radii involve iterates Fn of the operator F , and as
such, it will be convenient to introduce some additional notation and terminology
before stating further results. Consider for each n ≥ 1 the set Sn of (n + 1)-tuples
σ = (s0, s1, s2, . . . , sn) defined as

Sn = {(s0, s1, s2, . . . , sn) | s0 ∈ [0, µ] and si ∈ J(si−1) for 1 ≤ i ≤ n}.

Thus S1 = S. An element σ ∈ Sn will be called an admissible n-sequence. If
some σ ∈ Sn satisfies s0 = sn, then we shall say that σ is an n-cycle. Let us define
a function an : Sn → [0,∞) by setting

an(σ) = a(s0, s1)a(s1, s2) · · · a(sn−1, sn). (4.2)

Note that the set Sn ⊆ [0, µ]n+1 is compact and is the maximal set on which the
formula (4.2) for an(σ) is defined, and that the function an is continuous on Sn.
For later use let us also denote

J(L) =
⋃
s∈L

J(s)

for any set L ⊆ [0, µ], and define inductively

Jn+1(L) = J(Jn(L)) for n ≥ 0,

with J0(L) = L. Of course Jn(s) means Jn(L) with L = {s}. It is easy to check
that if L is a compact interval then so is J(L), so by iterating we see that Jn(L) is
a compact interval for every n ≥ 1.
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The following definition will play a key role in our obtaining estimates of ρ(F ).

Definition. Let σ = (s0, s1, s2, . . . , sn) ∈ Sn be given, and let p0 ∈ [0, µ] be
given. We say an element π ∈ Sn given as π = (p0, p1, p2, . . . , pn) is the best-
approximating n-sequence to σ through p0 if for every 1 ≤ i ≤ n the point pi

is the point in the interval J(pi−1) nearest to si.

Let us note that given any σ ∈ Sn, then π above is uniquely determined by the
point p0. Also note that if pk = sk for some k, then pi = si for every i ≥ k, where
0 ≤ k ≤ i ≤ n. One therefore has that if pn 	= sn, then pi 	= si for every 0 ≤ i ≤ n.
In this spirit it is convenient to introduce the following notation.

Notation. If σ, π ∈ Sn then we shall always let si and pi denote the coordinates
of these (n + 1)-tuples, as above. We shall also write

π|σ ⇐⇒ π is the best-approximating n-sequence to σ through p0,

π‖σ ⇐⇒ π|σ and pi 	= si for every 0 ≤ i ≤ n,

π|δσ ⇐⇒ π|σ and |p0 − s0| ≤ δ, and

π‖δσ ⇐⇒ π‖σ and |p0 − s0| ≤ δ,

where δ > 0.

Now observe that if π|σ and pi 	= si for some 1 ≤ i ≤ n, then either pi =
α(pi−1) > si or else pi = β(pi−1) < si. Thus if π‖σ then π ∈ En where En ⊆ Sn is
defined to be

En = {π ∈ Sn | pi ∈ {α(pi−1), β(pi−1)} for every 1 ≤ i ≤ n}.

That is, En is the set of admissible n-sequences whose coordinates pi, for 1 ≤ i ≤ n,
are each endpoints of the allowable interval J(pi−1). One sees that if the strict
inequality α(s) < β(s) holds everywhere, then there exist exactly 2n elements of En

for every given p0 ∈ [0, µ], and that in any case the set En has at most 2n elements
for every p0.

Let us also introduce the set

An,δ = {π ∈ Sn | π‖δσ for some σ ∈ Sn}

for every δ > 0, which will play an important role below. We have that An,δ ⊆ En

and that An,δ1 ⊆ An,δ2 for δ1 < δ2. With this, we are now able to state two main
theorems concerning spectral radii and eigenfunctions of F .

Theorem 4.3. We have that

r(F ) = lim
n→∞ b1/n

n = inf
n≥1

b1/n
n , (4.3)

where
bn = max

σ∈Sn

an(σ), (4.4)

and that
ρ(F ) ≤ inf

n≥1
λ1/n

n , (4.5)

where
λn = lim

δ→0+
λn(δ) = inf

δ>0
λn(δ), λn(δ) = sup

π∈An,δ

an(π), (4.6)
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for the cone spectral radius r(F ) and the cone essential spectral radius ρ(F ) of the
map F : K → K in (1.2). (Recall that if An,δ = φ then λn(δ) = 0.)

Theorem 4.4. Suppose that ρ(F ) < r(F ) for the map F : K → K in (1.2), or
more generally that λn < rn for some n ≥ 1, where λn is as in (4.6) and r = r(F ).
Then there exists x ∈ K \ {0} with F (x) = rx.

In the special case that the functions α and β are monotone increasing it is
possible to give the exact value of ρ(F ) in an explicit form. Generally, if g : [c, d] →
[c, d] is a continuous monotone increasing function, then the iterates si = gi(s0)
of any point tend to a fixed point si → s∗ = g(s∗) of g as i → ∞. Because of
this, if α and β are both monotone increasing in [0, µ] we might expect the fixed
points of these functions to play a special role in estimating the quantities λn and
ρ(F ) in Theorem 4.3, and indeed this is the case. Let us say that s ∈ [c, d] is a
point of constancy of g if there exists ε > 0 such that g(t) = g(s) for every
t ∈ [s − ε, s + ε] ∩ [c, d]. Let us also define sets

Qg = {s ∈ [c, d] | s is a point of constancy of g},
Sg = {s ∈ [c, d] | g(s) = s}, Cg = Sg ∩ Qg, Dg = Sg \ Qg,

(4.7)

for such a function. With this we may state another main result of this section.

Theorem 4.5. Suppose that both functions α and β are monotone increasing in
[0, µ]. Then the inequality in (4.5) is an equality and in fact

ρ(F ) = lim
n→∞λ1/n

n = inf
n≥1

λ1/n
n . (4.8)

Additionally,
ρ(F ) = sup

s∈Dα∪Dβ

a(s, s) (4.9)

where Dα,Dβ ⊆ [0, µ] are the sets (4.7) for the functions α and β.

Remark. Clearly λn ≤ bn and so ρ(F ) ≤ r(F ) by Theorem 4.3 for the map F .
However, let us remark that in the abstract setting of the previous section it is not
clear that ρ(f) ≤ r(f) always holds for general maps f and for general measures of
noncompactness ν.

Remark. Although An,δ ⊆ En, not every element of En need belong to An,δ for
some δ. Indeed, one difficulty in applying Theorem 4.3 is that the sets An,δ figure
in the definition of λn(δ) and λn, and in general determining An,δ precisely poses
difficulties. However, if α and β are monotone increasing as in Theorem 4.5 then
it is possible to give explicit descriptions of An,δ and of the quantities λn(δ) and
λn. In this case Lemma 4.15 below shows that every π ∈ An,δ necessarily is of the
form either pi = αi(p0) for every 1 ≤ i ≤ n, or else pi = βi(p0) for every 1 ≤ i ≤ n,
and in fact we provide a necessary and sufficient condition for such a sequence to
belong to An,δ. Note that here at most two of the 2n elements π ∈ En with a given
p0 ∈ [0, µ] belong to An,δ for any δ.

Remark. If both functions α and β are constant, say α(s) = α0 and β(s) = β0

identically in [0, µ], it is known that F is a compact map. In fact, this is a special
case of Theorem 4.3. One has for such α and β that whenever σ, π ∈ Sn satisfy
π|σ then necessarily pi = si for 1 ≤ i ≤ n. This implies that π‖σ can never hold
and hence that An,δ = φ for n ≥ 1 and δ > 0. Thus λn = λn(δ) = 0 in (4.6) and
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so ρ(F ) = 0. Also, Lemma 4.11 below implies that ω(F (A)) = 0 hence F (A) is
compact whenever A ⊆ K is bounded.

Example. We give an example to which Theorem 4.1 applies, yet for which ρ(F ) =
r(F ). With [0, µ] = [0, 1], let α(s) = s/2 and β(s) = 1 in that interval, and let
a(s, t) = 1 identically in S. It is clear that the hypotheses of Theorem 4.1 hold.
Also, we have that each bn = 1 and so r(F ) = 1, by Theorem 4.3, and that Dα = {0}
and Dβ = φ and so ρ(F ) = a(0, 0) = 1, by Theorem 4.5. One sees easily that

(F (x))(s) = max
t∈[s/2,1]

x(t)

for any x ∈ K, and that the constant function which equals 1 identically is the
eigenfunction guaranteed by Theorem 4.1.

For notational convenience let us define a function q : [0, µ] × [0, µ] → [0, µ] by
letting q(s, t) denote the point in the interval J(s) which is closest to t. That is,

q(s, t) = min{max{t, α(s)}, β(s)}, (4.10)

which equals t if t ∈ J(s), and which equals α(s) or β(s) if t ≤ α(s) or t ≥ β(s),
respectively. Let us also set

ψ(δ) = max{ψα(δ), ψβ(δ)},
ψτ (δ)= max{|τ(s) − τ(s̃)| | s, s̃ ∈ [0, µ] and |s − s̃| ≤ δ}, (4.11)

for every δ > 0, where τ = α or β. The function ψ, which measures the modulus of
continuity of α and β, is monotone increasing and satisfies limδ→0+ ψ(δ) = 0.

