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We examine the problem of extending, in a natural way, order-preserving maps that
are de¯ned on the interior of a closed cone K1 (taking values in another closed cone
K2 ) to the whole of K1 .

We give conditions, in considerable generality (for cones in both ¯nite- and
in¯nite-dimensional spaces), under which a natural extension exists and is continuous.
We also give weaker conditions under which the extension is upper semi-continuous.

Maps f de¯ned on the interior of the non-negative cone K in RN , which are both
homogeneous of degree 1 and order preserving, are non-expanding in the Thompson
metric, and hence continuous. As a corollary of our main results, we deduce that all
such maps have a homogeneous order-preserving continuous extension to the whole
cone. It follows that such an extension must have at least one eigenvector in K ¡ f0g.
In the case where the cycle time À (f ) of the original map does not exist, such
eigenvectors must lie in @K ¡ f0g.

We conclude with some discussions and applications to operator-valued means.
We also extend our results to an ìntermediate’ situation, which arises in some
important application areas, particularly in the construction of di® usions on certain
fractals via maps de¯ned on the interior of cones of Dirichlet forms.

1. Introduction

In what follows, we typically let K1, K2 denote closed cones in topological vector
spaces (TVS) X1, X2, respectively, and let f : Ķ1 ! K2 be a map that is order
preserving with respect to the usual partial orderings induced by K1 and K2. We
are interested in extending, in a natural way, the map f to a map F : K1 ! K2

de­ ned on the whole of K1.
In x 2, we recall some basic de­ nitions and show (theorem 2.13) that, under the

assumption that images of decreasing sequences converge (which we call condi-
tion A), an order-preserving map has a natural order-preserving extension.

In x 3, we impose additional constraints under which a continuous map has a
continuous extension. In particular, we consider order-preserving continuous maps
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f : Ķ1 ! K2, where K1 satis­ es a geometrical condition (G), where K2 satis­ es
a weak normality condition (WN), and where f satis­ es a weak version of homo-
geneity of degree 1 (WH). In theorem 3.10, we prove that such maps have a natu-
ral extension that is also continuous. We show, in lemma 3.3, that in the ­ nite-
dimensional case, condition G is equivalent to K1 being polyhedral. There are
interesting examples in both the ­ nite- and in­ nite-dimensional cases. We also give
examples in which the conditions do not hold and the extension is not everywhere
continuous.

In x 4, we demonstrate that in certain contexts continuity of the original map
f : Ķ1 ! K2 holds automatically and is therefore not needed as an explicit assump-
tion. As an example, we consider maps that are homogeneous of degree 1 and order
preserving from the interior of the standard positive cone in RN to itself. Such
maps are automatically continuous on the interior of the cone and our results show
that they always have a homogeneous order-preserving continuous extension to the
whole cone. As a corollary, we deduce that such maps must have at least one eigen-
vector in K1 ¡ f0g and hence, in the case where the cycle time À (f ) of the map
does not exist, that such eigenvectors must lie in @K1 ¡ f0g.

In x 5, we return to the setting of x 2, i.e. we consider maps that have a natural
extension that need not be continuous. We introduce a natural `multi-valued’ exten-
sion © : K1 ! P(X2) and give conditions under which it is upper semi-continuous.
We also examine the structure of the set © (x) for points x 2 K1.

In x 6, we give some further examples and applications to operator-valued means.
In particular, we exhibit a map that is homogeneous of degree 1, order preserving
and continuous on the interior of a normal cone, whose extension is discontinuous at
certain points on the boundary of the cone. This is an example of a cone for which
the geometrical condition G, used in theorem 3.10 of x 3, does not hold. Speci­ cally,
the map is the harmonic mean of two positive semi-de­ nite symmetric real 2 £ 2
matrices.

Finally, in x 7, we extend our main results slightly to an `intermediate’ situation
that arises in some important application areas, speci­ cally where one is interested
in certain maps, f : D1 ! D2, on sub-cones D1 » K1, D2 » K2, which are order
preserving with respect to the partial orderings induced by the larger cones K1, K2.
This situation arises in the theory of construction of di¬usions on certain fractals
via maps de­ ned on the interior of cones of Dirichlet forms. We show how our theory
is applied to this situation. (This application area is dealt with in more detail in a
forthcoming paper.)

2. Natural extension

The main purpose of this section is to give conditions under which an order-
preserving map de­ ned on the interior of a closed cone has a natural extension
de­ ned on the whole cone.

We ­ rst recall some basic de­ nitions.

Definition 2.1 (closed cone, cone ordering). A closed cone (with vertex at zero)
in a topological vector space (TVS) X is a closed convex subset K » X such that
(1) K \ ( ¡ K) = f0g and (2) ¶ K ³ K for all real ¶ > 0. The cone structure
induces a partial ordering. We write x 6K y if y ¡ x 2 K (or simply x 6 y, if K is
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obvious from the context). If K has non-empty interior, Ķ 6= ;, we write x ½ y if
y ¡ x 2 Ķ .