We present a technical lemma, followed by a result which places the map F
within our theory.

Lemma 4.6. Let s, s̃ ∈ [0, µ] and t ∈ J(s), and set t̃ = q(s̃, t). Then |t − t̃| ≤
ψ(|s − s̃|) with q and ψ as in (4.10) and (4.11).

Proof. It is sufficient to show that

|t − t̃| ≤ max{|α(s) − α(s̃)|, |β(s) − β(s̃)|}, (4.12)

by (4.11). Indeed, if t ∈ J(s̃) then t = t̃. If t < α(s̃) then t̃ = α(s̃), and as t ∈ J(s)
we have t ≥ α(s), to give (4.12). Similarly, if t > β(s̃) then (4.12) holds. This
proves the result. �

Proposition 4.7. The map F : K → K in (1.2) satisfies Hypothesis B and
condition (3.15).

Proof. We leave the verification that F is homogeneous of degree one, order-
preserving and satisfies (3.15) to the reader. We have to prove that if x ∈ K then
F (x) ∈ K, and also that F : K → K is continuous.

First fix x ∈ K and let y = F (x) be given by (1.2). We must prove that y(s)
is continuous in s (it is obviously nonnegative). Letting ε > 0, we have that there
exists δ > 0 such that if (s, t), (s̃, t̃) ∈ S satisfy |s − s̃| ≤ δ and |t − t̃| ≤ ψ(δ), then

|a(s, t)x(t) − a(s̃, t̃)x(t̃)| ≤ ε.
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In particular, take arbitrary points s, s̃ ∈ [0, µ] with |s− s̃| ≤ δ, let t ∈ J(s) be such
that y(s) = a(s, t)x(t), and choose t̃ = q(s̃, t), that is, t̃ is the nearest point in J(s̃)
to t. Then |t − t̃| ≤ ψ(δ) by Lemma 4.6 and so

y(s) − y(s̃) = a(s, t)x(t) − y(s̃) ≤ a(s, t)x(t) − a(s̃, t̃)x(t̃) ≤ ε.

Our argument is symmetric in the roles of s and s̃, so we also find that y(s̃)−y(s) ≤ ε,
and we conclude that |y(s)−y(s̃)| ≤ ε whenever |s− s̃| ≤ δ. As ε > 0 was arbitrary,
we conclude that y is continuous.

It remains to prove that F is continuous on K. Let x1, x2 ∈ K be given, denote
ε = ‖x1 − x2‖, and let yi = F (xi) for i = 1, 2. Then x1(t) ≤ x2(t) + ε for every
t ∈ [0, µ], and so

y1(s) = max
t∈J(s)

a(s, t)x1(t) ≤ max
t∈J(s)

a(s, t)(x2(t) + ε)

≤ max
t∈J(s)

a(s, t)x2(t) + A+ε = y2(s) + A+ε,

for every s ∈ [0, µ], where we recall that A+ is the maximum of a in S. Similarly
y2(s) ≤ y1(s) + A+ε for every s. We conclude from this that ‖F (x1) − F (x2)‖ ≤
A+‖x1 − x2‖ for every x1, x2 ∈ K, thereby establishing the continuity (in fact,
lipschitz continuity) of F . �

The following results allow for estimates of r(F ).

Proposition 4.8. If x ∈ K and n ≥ 1, then

(Fn(x))(s) = max{an(σ)x(sn) | σ ∈ Sn and s0 = s}. (4.13)

The quantities bn as in (2.1), but for the map F in place of f , are given by (4.4)
and we have that (4.3) holds.

Proof. If n = 1, then equation (4.13) is the definition of F (x). The formula for
general n ≥ 1 follows by an induction argument, which we leave to the reader.

If e denotes the function identically equal to 1, then it is immediate from (4.13)
that ‖Fn(x)‖ ≤ ‖Fn(e)‖ for every x ∈ K with ‖x‖ ≤ 1, and thus bn = ‖Fn(e)‖.
With this, one now sees that (4.4) follows directly from (4.13). Also, we have the
equality r̃(F ) = r(F ) from Theorem 2.2, which with (2.5) gives us (4.3). �
Corollary 4.9. We have that

r(F ) ≥ an(σ)1/n

if σ ∈ Sn is an n-cycle.

Proof. We shall use the formulas (4.3) and (4.4), as established by Proposition 4.8.
Let σ be an n-cycle and extend it periodically to an infinite sequence (s0, s1, s2, . . . )
which satisfies si = si+n for every i ≥ 0. Then every truncated (m + 1)-tuple
σm = (s0, s1, s2, . . . , sm) satisfies σm ∈ Sm and so bm ≥ am(σm). In particular,
take m = kn and note from the formula (4.2) that akn(σkn) = an(σn)k, and so
bkn ≥ an(σn)k. Taking the (kn)th root of this inequality and letting k → ∞ gives
r(F ) ≥ an(σn)1/n, which is as desired. �

We give a technical lemma, followed by a result which allows us to estimate
ω(Fn(A)) in terms of ω(A) for any bounded set A ⊆ K. The proofs of Theorems 4.3
and 4.4 follow directly.
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Lemma 4.10. There exist nonnegative monotone increasing functions ψi, θn :
(0,∞) → (0,∞) for i, n ≥ 1, satisfying limδ→0+ ψi(δ) = 0 and limδ→0+ θn(δ) = 0,
and with the following properties: If σ, π ∈ Sn satisfy π|δσ for some δ > 0, with
n ≥ 1, then |si − pi| ≤ ψi(δ) for 1 ≤ i ≤ n, and |an(σ) − an(π)| ≤ θn(δ).

Proof. By Lemma 4.6 we have that |si −pi| ≤ ψ(|si−1−pi−1|) for 1 ≤ i ≤ n. Thus
by defining recursively ψi(δ) = ψ(ψi−1(δ)), with ψ1(δ) = ψ(δ), we obtain |si−pi| ≤
ψi(δ). One easily checks that the function ψi satisfies the desired properties. Now
set

θn(δ) = max{|an(σ) − an(π)| | σ, π ∈ Sn and |si − pi| ≤ ψi(δ) for 0 ≤ i ≤ n},

where ψ0(δ) = δ. Again, one checks that θn is as desired. �

Lemma 4.11. For every n ≥ 0 we have for every bounded set A ⊆ K that
ω(Fn(A)) ≤ λnω(A), and thus

ω(Fn) ≤ λn (4.14)

with λn as in (4.6).

Proof. Let A ⊆ K be a bounded set with ‖x‖ ≤ M for every x ∈ A, and fix n ≥ 1.
Take any x ∈ A and let y = Fn(x). In order to estimate the value of ω(Fn(A)), we
need to estimate the difference |y(s0)−y(p0)| for nearby points s0 and p0. Fix δ > 0
and let s0, p0 ∈ [0, µ] satisfy |s0 − p0| ≤ δ. By possibly interchanging the roles of s0

and p0, we can assume without loss that y(s0) ≥ y(p0). By (4.13) of Proposition 4.8
there exists σ ∈ Sn, with initial coordinate s0, such that y(s0) = an(σ)x(sn). Define
π ∈ Sn to be the best-approximating n-sequence to σ through p0, and so π|δσ. Then
y(p0) ≥ an(π)x(pn) again by (4.13), and so

0 ≤ y(s0) − y(p0) ≤ an(σ)x(sn) − an(π)x(pn)

≤ |an(σ) − an(π)|x(sn) + an(π)|x(sn) − x(pn)|
≤ θn(δ)M + an(π)|x(sn) − x(pn)|
≤ θn(δ)M + λn(δ)|x(sn) − x(pn)|
≤ θn(δ)M + λn(δ)ωη(A),

(4.15)

where η = ψn(δ) in the last line of (4.15). We have used Lemma 4.10 and the fact
that π|δσ to obtain the fourth inequality in (4.15). To obtain the fifth inequality
in (4.15) we may assume that x(sn) 	= x(pn), in which case π‖δσ holds, and so
π ∈ An,δ and an(π) ≤ λn(δ) by (4.6). The final inequality in (4.15) follows from
the fact, by Lemma 4.10, that |sn − pn| ≤ ψn(δ) = η.

Let us now take the supremum in the first line of (4.15), over all y ∈ Fn(A) and
over all points s0 and p0 separated by a distance at most δ. This gives

ωδ(Fn(A)) ≤ θn(δ)M + λn(δ)ωη(A). (4.16)

Upon letting δ → 0 in (4.16) we obtain ω(Fn(A)) ≤ λnω(A) as claimed. This
immediately gives the inequality (4.14) using the definition (3.9). �

Proof of Theorem 4.3. Proposition 4.8 gives the formulas (4.3), (4.4) for r(F ).
The inequality (4.5) for ρ(F ) follows from the inequality (4.14) in Lemma 4.11
together with the definition (3.11) with (3.10), where ν = ω. �
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Proof of Theorem 4.4. If λn < rn for some n ≥ 1 then ρ(F ) < r(F ). The
existence of the eigenfunction x with eigenvalue r now follows from Theorem 3.4,
using Proposition 4.7. �

Before proceeding toward the proof of Theorem 4.5, we give two propositions
which provide criteria under which eigenfunctions of F must be either strictly pos-
itive, or else monotone.

Proposition 4.12. Suppose that x ∈ K \ {0} satisfies F (x) = λx for some λ ≥ 0,
and that the function a is strictly positive throughout S. Let

Z = {s ∈ [0, µ] | x(s) = 0}.

Then we have
J(Z) ⊆ Z, (4.17)

that is, J(s) ⊆ Z for every s ∈ Z.
If furthermore (1.5) holds then Z∩(0, µ) = φ, and so x(s) > 0 for every s ∈ (0, µ).

Also, we have that λ > 0.
If in addition to (1.5) we have α(µ) < µ then x(µ) > 0, and if β(0) > 0 then

x(0) > 0.

Proof. If s ∈ Z then by (1.10), using the strict positivity of a, we have x(t) = 0
for every t ∈ J(s). This gives J(s) ⊆ Z, and so (4.17) holds.

Assuming (1.5), take any s ∈ Z ∩ (0, µ) and let I = [s1, s2] be the maximal
interval contained in Z which satisfies s ∈ I ⊆ [0, µ], with possibly s1 = s2. As
J(s1) ⊆ Z we have [α(s1), s1] ⊆ J(s1) ⊆ Z, and thus

[α(s1), s2] = [α(s1), s1] ∪ I ⊆ Z. (4.18)

If s1 > 0 then α(s1) < s1, and so (4.18) contradicts the maximality of the interval
I. Thus s1 = 0. Similarly s2 = µ, and this implies that x is the zero function, a
contradiction. Thus Z ∩ (0, µ) = φ as claimed. From this one sees the left-hand
side of (1.10) is strictly positive in (0, µ), and so λ > 0.

Assuming (1.5), if α(µ) < µ then µ ∈ Z would imply the existence of some
s ∈ J(µ) ⊆ Z with s ∈ (0, µ), a contradiction. Thus µ 	∈ Z and so x(µ) > 0.
Similarly β(0) > 0 implies that x(0) > 0. �
Remark. Suppose that s1 ≤ α(s) < s < β(s) ≤ s2 for every s ∈ (s1, s2), for some
s1 < s2 with s1, s2 ∈ [0, µ]. Then if F (x) = λx for some λ ≥ 0 and x ∈ K \{0}, and
if a is strictly positive in S, it follows from Proposition 4.12 that either x(s) > 0 for
every s ∈ (s1, s2) or else that x(s) = 0 for every s ∈ [s1, s2].

Proposition 4.13. Suppose that x ∈ K \ {0} satisfies F (x) = λx for some λ > 0.
If J(s1) ⊆ J(s2) and a(s1, t) ≤ a(s2, t) whenever 0 ≤ s1 < s2 ≤ µ and t ∈ J(s1),
then x is monotone increasing in [0, µ]. If J(s1) ⊇ J(s2) and a(s1, t) ≥ a(s2, t)
whenever 0 ≤ s1 < s2 ≤ µ and t ∈ J(s2), then x is monotone decreasing in [0, µ].

Proof. Under the first set of hypotheses, if 0 ≤ s1 < s2 ≤ µ we have that

λx(s1) = max
t∈J(s1)

a(s1, t)x(t) ≤ max
t∈J(s1)

a(s2, t)x(t) ≤ max
t∈J(s2)

a(s2, t)x(t) = λx(s2).

This implies that x(s1) ≤ x(s2), as desired. A similar argument gives the second
part of the proposition. �
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As a practical matter, we need an efficient method for estimating the quantities
λn appearing in Theorem 4.3 in order to use that result, and also to prove Theo-
rem 4.5. In this direction Lemma 4.15 below characterizes the sets An,δ when α
and β are monotone increasing. Indeed, in most of the following results we shall
assume that both α and β are monotone increasing in [0, µ]. The same methods
yield theorems for the case that both α and β are monotone decreasing.

We need to introduce some additional notation before proceeding. For any s ∈
[0, µ] define admissible n-sequences ζ±n (s) ∈ En by

ζ−n (s) = (s, α(s), α2(s), . . . , αn(s)), ζ+
n (s) = (s, β(s), β2(s), . . . , βn(s)).

Also define functions u±
n : [0, µ] → [0,∞) by

u±
n (s) = an(ζ±n (s)), (4.19)

with an as in (4.2).
We first prove a technical lemma.

Lemma 4.14. Assume that both functions α and β are monotone increasing in
[0, µ]. For any n ≥ 1 take any σ, π ∈ Sn for which π|σ and with p0 > s0. Then
there exists 0 ≤ k ≤ n such that

αi(s0) ≤ si < pi = αi(p0) for 0 ≤ i ≤ k, pi = si for k < i ≤ n. (4.20)

If π|σ with p0 < s0 then the corresponding result holds.

Proof. If pi = si for some 1 ≤ i ≤ n−1 then pi+1 = si+1 as π|σ. If pi < si for some
1 ≤ i ≤ n then necessarily pi = β(pi−1) < si, and as si ≤ β(si−1) must hold and
β is monotone increasing, we conclude that pi−1 < si−1. From this it follows that
p0 < s0, a contradiction. Thus pi < si is impossible, and so we see that there exists
0 ≤ k ≤ n such that pi > si for 0 ≤ i ≤ k while pi = si for k < i ≤ n. Necessarily
pi = α(pi−1) for 1 ≤ i ≤ k as π|σ, and so pi = αi(p0) for such i. As α(si−1) ≤ si

must hold for every i, we have that αi(s0) ≤ si as α is monotone increasing. With
this we have (4.20). �
Lemma 4.15. Assume that both functions α and β are monotone increasing in
[0, µ]. Then for every δ > 0 we have that

An,δ = A−
n,δ ∪ A+

n,δ, (4.21)

where
A−

n,δ ={π ∈ Sn | π = ζ−n (p0) for some p0 ∈ (0, µ],

with αn(s∗) < αn(p0) where s∗ = (p0 − δ) ∨ 0},
A+

n,δ ={π ∈ Sn | π = ζ+
n (p0) for some p0 ∈ [0, µ),

with βn(p0) < βn(s∗) where s∗ = (p0 + δ) ∧ µ}.

(4.22)

If α and β are strictly increasing in [0, µ], then An,δ is independent of δ with the
conditions on s∗ in (4.22) automatically satisfied. If α is constant in [0, µ] with β
monotone increasing there then An,δ = A+

n,δ, while if α is monotone increasing and
β is constant then An,δ = A−

n,δ.

Proof. All assertions of the lemma follow from equations (4.21), (4.22), so it suffices
to prove these. We first show that An,δ is contained in the right-hand side of (4.21).
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Take any π ∈ An,δ, and let σ ∈ Sn be such that π‖δσ. Let us first observe that as
α(si−1) ≤ si ≤ β(si−1) for every 1 ≤ i ≤ n, one has from the monotonicity of α
and β that αi(s0) ≤ si ≤ βi(s0) for such i.

Assuming for definiteness that p0 > s0, we have by Lemma 4.14 that (4.20)
holds, and moreover k = n. We have further that αn(s∗) ≤ αn(s0) where s∗ =
(p0 − δ) ∨ 0 ≤ s0, and thus αn(s∗) < αn(p0). This shows that π belongs to the
right-hand side of (4.21), in fact π ∈ A−

n,δ. One similarly concludes that π ∈ A+
n,δ

in the case that p0 < s0.
To show the opposite inclusion, let π belong to the right-hand side of (4.21),

say π = ζ−n (p0) ∈ A−
n,δ for definiteness. Letting s0 = (p0 − δ) ∨ 0 and si = αi(s0)

for 1 ≤ i ≤ n, one sees that si < pi for these points (the strict inequality holding
because sn < pn), and so π‖δσ. Thus π ∈ An,δ. A similar argument applies if
π ∈ A+

n,δ, and so we obtain equality in (4.21). �

With α and β monotone increasing we have for either choice of sign ± that
A±

n,δ1
⊆ A±

n,δ2
when δ1 < δ2, for the sets given by (4.22). Thus we may define

quantities

λ±
n = lim

δ→0+
λ±

n (δ) = inf
δ>0

λ±
n (δ), λ±

n (δ) = sup
π∈A±

n,δ

an(π), (4.23)

where we have from Lemma 4.15 that λn = max{λ−
n , λ+

n } and that λn(δ) =
max{λ−

n (δ), λ+
n (δ)} for the quantities in (4.6). With this we are able to show the

inequality (4.14) is an equality when α and β are monotone increasing.

Lemma 4.16. Assume that both the functions α and β are monotone increasing
in [0, µ]. Then

ω(Fn) = λn

for every n ≥ 1.

Proof. As ω(Fn) ≤ λn holds by Lemma 4.11, it is enough to prove that λ±
n ≤ ω(Fn)

for both choices of sign ± in order to prove the result. We shall in fact prove only
that

λ−
n ≤ ω(Fn), (4.24)

the proof for λ+
n being similar.