In what follows, we will usually let K1 be a closed cone in a Hausdor¬ TVS X1

with Ķ1 6= ; and let K2 be a closed cone in a TVS X2, and consider maps
f : Ķ1 ! K2 that are both (1) continuous and (2) order preserving in the sense
that, for all x; y 2 Ķ1,

x 6K1 y implies f (x) 6K2 f (y):

Remark 2.2 (`allowable sequences’). When considering extension of such maps to
points x 2 @K1, on the boundary of K1, it will be natural to consider sequences
hxn 2 Ķ1 : n > 1i such that xn ! x as n ! 1 and xn ¾ x for all n. We will call
such sequences `allowable’.

In other words, we consider sequences xn ! x in Ķ1 that lie in a `copy’ of the
interior of the cone translated so that the vertex lies at the point x. Assuming that
Ķ1 6= ;, if we take any u 2 Ķ1 and de­ ne xn := x+n¡1u, then limn ! 1 xn = x and
xn ¾ x for all n > 1 (by convexity). So such a sequence always exists.

Lemma 2.3. Suppose that K is a closed cone with non-empty interior Ķ 6= ; in
a TVS X . Let x 2 K and let hxn 2 K : n > 1i be an allowable sequence with
limn! 1 xn = x (so that xn ¾ x for all n > 1). Then there exists an increasing
sequence of positive integers nj " 1 such that xm ½ xnj for all m > nj + 1.

Proof. De­ ne n1 := 1. Assume, by induction, that we have found

n1 < n2 < ¢ ¢ ¢ < nk

meeting the above conditions. Let Uk » Ķ be a set, open in X , such that
xnk

¡ x 2 Uk. Let Vk be an open neighbourhood of 0 such that Vk = ¡ Vk and
xnk

¡ x + Vk » Uk. Select nk + 1 > nk such that xm ¡ x 2 Vk for m > nk + 1 (because
limn! 1 xm = x). It follows that

xnk
¡ x ¡ (xm ¡ x) = xnk

¡ xm 2 (xnk
¡ x) ¡ Vk » Uk

for m > nk + 1, so that xnk
¡ xm 2 Uk » Ķ for all m > nk + 1.

Under the assumption to be given below, namely that images of decreasing
sequences converge, we will be able to prove that a natural extension exists.

Definition 2.4 (condition A). Let f : Ķ1 ! K2, where K1, K2 are closed cones
in Hausdor¬ TVS X1, X2, respectively. Suppose that if x1 > x2 > ¢ ¢ ¢ > xk > ¢ ¢ ¢
is any decreasing sequence in Ķ1, then the sequence hf (xj) : j > 1i converges in
K2. If f , K1 and K2 satisfy these conditions, then we shall say that condition A is
satis­ ed.

Condition A holds in some interesting cases.

Lemma 2.5. Suppose that K1 is a closed cone in a Hausdor® TVS X1 and that
Ķ1 6= ;. Assume that K2 is a closed cone in a ¯nite-dimensional Hausdor® TVS X2.
Let f : Ķ1 ! K2 be an order-preserving map. Then condition A holds.
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In the proof of lemma 2.5, we will make use of normality of the cone K2; recall
the de­ nition below.

Definition 2.6 (normal cone). A cone K in a normed linear space, not necessarily
­ nite dimensional, is said to be `normal’ if there exists a constant M such that
kxk 6 Mkyk whenever 0 6K x 6K y.

Proof of lemma 2.5. Recall that the topology on any ­ nite-dimensional Hausdor¬
TVS X2 of dimension n is such that X2 is linearly homeomorphic to RN with the
standard Euclidean metric. Thus we can assume that X2 is a normed linear space.
Recall also that any closed cone K in a ­ nite-dimensional normed linear space is
normal.

Suppose that hxj 2 K1 : j > 1i is a sequence of points with xj + 1 6 xj

for all j > 1. By the order-preserving property of f , it follows that 0 6K2

f (xj + 1) 6K2 f (xj) 6K2 f (x1) for all j > 1. By the normality of K2, we have
kf (xj)k 6 Mkf (x1)k for all j > 1, for some constant M .

Writing yj := f(xj), the sequence hyj : j > 1i is a bounded set in a ­ nite-
dimensional Banach space and so is compact. It follows that there exists a con-
vergent subsequence yji

! y, for some y 2 K2, where ji " 1 as i ! 1. Because
ym ¡ y = limk ! 1 ym ¡ yjk , we have ym ¡ y > 0 for all m > 1. If m > ji, we have
0 6 ym ¡ y 6 yji

¡ y, so the normality of K2 implies that kym ¡ yk 6 Mkyji
¡ yk

for m > ji. The latter inequality implies that the limit of the full sequence hymi
exists and that limm ! 1 ym = y, giving condition A.

Remark 2.7. Note that there are interesting closed cones K that are not ­ nite
dimensional, but which have the property that decreasing sequences converge.

This motivates the following de­ nition.

Definition 2.8 (monotone convergence property). Let K be a closed cone in a
Hausdor¬ TVS X . We say that K has the `monotone convergence property’ if,
whenever hyj : j > 1i is a sequence in K and yj + 1 6 yj for all j > 1, there exists
y 2 K with limj ! 1 yj = y.

Example 2.9. From the above discussion, we see that any ­ nite-dimensional closed
cone has the monotone convergence property.

Example 2.10. Suppose that H is a real Hilbert space and that X is the set of
bounded self-adjoint linear maps A : H ! H. Equip X with the strong operator
topology: if hAj : j > 1i is a sequence in X, then Aj ! A in the strong operator
topology if and only if kAj(x) ¡ A(x)k ! 0 as j ! 1 for all x 2 H . Let K be the set
of positive semi-de­ nite bounded self-adjoint operators in X, so that hAx; xi > 0
for all x 2 H . Since I 2 Ķ, where I : H ! H is the identity operation, we know
that Ķ is non-empty. It is a standard result that K has the monotone convergence
property [9] (see also example 6.2).

Example 2.11. Let (S; M; · ) be a measure space and let X = L1(S; M; · ) denote
the usual Banach space of · -integrable real-valued maps. Let K denote the closed
cone in X of maps that are greater than or equal to zero · -almost everywhere (two
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maps in X being identi­ ed if they agree · -almost everywhere). The monotone con-
vergence theorem from real analysis implies that K has the monotone convergence
property.

We now use the monotone convergence property and the previous remarks to give
a generalization of lemma 2.5 to the case where X2 need not be ­ nite dimensional.

Lemma 2.12. Suppose that K1 is a closed cone in a Hausdor® TVS X1 and that
Ķ1 6= ;. Assume that K2 is a closed cone in a Hausdor® TVS X2 and that K2 sat-
is¯es the monotone convergence property. Let f : Ķ1 ! K2 be a continuous order-
preserving map. Then condition A is satis¯ed.

The above lemmas and discussion illustrate that there are interesting examples
that satisfy condition A.

We now state our ­ rst extension theorem.

Theorem 2.13 (natural extension using allowable sequences). Let K1 be a closed
cone with non-empty interior in a Hausdor® TVS X1. Let K2 be a closed cone in a
Hausdor® TVS X2. Assume that f : Ķ1 ! K2 is order preserving and continuous
and that condition A is satis¯ed. Suppose that x 2 K1 and that hxn 2 Ķ1 : n > 1i
is an allowable sequence with limn ! 1 xn = x. Then we have the following.

(a) There exists z = zx 2 K2 such that limn ! 1 f (xn) = zx.

(b) Further, if hyn 2 Ķ1 : n > 1i is another allowable sequence such that
limn! 1 yn = x, then limn ! 1 f(yn) = limn! 1 f (xn) = zx.

(c) Further, if we de¯ne F (x) := zx for all x 2 K1, then F (x) = f (x) for
all x 2 Ķ1 (i.e. F is an extension of f ). If x 2 K1 and hxn 2 K1 : n > 1i
is any sequence such that limn ! 1 xn = x and xn+ 1 ½ xn for all n > 1,
then limn! 1 F (xn) = F (x). (In fact, if hyn 2 K1 : n > 1i is any sequence
such that yn > x for all n > 1 and limn ! 1 yn = x, it follows that
limn! 1 F (yn) = F (x)).

Proof of part (a). In what follows, suppose that x 2 K1 and that hxn 2 Ķ1 : n > 1i
is a sequence such that xn ¾ x for all n > 1 and limn ! 1 xn = x (i.e. hxni is an
allowable sequence converging to x).

By lemma 2.3, select an increasing sequence nj " 1 such that xm ½ xnj for all
m > nj + 1. By condition A, there exists z 2 K2 such that

lim
j ! 1

f (xnj ) = z:

The order-preserving property of f implies that z 6 f (xnj ) for all j > 1 and
z 6 f (xm) 6 f (xnj ) for all m > nj + 1.

Suppose, by way of contradiction, that the full sequence hf (xm) : m > 1i does
not converge to z. Then there exists an open neighbourhood U of z and a sequence
¸ k " 1 such that f (x ¸ k ) 62 U . Lemma 2.3 implies that, by taking a further subse-
quence, which we label the same, we can assume that x ¸ k

¾ xm for all m > ¸ k + 1

and k > 1.
Condition A implies that there exists ± 2 K2 with limk ! 1 f (x ¸ k ) = ± . We claim

that ± = z, a contradiction, which proves that limm ! 1 f (xm) = z. To see this, ­ x



40 A. Burbanks, R. Nussbaum and C. Sparrow

j > 1. Now take k large enough so that ¸ k > nj + 1. We see that x ¸ k
½ xnj , so that

f (x ¸ k ) 6 f (xnj ), for all large enough k. Letting k ! 1, we see that ± 6 f (xnj ).
Letting j ! 1, we see that ± 6 z. A symmetrical argument shows that z 6 ± , so
that z = ± .