Fix any δ > 0. Then for any ε > 0 there exists π = ζ−n (p0) ∈ A−
n,δ such that

an(π) ≥ λ−
n (δ) − ε, (4.25)

from the definition (4.23). Keeping ε and π fixed, let σ = ζ−n (s∗) ∈ En where
s∗ = (p0−δ)∨0 is as in (4.22). Then sn < pn, and denoting B = {x ∈ K | ‖x‖ ≤ 1}
we see that there exists an element x ∈ B with x(s) = 1 in [0, sn] and x(s) = 0 in
[pn, µ]. Let this x be fixed and denote y = Fn(x).

Now notice that if τ ∈ Sn is such that t0 = p0, then ti ≥ pi = αi(p0) for
1 ≤ i ≤ n, where we denote τ = (t0, t1, t2, . . . , tn). This observation follows easily
from the monotonicity of α. Thus x(tn) = 0 as tn ≥ pn and so an(τ)x(tn) = 0.
In particular y(p0) = an(τ)x(tn) for some such τ by (4.13), and thus y(p0) = 0.
On the other hand we have that y(s0) ≥ an(σ)x(sn) = an(σ), again by (4.13), and
therefore

ωδ(Fn(B)) ≥ y(s0) − y(p0) = an(σ) (4.26)
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as y ∈ Fn(B). Noting that π|δσ, we have further that

an(σ) ≥ an(π) − θn(δ) ≥ λ−
n (δ) − ε − θn(δ) (4.27)

by Lemma 4.10 and (4.25). Combining (4.26) and (4.27) and letting both ε → 0
and δ → 0, where we have that θn(δ) → 0, gives

ω(Fn(B)) ≥ λ−
n .

Noting finally that ω(B) = 1, we see that (4.24) holds, as desired. �
Although Lemma 4.16 provides an exact formula for ω(Fn), it is still desirable

to give a better, more easily computed formula for λn. We can do this in terms of
points of constancy of αn and βn. Let us first recast the definitions (4.23). For any
δ > 0 define the sets

G−
n (δ) = {s ∈ (0, µ] | αn((s − δ) ∨ 0) < αn(s)}, Γ−

n (δ) = G−
n (δ),

G+
n (δ) = {s ∈ [0, µ) | βn(s) < βn((s + δ) ∧ 0)}, Γ+

n (δ) = G+
n (δ).

Then if the functions α and β are monotone increasing, we have from (4.23), using
(4.19), (4.21), and (4.22), that

λ±
n (δ) = sup

s∈G±
n (δ)

u±
n (s) = max

s∈Γ±
n (δ)

u±
n (s).

In addition Γ±
n (δ1) ⊆ Γ±

n (δ2) for δ1 < δ2, and so it is natural to define the sets

Γ±
n =

⋂
δ>0

Γ±
n (δ),

which are compact. (We also have that Γ−
n 	= φ provided Γ−

n (δ) 	= φ for every
positive δ, and similarly with Γ+

n .) It is now easy to see that

λ±
n = max

s∈Γ±
n

u±
n (s). (4.28)

Clearly, it is important to characterize the sets Γ±
n , which we do in the following

result.

Lemma 4.17. Assume that the function α is monotone increasing in [0, µ]. Then
Γ−

n = [0, µ] \ Qαn with Qαn as in (4.7). The corresponding result for Γ+
n holds if β

is monotone increasing.

Proof. We shall only prove the result for Γ−
n . We first prove that Qαn ⊆ [0, µ]\Γ−

n .
Take any s0 ∈ Qαn . Then αn(s) = αn(s0) for every s ∈ [0, µ] near s0, say for every
s ∈ (s0−δ, s0+δ)∩[0, µ] for some δ > 0. It follows that if s ∈ (s0−δ/2, s0+δ)∩[0, µ]
then αn((s− δ/2)∨ 0) = αn(s) and so s 	∈ G−

n (δ/2). This immediately implies that
s0 	∈ Γ−

n (δ/2), and therefore s0 	∈ Γ−
n , as desired.

Now we show that [0, µ] \Qαn ⊆ Γ−
n . Fix any s0 ∈ [0, µ] \Qαn . We consider two

cases: the first, in which αn(s) < αn(s0) for every s ∈ [0, s0) and where s0 	= 0; and
the second, in which αn(s) > αn(s0) for every s ∈ (s0, µ] and where s0 	= µ. In the
first case it is clear that s0 ∈ G−

n (δ) for every δ > 0, and thus s0 ∈ Γ−
n , as desired.

In the second case we have for every δ, that s > s0 ≥ (s − δ) ∨ 0 for every s > s0



550 JOHN MALLET-PARET AND ROGER D. NUSSBAUM

sufficiently near s0, and thus αn(s) > αn(s0) ≥ αn((s − δ) ∨ 0). Thus s ∈ G−
n (δ)

for such s, which implies that s0 ∈ G−
n (δ) = Γ−

n (δ). As δ is arbitrary, we conclude
that s0 ∈ Γ−

n , again as desired. �
We present three technical lemmas, followed by the proof of Theorem 4.5. It will

be convenient here to denote the set

Nε(A) = {s ∈ W | d(s, t) < ε for some t ∈ A}

where generally (W,d) is a metric space with A ⊆ W and ε > 0.

Lemma 4.18. Let g : [c, d] → [c, d] be continuous and monotone increasing and
suppose that g(s0) = s0 for some s0 ∈ [c, d]. Let n ≥ 1. Then s0 is a point of
constancy of g if and only if it is a point of constancy of gn.

Proof. It is easily seen that if s0 is a point of constancy of g then it is a point of
constancy of gn, so we only prove the converse. Suppose therefore that s0 is not a
point of constancy of g. Then either g(s) < g(s0) = s0 for every s ∈ [c, s0) where
s0 	= c, or else g(s) > g(s0) = s0 for every s ∈ (s0, d] where s0 	= d. In the former
case an easy induction shows that gn(s) < gn(s0) = s0 for every s ∈ [c, s0) and
every n, and so s0 is not a point of constancy of gn. A similar argument treats the
second case. �
Lemma 4.19. Let g : [c, d] → IR be continuous. Then for every ε > 0 the set
Ψg,ε = Sg \ Nε(Dg) is a finite subset of Cg.

Proof. Obviously Ψg,ε ⊆ Cg. We next observe that between any two points of
Cg there must lie a point of Dg. Indeed, suppose s1, s2 ∈ Cg with s1 < s2. Then
g(s) < s immediately to the right of s1 while g(s) > s immediately to the left of
s2, so necessarily g(s) = s for some s ∈ (s1, s2). Let s3 denote the smallest such s.
Thus g(s3) = s3 and so s3 ∈ Sg, while g(s) < s for every s ∈ (s1, s3), which implies
that s3 	∈ Cg. Thus s3 ∈ Dg as desired.

Now take any two points t1, t2 ∈ Ψg,ε, assuming without loss that t1 < t2. Then
t1, t2 ∈ Cg and so there exists a point t3 ∈ (t1, t2) ∩ Dg. But t1 	∈ Nε(Dg) and so
|t1 − t3| ≥ ε, which implies that |t1 − t2| ≥ ε. Thus the points of Ψg,ε are separated
by a minimum distance ε, so it follows that Ψg,ε is a finite set. �
Lemma 4.20. Let g : [c, d] → [c, d] be continuous and monotone increasing and let
U ⊆ [c, d] be a (relatively) open neighborhood of the set Sg of fixed points of g. Then
there exists an integer m ≥ 1 such that for every s ∈ [c, d] we have that gi(s) ∈ U
except for at most m indices i ≥ 0.

Proof. Without loss we may assume that U = Nε(Sg) ∩ [c, d] for some ε > 0.
Define a quantity

γ = min
s∈[c,d]\U

|g(s) − s|,

note that γ > 0, and let m be an integer such that mγ ≥ d− c. We shall prove that
m satisfies the conditions in the statement of the lemma.

Take any s ∈ [c, d] and consider the points si = gi(s) for i ≥ 1, with s0 = s. If
g(s) = s there is nothing to prove as each si ∈ Sg, so assume that g(s) 	= s. Without
loss we assume that s1 = g(s) > s = s0. Then using the monotonicity of g one
easily proves by induction that si+1 ≥ si for every i, and denoting s∗ = limi→∞ si

one checks that g(s∗) = s∗. Moreover, [s0, s∗) ∩ Sg = φ, that is, the interval
[s0, s∗) does not contain any fixed points of g. This last fact follows because if
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t ∈ (s0, s∗) were fixed by g, then applying gi to the inequality s0 < t would yield
si = gi(s0) ≤ gi(t) = t, which is false for large i.