Proof of part (b). Now suppose that hyn 2 Ķ1 : n > 1i is another sequence with
yn ¾ x for all n > 1 and limn! 1 yn = x. We need to prove that

lim
n! 1

f (yn) = lim
n! 1

f (xn);

where the sequence hxn : n > 1i is as above. De­ ne a sequence hwn : n > 1i by
w2n := xn and w2n+ 1 := yn. Then wn ¾ x for all n > 1 and limn! 1 wn = x. It
follows from the proof of part (a) that limn! 1 f (wn) exists. But this implies that

lim
n! 1

f (yn) = lim
n! 1

f (wn) = lim
n! 1

f(xn):

Proof of part (c). Now, for all x 2 K1, de­ ne F (x) as in the theorem. If x 2 Ķ1,
then continuity of f implies that f (x) = F (x). Thus F is an extension of f . Let
x 2 @K1 and hxn 2 K1 : n > 1i be a sequence with xn > x for all n > 1 and
limn! 1 xn = x. Select u 2 Ķ1 and note that

F (xn) = lim
k ! 1

f (xn + k¡1u):

Let V be an open neighbourhood of 0 in X2 and W be an open neighbourhood
of 0 such that ¡ W = W and W + W » V . For each n > 1, select an integer kn

with f (xn + k¡1u) 2 F (xn) + W for all k > kn. Note that we can also assume that
kn < kn + 1 for n > 1. By de­ nition of F (x), there exists an integer n ¤ such that
f (xn + k¡1

n u) 2 F (x) + W for all n > n ¤ . It follows that, for n > n ¤ ,

F (xn) 2 f (xn + k¡1
n u) ¡ W = f (xn + k¡1

n u) + W » (F (x) + W ) + W » F (x) + V:

Since F (x) + V was chosen to be an arbitrary open neighbourhood of F (x), we
conclude that limn! 1 F (xn) = F (x).

Remark 2.14 (the extended map is order preserving). The map F is also neces-
sarily order preserving, since if x; y 2 K1 and x 6 y, we may take u 2 Ķ1 and note
that

F (x) = lim
n! 1

f (x + n¡1u) 6 lim
n ! 1

f (y + n¡1u) = F (y):

Note also that theorem 2.13 implies that F is continuous at 0 2 K1, since all
sequences hxni with xn ! 0 satisfy 0 6 xn, as demanded by part (c) in the proof
of the theorem.

3. Continuous extension

As we show later (in example 6.2), the map F : K1 ! K2, as de­ ned in the-
orem 2.13, need not be everywhere continuous, even if K1 and K2 are ­ nite-
dimensional closed cones. The aim of this section is to give some further conditions
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on f , K1 and K2, in considerable generality, which ensure that F : K1 ! K2 is
continuous.

We begin with a geometrical condition on K1, which, as we prove below, is a
generalization of the polyhedral property of a cone.

Definition 3.1 (geometrical condition G). Let K be a closed cone in a Hausdor¬
TVS X . If x 2 K, we shall say that `K satis­ es condition G at x’ if, whenever
hxn 2 K : n > 1i is a sequence in K with limn! 1 xn = x and ¶ < 1, there exists
an integer n ¤ such that ¶ x 6 xn for all n > n ¤ . We shall say simply that `K satis­ es
condition G’ if K satis­ es condition G at x for all x 2 K.

Later, in example 6.2, we exhibit a map f : Ķ1 ! K2, where K1 is a normal cone
for which condition G does not hold. The map is order preserving, homogeneous
of degree 1 and continuous on the interior of K1, but has an order-preserving
homogeneous extension that is not continuous at certain points on the boundary
@K1.

However, there are nice cases in which condition G is satis­ ed, as we illustrate
below.

Definition 3.2 (polyhedral cone). Recall that a closed cone K in a Hausdor¬
TVS X is called `polyhedral’ if there exist continuous linear functionals ’j : X ! R,
1 6 j 6 N < 1, such that

K = fx 2 X : ’j(x) > 0 for 1 6 j 6 Ng:

Lemma 3.3 (polyhedral is equivalent to ­ nite-dimensional G). Let K be a closed
cone in a Hausdor® TVS X . It follows that K is polyhedral if and only if X is
¯nite dimensional and K satis¯es condition G.

We are grateful to Cormac Walsh, who pointed out the converse part of the
lemma.

Proof. (We ­ rst show that a polyhedral cone must be ­ nite dimensional and must
satisfy condition G.) If K is polyhedral, it is not hard to see that X must be ­ nite
dimensional and of dimension less than or equal to N . (Otherwise, one constructs
x 2 X, x 6= 0, with ’j(x) = 0 for 1 6 j 6 N .)

Now we must deduce condition G. Let ’j, 1 6 j 6 N , be continuous linear
functionals on X such that

K = fy 2 X : ’j(y) > 0 for 1 6 j 6 Ng:

Suppose that x 2 K and that hxn 2 K : n > 1i is a sequence such that
limn! 1 xn = x. Take ¶ < 1. We have to show that there exists n ¤ such that
¶ x 6 xn for all n > n ¤ . By de­ nition, ¶ x 6 xn if and only if ’j(xn ¡ ¶ x) =
’j(xn) ¡ ¶ ’j(x) > 0 for 1 6 j 6 N . Because xn 2 K for n > 1, we know that
’j(xn) > 0 for n > 1 and 1 6 j 6 N . Consider each j. If ’j(x) = 0, it fol-
lows that ’j(xn) ¡ ¶ ’j(x) > 0 for all n > 1 =: nj . If ’j(x) > 0, then, because
limn! 1 ’j(xn) = ’j(x), it follows that ’j(xn) ¡ ¶ ’j(x) > 0 for all su¯ ciently
large n, say for n > nj . If we de­ ne n ¤ := maxfnj : 1 6 j 6 Ng, we see that
’j(xn ¡ ¶ x) > 0 for n > n¤ and for 1 6 j 6 N , so that xn ¡ ¶ x 2 K for n > n ¤ .
Thus condition G holds.
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We now prove the converse. First, note that for any closed cone K in a ­ nite-
dimensional Banach space, there exists a continuous linear functional L : X ! R
such that L(x) > 0 for all non-zero x 2 K. Let S := fx 2 K : L(x) = 1g. It
is straightforward to show that S is compact and convex. It is known that K is
polyhedral if and only if S has ­ nitely many extreme points (see, for example, [12]).

Now let K be a closed cone in a ­ nite-dimensional Banach space X and suppose
that K satis­ es condition G. We will show that S (as de­ ned above) has ­ nitely
many extreme points. The above remark shows that K must then be polyhedral.

Let z 2 S and 0 < ¬ < 1. By condition G, there exists a neighbourhood U of z
in X such that ¬ z 6 u for all u 2 U \ K. Now let y 2 S \ U with y 6= z, so that
¬ z 6 y, i.e. y ¡ ¬ z 2 K.

Consider the point x := y=(1 ¡ ¬ ) ¡ z¬ =(1 ¡ ¬ ). We have x = (y ¡ ¬ z)=(1 ¡ ¬ ) 2 K
and, further, L(x) = 1, so that x 2 S. Note that y = (1 ¡ ¬ )x + ¬ z, thus y lies
between x and z and cannot be an extreme point of S. We have shown that for all
z 2 S there exists a neighbourhood Uz in which there are no extreme points of S
except, perhaps, for z itself.

Note that
S

z 2 S Uz is an open cover of S. Since S is compact, there exists a ­ nite
open sub-cover of S. By the above, each set in this sub-cover may contain at most
one extreme point of S. Thus S has only a ­ nite number of extreme points, and we
conclude that K is polyhedral.

The next condition that we need is a weak form of homogeneity of the map
f : Ķ1 ! K2. Recall the de­ nition of homogeneity.

Definition 3.4 (homogeneity, H). We say that f : Ķ1 ! K2 is `homogeneous of
degree p’ if, for all x 2 Ķ and ¶ > 0,

f ( ¶ x) = ¶ pf (x):

We will need a weakened form of homogeneity of degree 1.

Definition 3.5 (weak homogeneity, WH). Let K1 be a closed cone with Ķ1 6= ; in
a Hausdor¬ TVS X1 and let K2 be a closed cone in a Hausdor¬ TVS X2. Consider
a map f : Ķ1 ! K2. We shall say that `f satis­ es condition WH at x 2 K1’ if, for
every positive real ¬ , 0 < ¬ < 1, there exist ¯ > 0 and an open neighbourhood V
of x in X1 such that, for all y 2 V \ Ķ1 and for all real ¶ 2 [1 ¡ ¯ ; 1],

f( ¶ y) > ¬ f (y):

If f satis­ es condition WH at x for every x 2 K1, then we shall say simply that `f
satis­ es condition WH’.

Example 3.6. For example, if f : Ķ1 ! K2 is continuous, it is easy to prove that
f satis­ es condition WH at every x 2 Ķ1 such that f (x) 2 Ķ2.

Example 3.7. If there exists ¯ ¤ > 0 and a map ’ : [1 ¡ ¯ ¤ ; 1] ! (0; 1) with
lim ¶ ! 1¡ ’( ¶ ) = 1 such that

f ( ¶ y) > ’( ¶ )f (y);

for all y 2 Ķ1 and ¶ 2 [1 ¡ ¯ ¤ ; 1], then f satis­ es condition WH.
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The ­ nal condition that we shall need is a variant of the assumption of normality
for the cone K2, which we call the `weak normality’ or `sandwich’ condition.

Definition 3.8 (weak normality, WN). Let K2 be a closed cone in a Hausdor¬
TVS X2. We shall say that `K2 satis­ es condition WN’ if, whenever hxn : n > 1i,
hyn : n > 1i and hzn : n > 1i are sequences in K2 with 0 6 xn 6 yn 6 zn for all
n > 1 and limn! 1 xn = limn! 1 zn = y for some y 2 K2, it follows that limn ! 1 yn

exists and equals y.

Lemma 3.9. Let K2 be a closed cone in a normed linear space. Then K2 is normal
if and only if K2 satis¯es condition WN.

Proof. We ­ rst prove that normality implies WN. By the de­ nition of normality,
there exists a constant M such that kuk 6 Mkvk whenever 0 6 u 6 v. If hxni, hyni,
hzni are sequences as in de­ nition 3.8 above, we have that 0 6 yn ¡ xn 6 zn ¡ xn

for all n > 1, so
kyn ¡ xnk 6 Mkzn ¡ xnk:

Since limn! 1 (zn ¡ xn) = 0, it follows that limn ! 1 (yn ¡ xn) = 0, so that we have
limn! 1 yn = y, as desired.