Let m+ ≥ 0 denote the unique integer such that

|si − s∗| < ε for i ≥ m+, |si − s∗| ≥ ε for 0 ≤ i < m+. (4.29)

Now suppose that 0 ≤ i < m+ is such that si ∈ U . Then there exists a fixed point
t ∈ Sg of g with |si − t| < ε, and by (4.29) we must have t 	= s∗. Indeed, t > s∗
is impossible as si ≤ s∗ − ε, and so t < s0 in light of the fact that [s0, s∗) contains
no fixed points. It follows that for 0 ≤ j ≤ i we have |sj − t| ≤ |si − t| < ε and so
sj ∈ U for such j. Letting m− = min{i | 0 ≤ i < m+ and si 	∈ U}, with m− = m+

if this set is empty, one concludes that si 	∈ U if and only if m− ≤ i < m+.
Consider now i in the range m− ≤ i < m+. For such i we have |si+1 − si| =

|g(si) − si| ≥ γ, and so si+1 ≥ si + γ. Thus sm+ ≥ sm− + m0γ where m0 =
m+ − m− is exactly the number of indices i ≥ 0 for which si 	∈ U . Necessarily
m0γ ≤ sm+ − sm− ≤ d − c, and so m0 ≤ m with m as above. This proves the
result. �
Proof of Theorem 4.5. The formula (4.8) follows from Lemma 4.16, together
with the definition (3.11) with (3.10), where ν = ω.

To establish the formula (4.9) we first prove that

ρ(F ) ≤ sup
s∈Dα∪Dβ

a(s, s). (4.30)

Fix M > sup(s,t)∈S a(s, t). Let n ≥ 1 be fixed and take any γ > sups∈Dα∪Dβ
a(s, s)

which also satisfies γ ≤ M . We shall show that there exists an integer m = m(γ)
which does not depend on n (but may depend on γ) and a quantity δ0 = δ0(n, γ)
such that

λn(δ) ≤ Mmγn−m (4.31)

for every δ ≤ δ0. If this is shown, then by letting δ → 0+ in (4.31) one concludes
that λn ≤ Mmγn−m. By further taking the nth root of this inequality and letting
n → ∞ one has ρ(F ) ≤ γ. From the arbitrary choice of γ one concludes (4.30).

With n and γ fixed as above, let ε > 0 be such that

sup
s∈N2ε(Dα)

a(s, α(s)) ≤ γ, sup
s∈N2ε(Dβ)

a(s, β(s)) ≤ γ, (4.32)

both hold. By Lemma 4.19 the sets Ψα,ε and Ψβ,ε are finite, and moreover are
subsets of Qα and Qβ respectively, and thus there exists a quantity ε̃ > 0 such that

α(s) = α(t) for every s ∈ [t − 2ε̃, t + 2ε̃] ∩ [0, µ], if t ∈ Ψα,ε,

β(s) = β(t) for every s ∈ [t − 2ε̃, t + 2ε̃] ∩ [0, µ], if t ∈ Ψβ,ε,
(4.33)

where we may also assume without loss that ε̃ ≤ ε. Now let Uα = Nε̃(Sα) and
Uβ = Nε̃(Sβ), let mα and mβ be the integers associated to the sets Uα and Uβ with
maps α and β, respectively, by Lemma 4.20, and let m = max{mα,mβ}. Observe
that m does not depend on n. Finally, let δ0 > 0 be small enough so that

|αi((s − δ) ∨ 0) − αi(s)| ≤ ε̃, |βi((s + δ) ∧ µ) − βi(s)| ≤ ε̃ (4.34)

both hold for every s ∈ [0, µ] and δ ∈ [0, δ0], and 1 ≤ i ≤ n.
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Now let π ∈ An,δ where δ ≤ δ0. Let us suppose that π ∈ A−
n,δ as in Lemma 4.15,

the case π ∈ A+
n,δ being handled similarly. We have that pi = αi(p0) for 1 ≤ i ≤ n

and we denote s∗ = (p0−δ)∨0 as in (4.22). Let us first show that αi(p0) 	∈ Nε̃(Ψα,ε)
for every such i. Indeed, suppose to the contrary that there exists t ∈ Ψα,ε with
|αi(p0) − t| < ε̃. Then one has by (4.34) that |αi(s∗) − αi(p0)| ≤ ε̃ and hence that
αi(s∗), αi(p0) ∈ (t − 2ε̃, t + 2ε̃). It now follows from (4.33) that αi(p0) = αi(s∗),
and therefore αn(p0) = αn(s∗), a contradiction to (4.22).

Let us next note, by Lemma 4.20, that αi(p0) ∈ Nε̃(Sα) for all but at most m
indices i in the range 0 ≤ i ≤ n−1. For any i in this range for which αi(p0) ∈ Nε̃(Sα)
there exists a point t ∈ Sα such that |αi(p0)− t| < ε̃. From the above paragraph we
know that t 	∈ Ψα,ε = Sα \ Nε(Dα), and so t ∈ Nε(Dα). Thus there exists t̃ ∈ Dα

with |t − t̃| < ε and hence with |αi(p0) − t̃| < ε̃ + ε ≤ 2ε. Thus αi(p0) ∈ N2ε(Dα),
which implies by (4.32) that a(αi(p0), αi+1(p0)) ≤ γ. For the other indices i, of
which there at most m, one has that a(αi(p0), αi+1(p0)) ≤ M and it therefore
follows that an(π) ≤ Mmγn−m. As π ∈ An,δ was arbitrary, we conclude that (4.31)
holds as desired. Thus (4.30) is established.

We now establish the opposite inequality to (4.30). Taking s0 ∈ Dα ∪ Dβ , say
s0 ∈ Dα for definiteness, it is enough to prove that

ρ(F ) ≥ a(s0, s0). (4.35)

By Lemma 4.18 the point s0, which is not a point of constancy of α, is also not
a point of constancy of αn, that is, s0 	∈ Qαn . But then Lemma 4.17 implies that
s0 ∈ Γ−

n , and so
ω(Fn) = λn ≥ λ−

n ≥ u−
n (s0) = a(s0, s0)n (4.36)

by Lemma 4.16 and (4.28). Taking the nth root in (4.36), letting n → ∞, and using
(4.8), now gives the desired inequality (4.35). �

Two corollaries follow directly from Theorem 4.5.

Corollary 4.21. Assume that both α and β are monotone increasing in [0, µ]. Also
assume that there exists σ ∈ Sn which is an n-cycle such that

an(σ)1/n > sup
s∈Dα∪Dβ

a(s, s),

a particular case of which (a 1-cycle) is that

a(s0, s0) > sup
s∈Dα∪Dβ

a(s, s) (4.37)

for some s0 ∈ [0, µ] with s0 ∈ J(s0). Then there exists a solution x ∈ K \ {0} to
F (x) = rx with r = r(F ).

Proof. Theorem 4.5 and Corollary 4.9 ensure that ρ(F ) < r(F ). The result now
follows from Theorem 4.4. �
Corollary 4.22. Assume that both α and β are monotone increasing in [0, µ] and
also that (1.5) holds. In addition assume that

max{a(0, 0), a(µ, µ)} < a+ (4.38)

where a+ is as in (4.1). Then there exists a solution x ∈ K \{0} to F (x) = rx with
r = r(F ).



EIGENVALUES FOR CONE MAPS 553

Proof. We have that Dα ∪ Dβ ⊆ {0, µ} and thus (4.38) implies (4.37) for some
s0 ∈ [0, µ] where s0 ∈ J(s0). The result now follows from Corollary 4.21. �

The next result provides a class of examples for which an eigenfunction fails to
exist for the quantity r = r(F ). In this example all the conditions of our abstract
Theorem 3.4 hold except the requirement that ρ(F ) < r(F ). This example also
shows the necessity of the lipschitz condition c < 1 on α and β in Theorem 4.1.
Indeed, if α in the following result is lipschitz near 0, then necessarily c ≥ 1 for its
lipschitz constant in a neighborhood.

Proposition 4.23. Let α : [0, µ] → [0, µ] be continuous and monotone increasing,
and let β : [0, µ] → [0, µ] be continuous. Assume that α(s) ≤ β(s) for 0 ≤ s ≤ µ
and that α(s) < s for 0 < s < µ. Also assume that

α(s) ≥ s − ks2 (4.39)

for 0 ≤ s ≤ δ, for some k > 0 and δ > 0. Let a : [0, µ] × [0, µ] → [0,∞) be a C1

function for which a(0, 0) = 1 and which satisfies ∂a
∂s (s, t) ≤ 0 and ∂a

∂t (s, t) ≤ 0 in
[0, µ] × [0, µ], with ∂a

∂s (0, 0) < 0 and ∂a
∂t (0, 0) < 0. Then r(F ) = 1, but there does

not exists x ∈ K \ {0} with F (x) = x.

Proof. As σ = (0, 0) ∈ S1 is a 1-cycle, we have by Corollary 4.9 that r(F ) ≥
a(0, 0) = 1. On the other hand, our assumptions imply that a(s, t) ≤ 1 throughout
[0, µ] × [0, µ], and so r(F ) ≤ 1 by Theorem 4.3. Thus r(F ) = 1.