Conversely, suppose that K2 satis­ es condition WN. To show that K2 is nor-
mal, we argue by contradiction. Assume that K2 is not normal. Then there exist
sequences huni and hvni in K2 with 0 6 un 6 vn for all n > 1 and kunk=kvnk ! 1
as n ! 1. Let xn := 0, yn := un=kunk and zn := vn=kunk, and note that
xn 6 yn 6 zn, xn ! 0 and zn ! 0 as n ! 1. We conclude that yn ! 0,
which contradicts the fact that kynk = 1 for all n > 1.

We now state our second main extension theorem; we use the above additional
conditions to ensure that the extended map F is sequentially continuous.

Theorem 3.10 (continuity of the extended map). Let K1 be a closed cone with
Ķ1 6= ; in a Hausdor® TVS X1, K2 a closed cone in a Hausdor® TVS X2 and
f : Ķ1 ! K2 a continuous order-preserving map. Assume that condition A is satis-
¯ed, that K1 satis¯es condition G at some x 2 @K1, that f satis¯es condition WH
at x and that K2 satis¯es condition WN. De¯ne the extension F as in theorem 2.13.
Then F is sequential ly continuous at x.

Proof. Suppose that hvn 2 K1 : n > 1i is any sequence with limn ! 1 vn = x. (Note
that we do not insist that the sequence be `allowable’.) We have to prove that
limn! 1 F (vn) = F (x). Given ¬ < 1, de­ nition 3.5 (condition WH) implies that
there exist ¯ > 0 and an open neighbourhood V of x such that f ( ¶ y) > ¬ f(y) for
all y 2 V \ Ķ1 and all ¶ 2 [1 ¡ ¯ ; 1]. Select u 2 Ķ1. If y 2 V \K1, then y+k¡1u 2 V
for all large integers k. It follows that

f ( ¶ (y + k¡1u)) > ¬ f (y + k¡1u)

for k 2 N, k large and ¶ 2 [1 ¡ ¯ ; 1]. Letting k ! 1, we ­ nd that

F ( ¶ y) > ¬ F (y):

For each n, de­ ne

¬ n := supf ¬ 6 1 : ¬ F (x) 6 F (vk) for all k > ng
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and select
¯ n := inff ¯ > 1=n : x + ¯ u > vk for all k > ng:

Clearly, ¯ n is a decreasing sequence and ¬ n is an increasing sequence. We leave to
the reader the exercise of proving that limn! 1 ¯ n = 0.

We claim that limn! 1 ¬ n = 1. To see this, take ¬ with 0 < ¬ < 1. By our
previous remarks, there exist ¯ > 0 and an open neighbourhood V of x such that
F ( ¶ y) > ¬ F (y) for all y 2 V \ K1 and ¶ 2 [1 ¡ ¯ ; 1]. In particular, we have that
F ( ¶ x) > ¬ F (x) for ¶ 2 [1 ¡ ¯ ; 1]. Put ¶ := 1 ¡ ¯ . Because K1 satis­ es condition G
at x, there exists n ¤ such that ¶ x 6 vn for all n > n ¤ . It follows that

¬ F (x) 6 F ( ¶ x) 6 F (vn) for all n > n ¤ :

It follows from this equation that ¬ n¤ > ¬ . Since ¬ < 1 was arbitrary, we see that
limn! 1 ¬ n = 1. We have

xn := ¬ nF (x) 6 F (vn) =: yn 6 F (x + ¯ nu) =: zn:

Since limn ¬ n = 1 and limn ¯ n = 0, then limn xn = F (x) = limn zn. Because K2 sat-
is­ es condition WN, we ­ nally deduce that limn yn = limn F (vn) = F (x), proving
that F is sequentially continuous at x.

Corollary 3.11. Let K1 be a closed polyhedral cone with Ķ1 6= ; in a Haus-
dor® TVS X1. Let K2 be a closed cone in a Hausdor® TVS X2 and assume either
that (i) K2 is ¯nite dimensional or, more generally, that (ii) K2 has the mono-
tone convergence property and satis¯es condition WN. Suppose that f : Ķ1 ! K2

is continuous and order preserving and satis¯es condition WH on K1. Then f has
a sequentially continuous extension F : K1 ! K2. Further, F is order preserving
and clearly satis¯es condition WH on K1.

Proof. Firstly, we make some observations for case (i). Note that any ­ nite-
dimensional closed cone K2 in a Hausdor¬ TVS has the monotone convergence
property. Also, any ­ nite-dimensional Hausdor¬ TVS X2 of dimension n is linearly
homeomorphic to Rn with the topology induced by the standard Euclidean metric.
So we can assume that X2 is a normed linear space. Since any closed cone in a
­ nite-dimensional normed space is normal, we deduce that in case (i) K2 is cer-
tainly weakly normal, i.e. condition WN holds. Thus both monotone convergence
and weak normality of K2 hold in each case.

Lemma 2.12 implies that f satis­ es condition A. It follows that f has an extension
F : K1 ! K2 as de­ ned in theorem 2.13. Lemma 3.3 implies that K1 satis­ es
condition G. Theorem 3.10 now implies that F is sequentially continuous at x for
all x 2 K1. If 0 6 x 6 y (in the partial ordering from K1), select u 2 Ķ1 and note
that

0 6 x + k¡1u 6 y + k¡1u

for every positive integer k. Because f is order preserving,

0 6 f (x + k¡1u) 6 f (y + k¡1u);

in the partial ordering from K2. Taking limits as k ! 1, we see that

F (x) = lim
k ! 1

f (x + k¡1u) 6 lim
k ! 1

f (y + k¡1u) = F (y);
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and we conclude that F is order preserving. Finally, since F = f on Ķ1 and f
satis­ es condition WH, then F also satis­ es condition WH.

Remark 3.12. Theorem 3.10 enables one to remove some extraneous assumptions
in the literature. See, for example, the statement of theorem 2.1 on p. 28 in [7].

We now give an alternative to conditions G and WH in theorem 3.10.

Remark 3.13 (alternative condition to G and WH). Suppose that K1 is a closed
cone with Ķ1 6= ; in a Hausdor¬ TVS X1 and that K2 is a closed cone in a
Hausdor¬ TVS X2 and that K2 satis­ es condition WN. Assume that f : Ķ1 ! K2

is continuous, order preserving and satis­ es condition A. Thus, by theorem 2.13, f
has an order-preserving extension F : K1 ! K2. Now suppose that x 2 @K1 and
that for every ¬ < 1 and every sequence hvn : n > 1i in K1 with limn! 1 vn = x,
there exists n ¤ with ¬ F (x) 6 F (vn) for all n > n¤ . An examination of the proof
of theorem 3.10 shows that F is sequentially continuous at x, even if K1 does not
satisfy condition G at x or f does not satisfy condition WH at x. In particular, if
F (x) = 0, then F is sequentially continuous at x.

The following example shows that the extended map F need not be continuous
at every x 2 @K1 (although it is continuous at every x for which F (x) = 0).

Example 3.14. Let K1 be the cone of non-negative continuous maps x 2 C [0; 1]
and let K2 = [0; 1), the non-negative reals. Obviously, K2 has the monotone
convergence property and satis­ es condition WN. De­ ne f : Ķ1 ! K2 by

f (x) :=

µZ 1

0

x(t)¡1 dt

¶¡1

:

Then f is continuous and order preserving and homogeneous of degree 1 (so it
certainly satis­ es condition WH). It follows that f satis­ es condition A and, by
theorem 2.13, that f has an extension F : K1 ! K2 that is order preserving. The
de­ nition of F shows that for x 2 @K1,

F (x) = lim
k ! 1

µZ 1

0

µ
x(t) +

1

k

¶¡1

dt

¶¡1

:

By using the monotone convergence theorem, we see that

F (x) =

µZ 1

0

x(t)¡1 dt

¶¡1

;

where I(x) :=
R 1

0
x(t)¡1 dt is interpreted as a Lebesgue integral and F (x) = 0 if

and only if I(x) = +1, i.e. if and only if x(t)¡1 is not Lebesgue integrable on [0; 1].
By remark 3.13, F is continuous at x 2 @K1 whenever I(x) = +1 (in particular,
F is continuous at x 2 @K1 when x(t) = 0 on a set of positive Lebesgue measure).

Conversely, if x 2 @K1 and I(x) < +1, then one can prove that F is not
continuous at x. The argument goes as follows. By using the monotone convergence
theorem, one shows that F (x) = I(x)¡1, where I(x) is positive. On the other hand,
since x 2 @K1, x vanishes at some point ½ , we can ­ nd a sequence hxni in K1 that
converges to x in the sup norm and which has the property that each xn vanishes on
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an interval containing ½ . But, by our previous remarks, this implies that F (xn) = 0,
so F (xn) does not approach F (x) as n ! 1. Thus F is not continuous at x.

In the above, we have demonstrated that the conditions we have given for conti-
nuity of the extended map are quite weak, holding in many contexts. We have also
given examples in which the conditions fail and the extended map is not continuous.
We have also given an alternative to some of our conditions.

4. Automatic continuity and the standard positive cone

In this section, we show that continuity of the original map f on Ķ1 holds implicitly
in some contexts, and so is not required as an explicit assumption. In particular, this
is true for certain classes of maps, de­ ned on the interior of the standard positive
cone in RN , that arise in the study of discrete event systems.

First, we work in a more general setting. Recall the de­ nition of comparability.

Definition 4.1 (comparability). Let v, y denote elements of a cone K . We say that
`v and y are comparable’ if there exist reals ¬ > 0 and ­ > 0 with ¬ y 6K v 6K ­ y.
The notion of comparability divides K into disjoint equivalence classes called the
`components’ or `parts’ of K; if v 2 K ¡ f0g, we let K(v) denote the set of points
u 2 K that are comparable with v.

Recall also the de­ nition of the (Thompson) part metric.