Now suppose there exists x ∈ K, with ‖x‖ = 1, such that F (x) = x. We seek a
contradiction. Assume without loss that δ is small enough that 2kδ ≤ 1. Given any
s0 ∈ (0, µ) and n ≥ 1, let σ ∈ Sn be such that (Fn(x))(s0) = an(σ)x(sn), that is, σ
is the element of Sn at which the maximum (4.13) is achieved. Also define π ∈ Sn

by setting pi = αi(s0) for 0 ≤ i ≤ n. By induction one sees from the monotonicity
of α that pi ≤ si for every such i, indeed, if pi ≤ si for some 0 ≤ i ≤ n − 1 then
pi+1 = α(pi) ≤ α(si) ≤ si+1. Thus a(si, si+1) ≤ a(pi, pi+1) by the monotonicity of
a, and so an(σ) ≤ an(π), and hence

x(s0) = (Fn(x))(s0) = an(σ)x(sn)

≤ an(σ) ≤ an(π) =
n−1∏
i=0

a(αi(s0), αi+1(s0)).
(4.40)

Letting zn(s0) denote the final term (the n-fold product) in (4.40), we shall prove
that

lim
n→∞ zn(s0) = 0 (4.41)

for every s0 ∈ (0, µ). Noting that zn(s0) = zk(s0)zn−k(αk(s0)) holds identically,
and also because limk→∞ αk(s0) = 0, one sees that it suffices to prove that (4.41)
holds only for s0 ∈ (0, δ] in order to conclude that it holds for every s0 ∈ (0, µ).

Fixing s0 ∈ (0, δ], we note that αi(s0) ∈ [0, δ] for every i. Letting d > 0 be such
that −d is an upper bound for the partial derivatives of a in the square [0, δ]× [0, δ]
and that 2dδ < 1, we have from (4.40) that

x(s0) ≤
n−1∏
i=0

(
1 − d(αi(s0) + αi+1(s0))

)
, (4.42)
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where we note the terms in this product are all positive. Taking logarithms and
making a standard estimate, we see that it is sufficient to prove that

∞∑
i=0

αi(s0) = ∞ (4.43)

in order to conclude that the right-hand side of (4.42) approaches zero as n → ∞.
To this end, we claim that

αi(s0) ≥ s0

i + 1
(4.44)

for every i ≥ 0, and indeed, (4.43) follows directly from (4.44). Noting that (4.44)
holds for i = 0, we proceed by induction. If (4.44) holds for a particular i, then
from (4.39)

αi+1(s0) ≥ α(s0(i + 1)−1) ≥ s0

i + 1
− k

(
s0

i + 1

)2

≥ s0

i + 1
− s0

2(i + 1)2
=

(2i + 1)s0

2(i + 1)2
≥ s0

i + 2
,

where 2ks0 ≤ 2kδ ≤ 1 was used in the penultimate inequality, and where the final
inequality is a simple calculus lemma. Thus (4.44) holds also for i+1, and the proof
of the proposition is complete. �

Proceeding toward the proofs of Theorems 4.1 and 4.2, we need several technical
lemmas.

Lemma 4.24. Let s,t∈ [0,µ] and let n≥1. Then there exists σ=(s0,s1,s2, . . . ,sn)∈
Sn with s0 = s and sn = t if and only if t ∈ Jn(s).

Proof. This is a simple induction on n, the details of which we omit. �
For the next lemma we define three quantities which are related to the quantity

bn whose value is given in (4.4). For any sufficiently small δ > 0 we set

bn(δ) = max
σ∈Sn

s0∈[δ,µ−δ]

an(σ),

bR
n (δ) = max

σ∈Sn
s0∈[0,µ−δ]

an(σ), bL
n(δ) = max

σ∈Sn
s0∈[δ,µ]

an(σ).
(4.45)

The indicated maxima certainly exist, as the function an is restricted to a compact
subset of Sn. Note also that

bn(δ) ≤ min{bR
n (δ), bL

n(δ)} ≤ max{bR
n (δ), bL

n(δ)} = bn, (4.46)

where the final equation in (4.46) requires that δ ≤ µ − δ. The following lemma
describes the growth of the quantities (4.45) with n.

Lemma 4.25. Assume that α and β are monotone increasing in [0, µ], that (1.5)
holds, and that the function a is strictly positive in S. Denote r = r(F ). Then

(i) if Hypothesis X holds then for every δ > 0 there exists Mδ > 0 such that

bn(δ) ≤ Mδr
n (4.47)
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for every n ≥ 1;
(ii) if Hypothesis Y holds then for every δ > 0 there exists MR

δ > 0 such that

bR
n (δ) ≤ MR

δ rn (4.48)

for every n ≥ 1; and
(iii) if Hypothesis Z holds then for every δ > 0 there exists ML

δ > 0 such that

bL
n(δ) ≤ ML

δ rn (4.49)

for every n ≥ 1.

Proof. We begin with some preliminary observations. Suppose that σ ∈ Sn is such
that

si1 ∈ Jm(si2) (4.50)

for some 0 ≤ i1 ≤ i2 ≤ n, and some m ≥ 1. Then by Lemma 4.24 there exists
π ∈ Sm such that p0 = si2 and pm = si1 . It follows that τ ∈ Si2−i1+m given by
concatenating this subinterval of σ with π, namely

τ = (si1 , si1+1, . . . , si2−1, si2 = p0, p1, . . . , pm−1, pm = si1),

is a cycle. Thus by Corollary 4.9,

ri2−i1+m ≥ ai2−i1+m(τ) = ai2−i1(si1 , si1+1, . . . , si2−1, si2)am(π)

≥ ai2−i1(si1 , si1+1, . . . , si2−1, si2)A
m
− ,

(4.51)

with A− > 0 the minimum of a as defined at the beginning of the section. Let us
rewrite (4.51) as

ai2−i1(si1 , si1+1, . . . , si2−1, si2) ≤ (A−1
− r)mri2−i1 , (4.52)

in the form of an upper bound.
We now prove (i). Given δ > 0 let m = m(δ) be such that αm(µ) ≤ δ and

βm(0) ≥ µ − δ, the existence of such m following from (1.5) and Hypothesis X.
Then

Jm(s) = [αm(s), βm(s)] ⊇ [αm(µ), βm(0)] ⊇ [δ, µ − δ] (4.53)

for every s ∈ [0, µ]. Now for any n ≥ 1 take any σ ∈ Sn for which s0 ∈ [δ, µ− δ], as
in the definition of bn(δ). Then s0 ∈ Jm(sn) by (4.53), so we may take i1 = 0 and
i2 = n as above, whence (4.52) gives

an(σ) ≤ (A−1
− r)mrn.

Thus (4.47) holds with Mδ = (A−1
− r)m.

The proof of (ii) is somewhat more technical than the proof of (i), but follows
similar lines. Here β(0) = 0 may occur, although β(δ) > δ holds. We assume δ is
small enough that a(s, t) ≤ r for (s, t) ∈ SL

δ , by virtue of the fact that a(0, 0) < r.
Now with δ fixed we have β : [δ, µ] → [δ, µ], and there exists m = m(δ) such that
αm(µ) ≤ δ and βm(δ) ≥ µ − δ. Much as before we have

Jm(s) = [αm(s), βm(s)] ⊇ [αm(µ), βm(δ)] ⊇ [δ, µ − δ], (4.54)
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but now only for s ∈ [δ, µ]. Now for any n ≥ 1 take any σ ∈ Sn for which
s0 ∈ [0, µ − δ], as in the definition of bR

n (δ). If it is the case that si ≤ δ for every
0 ≤ i ≤ n, then a(si−1, si) ≤ r for 1 ≤ i ≤ n, and so an(σ) ≤ rn. This gives (4.48)
with MR

δ = 1, and we are done. Assume therefore that si > δ for some i, and let
i1 ≤ i2 denote the first, respectively last, indices in the range 0 ≤ i ≤ n for which
si > δ. We claim that (4.50) and thus (4.52) hold. Indeed, by (4.54) it is enough to
prove that si1 ≤ βm(δ) in order to conclude (4.50). If i1 > 0, then as si1 ∈ J(si1−1)
where si1−1 ≤ δ we have si1 ≤ β(si1−1) ≤ β(δ) ≤ βm(δ), where we have used the
definition of i1. And if i1 = 0 then si1 = s0 ≤ µ − δ ≤ βm(δ) by assumption and
from (4.54).

Having established (4.52), we may now make the estimate

an(σ) =ai1−1(s0, s1, . . . , si1−2, si1−1)

× a(si1−1, si1)ai2−i1(si1 , si1+1, . . . , si2−1, si2)

× a(si2 , si2+1)an−i2−1(si2+1, si2+2, . . . , sn−1, sn)

≤ri1−1A+(A−1
− r)mri2−i1A+rn−i2−1 = MR

δ rn,

(4.55)

with MR
δ = (r−1A+)2(A−1

− r)m, with A+ the maximum of a in S. In making the
estimate (4.55) we have used the fact that a(si−1, si) ≤ r for 1 ≤ i ≤ i1 − 1 and
for i2 + 2 ≤ i ≤ n, which follows from the definitions of i1 and i2, and we have also
used the estimate (4.52). Note also that (4.55) must be interpreted appropriately
when i1 = 0 or 1, when i2 = n − 1 or n, and when i1 = i2.

The proof of (iii) is similar to that of (ii), and is omitted. �

Lemma 4.26. Assume that α and β are monotone increasing in [0, µ], that (1.5)
holds, and that the function a is strictly positive in S. Also assume that at least one
of Hypotheses X, Y, or Z holds. Additionally, if Hypothesis Y is false then assume
there exist δ > 0 and c < 1 such that Hypothesis Y ′ holds; and if Hypothesis Z is
false then assume there exist δ > 0 and c < 1 such that Hypothesis Z ′ holds. Then
there exists a constant M > 0 such that

bn ≤ Mrn (4.56)

for every n ≥ 1, with bn given by (4.4) and where r = r(F ).

Proof. Let 0 < δ ≤ µ/2 be small enough that whichever of Hypotheses Y′ or Z′

is assumed holds. If neither of these hypotheses is assumed then take any 0 < δ ≤
µ/2. Now take n ≥ 1 and let σ ∈ Sn be such that bn = an(σ), as in (4.4). If
s0 ∈ [δ, µ− δ] then bn = bn(δ) = bR

n (δ) = bL
n(δ) by (4.45) and (4.46). As at least one

of Hypotheses X, Y, or Z is assumed to hold, we have (4.56) with M = Mδ,M
R
δ , or

ML
δ , respectively, by whichever of (4.47), (4.48), or (4.49) holds.
Suppose therefore that s0 	∈ [δ, µ−δ]. For definiteness assume s0 ∈ [0, δ), the case

s0 ∈ (µ− δ, µ] being treated similarly. Now bn = bR
n (δ), so if Hypothesis Y holds we

have (4.48) and hence (4.56) with M = MR
δ . Assume therefore that Hypothesis Y is

false, and that consequently Hypothesis Y′ is assumed to hold. Let π ∈ Sn be such
that p0 = δ and π|σ. Then by Lemma 4.14 we have (4.20) for some 0 ≤ k ≤ n. With
this k, and with the lipschitz properties of α and of a near 0 and (0, 0) respectively,
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one has that

0 ≤ log an(σ) − log an(π)

=
k∑

i=1

(
log a(si−1, si) − log a(pi−1, pi)

)
+ log a(sk, sk+1) − log a(pk, pk+1)

≤2C

k∑
i=0

|si − pi| + log a(sk, sk+1) − log a(pk, pk+1)

≤2C
k∑

i=0

|si − pi| + log(A−1
− A+)

≤2C

k∑
i=0

|αi(s0) − αi(p0)| + log(A−1
− A+)

≤2C
k∑

i=0

ciδ + log(A−1
− A+) <

2Cδ

1 − c
+ log(A−1

− A+),

(4.57)

where C > 0 is a lipschitz constant for log a in SL
δ , and where we have used the

fact that αi : [0, δ] → [0, δ] has lipschitz constant ci and that si, pi ≤ αi(p0) ≤ δ for
0 ≤ i ≤ k. As Hypothesis Y is false we have that either Hypothesis X or Z holds,
and so

an(π) ≤ max{bn(δ), bL
n(δ)} ≤ max{Mδ,M

L
δ }rn.

We conclude from this and from (4.57) that

bn = an(σ) =
an(σ)
an(π)

an(π) ≤ an(σ)
an(π)

max{Mδ,M
L
δ }rn

≤ exp(2Cδ/(1 − c))A−1
− A+ max{Mδ,M

L
δ }rn.

This gives (4.56) with M = exp(2Cδ/(1 − c))A−1
− A+ max{Mδ,M

L
δ }. �

Lemma 4.27. Assume that α and β are monotone increasing in [0, µ], that (1.5)
holds, and that the function a is strictly positive in S. Also assume that Hypothesis X
holds and that

a(0, 0) < a(µ, µ). (4.58)

Then there exist δ > 0 and m ≥ 1 such that the following holds. Let s ∈ [0, µ] and
n ≥ 1 be given and suppose σ ∈ Sn maximizes an(σ) among all elements of Sn for
which s0 = s. Suppose further for some indices 0 ≤ i1 ≤ i2 ≤ n that

si ≤ δ, i1 ≤ i ≤ i2. (4.59)

Then necessarily i2 − i1 < m.
The corresponding result when a(0, 0) > a(µ, µ) holds.

Proof. Let δ be small enough that α(µ) < µ − δ and β(0) > δ both hold, and in
addition that

min
(p,p̃)∈SR

δ
(s,s̃)∈SL

δ

a(p, p̃)
a(s, s̃)

= C > 1, (4.60)
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where (4.60) defines the quantity C. Such δ exists by Hypothesis X and by (4.58).
With δ fixed, let m̃ be such that αm̃(µ) ≤ δ and βm̃(0) ≥ µ − δ. Finally let m be
such that

(A−1
+ A−)2m̃Cm−2m̃+1 > 1. (4.61)

We keep m and m̃ fixed for the remainder of this proof.
Now suppose σ ∈ Sn is such that (4.59) holds for some 0 ≤ i1 ≤ i2 ≤ n and

that i2 − i1 ≥ m. Then it is enough for us to show that there exists π ∈ Sn, with
p0 = s0, such that

an(π) > an(σ). (4.62)

Without loss we may suppose that either i2 = n, or else that i2 < n and si2+1 > δ.
Furthermore we may suppose that i2 − i1 = m. We shall construct π by replacing
some of the terms si in σ in the range i1 + 1 ≤ i ≤ i2 with new terms pi, so that
the new sequence belongs to Sn and satisfies (4.62). Note that in this construction
p0 = s0 as i = 0 is not in the replacement range. For ease of notation let us denote

P (j, k) =
k∏

i=j

a(pi−1, pi)
a(si−1, si)

in the calculations below.
Three cases arise. First suppose that i2 = n. Then define π by

pi = βi−i1(si1), i1 + 1 ≤ i ≤ i2, (4.63)

with pi = si for all other values of i. Clearly π ∈ Sn and

an(π)
an(σ)

= P (i1 + 1, i1 + m̃)P (i1 + m̃ + 1, i2)

≥ (A−1
+ A−)m̃Ci2−i1−m̃ ≥ (A−1

+ A−)2m̃Cm−2m̃+1 > 1,

where we observe for i1 + m̃ ≤ i ≤ i2 that pi ≥ βm̃(si1) ≥ βm̃(0) ≥ µ − δ and that
si ≤ δ, and where we use (4.60) and (4.61).

Next suppose that i2 < n and that si2+1 ∈ (δ, µ − δ]. Define

pi = βi−i1(si1), i1 + 1 ≤ i ≤ i2 − m̃ + 1.

Note that (4.53), but with m̃ in place of m, holds for every s ∈ [0, µ], and hence
si2+1 ∈ Jm̃(pi2−m̃+1). By Lemma 4.24 there exist pi for i2 − m̃ + 2 ≤ i ≤ i2 + 1
such that (pi2−m̃+1, pi2−m̃+2, . . . , pi2 , pi2+1) ∈ Sm̃ and pi2+1 = si2+1. Set pi = si

for i outside the range i1 + 1 ≤ i ≤ i2. Then

an(π)
an(σ)

= P (i1 + 1, i1 + m̃)P (i1 + m̃ + 1, i2 − m̃ + 1)P (i2 − m̃ + 2, i2 + 1)

≥ (A−1
+ A−)m̃Ci2−i1−2m̃+1(A−1

+ A−)m̃ = (A−1
+ A−)2m̃Cm−2m̃+1 > 1,

where for i1 + m̃ ≤ i ≤ i2 − m̃ + 1 we have that pi ≥ µ − δ and si ≤ δ.
Finally suppose that i2 < n and si2+1 ∈ (µ − δ, µ]. Let pi be as in (4.63) in the

indicated range. Let us now observe that si2+1 ∈ J(pi2). Indeed, si2 ≤ δ < β(0) ≤
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β(pi2−1) = pi2 and so si2+1 ≤ β(si2) ≤ β(pi2). And si2+1 > µ − δ > α(µ) ≥ α(pi2).
Thus by setting pi = si outside the range i1 + 1 ≤ i ≤ i2, we have π ∈ Sn, and

an(π)
an(σ)

= P (i1 + 1, i1 + m̃)P (i1 + m̃ + 1, i2)P (i2 + 1, i2 + 1)

≥ (A−1
+ A−)m̃Ci2−i1−m̃(A−1

+ A−) ≥ (A−1
+ A−)2m̃Cm−2m̃+1 > 1

as pi ≥ µ − δ and si ≤ δ in the range i1 + m̃ ≤ i ≤ i2.
We see that in every case we have constructed π ∈ Sn with p0 = s0 and with

(4.62) holding, as desired. �
Proof of Theorem 4.1. The proof of the existence of an eigenfunction x ∈ K \{0}
with eigenvalue r falls into three cases. For case one we assume the inequality (4.38),
with a+ as in (4.1). Then the existence of x follows from Corollary 4.22.

For cases two and three we assume that

a− = min{a(0, 0), a(µ, µ)} ≤ max{a(0, 0), a(µ, µ)} = a+, (4.64)

where (4.64) serves as the definition of a− (the second equality in (4.64) is our
assumption, not the definition of a+). Here we shall use Corollary 3.11. Let us note
by Corollary 4.9 that a(s, s) ≤ r for every s ∈ [0, µ], as every (s, s) is a 1-cycle, and
thus

a+ ≤ r. (4.65)

Letting e ∈ K denote the function which is identically 1, we see by (4.4) of The-
orem 4.3 and by (4.13) of Proposition 4.8, that ‖Fn(e)‖ = bn. If we are able to
apply Lemma 4.26 then it will follow that this sequence enjoys the estimate (4.56)
which is the inequality (3.21) necessary for Corollary 3.11. Let us observe that the
conditions of Lemma 4.26 hold. Either a(0, 0) = a+ or a(µ, µ) = a+ by (4.64) and
so Hypothesis X is assumed. If Hypothesis Y fails then necessarily a(0, 0) = r,
hence a(0, 0) = a+ by (4.65), and we assume Hypothesis Y′. Similarly if Hypoth-
esis Z fails then Hypothesis Z′ holds. Let us also observe that r > 0, otherwise
‖F (e)‖ = b1 = 0 by (4.56), contradicting the positivity of a.

The other condition of Corollary 3.11 which we verify is that γ+
G(e) is compact,

where G(x) = r−1F (x). The set γ+
G(e) is certainly bounded, as ‖Gn(e)‖ ≤ M by

(4.56), and so we must show the sequence of functions xn = Gn(e) is equicontinuous.
It is enough to show the sequence of functions yn defined by yn(s) = log xn(s) is
equicontinuous, and indeed

yn(s) = max{wn(σ) | σ ∈ Sn and s0 = s}

by (4.13), where
wn(σ) = log(r−nan(σ))

for σ ∈ Sn.
We distinguish cases two and three based upon a strict inequality, or an equality,

in (4.64). For case two we assume (4.64) together with the strict inequality a− < a+.
Thus either

a(µ, µ) < a(0, 0) = a+, (4.66)

in which case we assume that Hypothesis Y′ holds, or else

a(0, 0) < a(µ, µ) = a+, (4.67)
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in which case Hypothesis Z′ is assumed. Let δ be as in whichever of Hypotheses Y′

or Z′ is taken here. We assume further that δ is small enough that the conclusions
of Lemma 4.27 hold, and we let m be as in that result. Also, for any η > 0 define

ϕ(η) = max{|w(s, t) − w(s̃, t̃) | (s, t), (s̃, t̃) ∈ S with |s − s̃| + |t − t̃| ≤ η},

where w(s, t) = w1(s, t) = log(r−1a(s, t)). Finally, let m̃ ≥ 1 be such that αm̃(µ) ≤
δ and βm̃(0) ≥ µ − δ, where such m̃ exists by (1.5) and Hypothesis X.

Now let η > 0 and take distinct points s0, p0 ∈ [0, µ] with |s0−p0| < η. Assuming
without loss that yn(s0) ≥ yn(p0), let σ ∈ Sn be such that yn(s0) = wn(σ) and
let π ∈ Sn through p0 be such that π|σ, and so π|ησ. Now assume further that
s0 < p0. The proof when s0 > p0, which will be left to the reader, is analogous. By
Lemma 4.14 one has (4.20) for some 0 ≤ k ≤ n, and much as in (4.57) we have

0 ≤ yn(s0) − yn(p0) ≤ wn(σ) − wn(π) =
k+1∑
i=1

(
w(si−1, si) − w(pi−1, pi)

)
. (4.68)

If k < m + m̃ then

|yn(s0) − yn(p0)| ≤
k+1∑
i=1

ϕ(ψi−1(η) + ψi(η)) ≤
m+m̃∑
i=1

ϕ(ψi−1(η) + ψi(η)), (4.69)

where we have used the inequality |si − pi| ≤ ψi(η) from Lemma 4.10. Suppose on
the other hand that m + m̃ ≤ k. We claim that necessarily (4.66) holds. Assuming
to the contrary that we have (4.67), we have by (4.20) that si ≤ αi(p0) ≤ αm̃(µ) ≤ δ
for m̃ ≤ i ≤ k, so by Lemma 4.27 necessarily k − m̃ < m, a contradiction. Thus
(4.67) is false and (4.66) holds, so as noted earlier we have Hypothesis Y′.

We now estimate (4.68), where we are still assuming that m + m̃ ≤ k and so
Hypothesis Y′ holds. From the fact that α : [0, δ] → [0, δ] has lipschitz constant
c < 1, and from the fact that si, pi ≤ αi(p0) ≤ δ for m̃ ≤ i ≤ k while sk+1 = pk+1,
we obtain as an upper bound for the absolute value of the summation in (4.68)

m̃∑
i=1

ϕ(ψi−1(η) + ψi(η)) + 2C
k∑

i=m̃

|si − pi| + |w(sk, sk+1) − w(pk, pk+1)|

≤
m̃∑

i=1

ϕ(ψi−1(η) + ψi(η)) + 2C
k∑

i=m̃

ci−m̃|sm̃ − pm̃| + ϕ(|sk − pk|)

≤
m̃∑

i=1

ϕ(ψi−1(η) + ψi(η)) +
(

2C

1 − c

)
ψm̃(η) + ϕ(αm̃(p0) − αm̃(s0))

≤
m̃∑

i=1

ϕ(ψi−1(η) + ψi(η)) +
(

2C

1 − c

)
ψm̃(η) + ϕ(ψm̃(η)),

(4.70)

where C > 0 is a lipschitz constant for w in SL
δ . We thus have the upper bounds

(4.69) and (4.70) for |yn(s0)− yn(p0)| in the cases that k < m + m̃ and m + m̃ ≤ k,
respectively. Letting ξ(η) denote the maximum of the final sum in (4.69) and the
expression in the last line of (4.70), and noting that m and m̃ are independent of
n, we see that |yn(s0) − yn(p0)| ≤ ξ(η) whenever |s0 − p0| ≤ η. Thus the sequence
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of functions yn is equicontinuous, as desired. This completes the proof of existence
for case two.

For case three we have that

a(0, 0) = a(µ, µ) = a+.

The proof here is similar to that of case two, although somewhat easier in that both
Hypotheses Y′ and Z′ hold. We take m̃, σ, π, and k as before, with |s0−p0| ≤ η, and
obtain (4.68). If k < m̃ then (4.69) holds with m̃ in place of m + m̃. If m̃ ≤ k then
there is no need to establish Hypothesis Y′ as we did in case two, as this condition
is assumed. Thus we may proceed directly to obtain (4.70) which is an upper bound
for the absolute value of the summation in (4.68). This completes case three.

The existence of an eigenfunction x having been established, the claims about
the strict positivity of x and of r follow from Proposition 4.12. �
Proof of Theorem 4.2. Let K0 ⊆ C[0, β0] denote the cone of nonnegative func-
tions and consider the operator F0 : K0 → K0 given by (1.2) but with s restricted
to the interval [0, β0]. Then Theorem 4.1 applied to the operator F0 implies the
existence of x ∈ K0 \ {0} with F0(x) = r0x, where r0 = rK0(F0) > 0 is the cone
spectral radius for the operator F0. Moreover, x is strictly positive in [0, β0].

Extend x to the interval [0, µ] by letting equation (1.10) with λ = r0 define x(s)
for s ∈ (β0, µ], and observe that x so defined is strictly positive and continuous
in [0, µ]. Thus x ∈ int(K) ⊆ K \ {0}, and so by (2.18) of Theorem 2.2 we have
r(F ) = µ(x), where clearly µ(x) = r0. This gives the result. �
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[3] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in
Pure and Applied Mathematics 60, Marcel Dekker, New York, 1980.

[4] F.F. Bonsall, Linear operators in complete positive cones, Proc. London Math. Soc. (3) 8
(1958), pp. 53–75.

[5] F.E. Browder, A further generalization of the Schauder fixed point theorem, Duke Math. J.
32 (1965), pp. 575–578.

[6] F.E. Browder, Asymptotic fixed point theorems, Math. Ann. 185 (1970), pp. 38–60.
[7] W. Chou and R.J. Duffin, An additive eigenvalue problem of physics related to linear pro-

gramming, Adv. Appl. Math. 8 (1987), pp. 486–498.
[8] W. Chou and R.B. Griffiths, Ground states of one-dimensional systems using effective po-

tentials, Phys. Rev. B 34 (1986), pp. 6219–6234.
[9] R.A. Cunninghame-Green, Minimax Algebras, Lecture Notes in Econ. and Math. Systems

166, Springer-Verlag, Berlin, 1979.
[10] G. Darbo, Punti uniti in trasformazioni a condiminio non compatto, Rend. Sem. Mat. Univ.

Padova 24 (1955), pp. 84–92.
[11] R.-J. van Egmond, Propagation of delays in public transport, preprint.
[12] R.-J. van Egmond, An algebraic approach for scheduling train movements, preprint.
[13] W.H. Fleming, Max-plus stochastic processes and control, preprint.
[14] W.H. Fleming and D. Hernández-Hernández, Risk-sensitive control of finite state machines

on an infinite horizon I, SIAM J. Control Optim. 35 (1997), pp. 1790–1810.

[15] W.H. Fleming and D. Hernández-Hernández, Risk-sensitive control of finite state machines
on an infinite horizon II, SIAM J. Control Optim. 37 (1999), pp. 1048–1069.

[16] W.H. Fleming and W.M. McEneaney, A max-plus-based algorithm for a Hamilton-Jacobi-
Bellman equation of nonlinear filtering, SIAM J. Control Optim. 38 (2000), pp. 683–710.



562 JOHN MALLET-PARET AND ROGER D. NUSSBAUM
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