Definition 4.2 (Thompson’s part metric). Let v, y denote comparable elements
of a cone K. We de­ ne the positive real quantity,

M (v=y) := inff­ > 0 : v 6 ­ yg:

For v, y comparable, we then de­ ne

·d(v; y) := maxflog M (v=y); log M (y=v)g:

It is straightforward to prove that if K(v) is a part of K, then the restriction of
·d to K(v) is a metric, called `Thompson’s (part) metric on K(v)’. By de­ ning
·d(v; y) := +1 if v, y are non-comparable elements of K , we extend ·d to the whole
of K (note that only the restrictions of ·d to each part are actually metrics).

Remark 4.3 (automatic continuity). Suppose that K1 is a normal cone with non-
empty interior in a Banach space X1 and that K2 is a normal cone in a Banach space
X2. Let ·d1 denote Thompson’s metric on Ķ1. It is known that ·d1 gives the same
topology on Ķ1 as the topology induced by the norm on X1. (See proposition 1.1
in [8] for a proof and references to the literature. See also [11].) If f : Ķ1 ! K2 is
homogeneous of degree 1 and order preserving, then there exists v 2 K2 such that
f (x) is comparable to v in K2 for all x 2 Ķ1 (i.e. the interior maps to a single part).
If K2(v) is the part corresponding to v, i.e. the set of elements in K2 comparable
to v, and ·d2 is the (Thompson) part metric on K2(v), then

·d2(f (x1); f (x2)) 6 ·d1(x1; x2)

for all x1; x2 2 Ķ1, i.e. f is Thompson non-expanding on Ķ1. It follows that f
is automatically continuous as a map from Ķ1 (with the norm topology) to K2
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(with the norm topology). Thus sometimes we do not need to assume explicitly
that f : Ķ1 ! K2 is continuous.

Example 4.4 (monotone homogeneous maps on the positive cone). Let

K1 = K2 = K := RN
+ ;

the standard positive cone in RN . Maps f : Ķ ! Ķ that are order preserving and
homogeneous of degree 1 are non-expanding with respect to the Thompson metric
on Ķ. (In fact, if homogeneity holds, then being order preserving is equivalent to
being non-expanding. See [3].) Hence such maps are continuous on Ķ .

Remark 4.5 (topical maps and additive homogeneity). The maps of example 4.4
are sometimes called `topical’ in the literature and are of interest for certain classes
of discrete event systems. They may be viewed as the image under the bijection
(component-wise exponentiation) exp : RN ! (ŖN

+ ) = Ķ of maps g : RN ! RN

that are additively homogeneous and order preserving and, consequently, non-
expanding in the supremum (` 1 ) norm. To each such map g there corresponds
a map f : Ķ ! Ķ with f (x) = (exp ¯g ¯ log)(x).

With suitable modi­ cations of the proofs to take advantage of full, rather than
weak, homogeneity, our results imply the following corollary. (This result was proved
previously, by more direct means, in [1].)

Corollary 4.6 (continuous extension of maps on the positive cone). All homo-
geneous order-preserving (and hence Thompson non-expanding and continuous)
maps f : Ķ ! Ķ with K = RN

+ have an extension F : K ! K that is order
preserving, homogeneous and continuous on the whole of K.

Remark 4.7. We can also show (see [1]) that the extended map F is Thompson
non-expanding, taking all parts of K to parts.

Corollary 4.8 (existence of eigenvectors). Let f : Ķ ! Ķ , with K = RN
+ , be

an order-preserving homogeneous map with the order-preserving homogeneous (and
continuous) extension F : K ! K. Then F has at least one eigenvector in K ¡ f0g.

Proof. Let ¦ » K denote the intersection of the positive cone with the surface of
the (`2) unit hyper-sphere,

¦ := fx 2 K : kxk2 = 1g;

and let º denote the projection (normalization),

º : K ¡ f0g ! ¦ ; x 7! x

kxk2
:

We have seen that f has a continuous extension F to the whole cone K . If
F (x) = 0 for some x 2 ¦ then, by de­ nition, F has an eigenvector with eigen-
value 0 and we are done. (This happens, for example, in the case f : Ŗ2

+ ! Ŗ2
+

with f(x1; x2) :=
p

x1x2(1; 1), where all x 2 @¦ are mapped to the vertex 0.) Sup-
pose, on the other hand, that F (x) 6= 0 for all x 2 ¦ , then the projected map
º ¯ F : ¦ ! ¦ is well de­ ned and continuous on ¦ . Further, ¦ is homeomorphic
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to a compact convex set. Hence, by Brouwer’s ­ xed-point theorem, º ¯ F has at
least one ­ xed point in ¦ . By homogeneity, it follows that F itself must have at
least one eigenvector in K ¡ f0g.

In fact, using a more sophisticated argument given below, one can prove the
following stronger result.

Lemma 4.9 (eigenvector with non-zero eigenvalue). Let C be a closed cone with
non-empty interior in a ¯nite-dimensional Banach space X . Let F : C ! C be
a continuous map that is order preserving, homogeneous of degree one and maps
the interior of C into itself. Then F has an eigenvector in C ¡ f0g with non-zero
eigenvalue.

Remark 4.10. The result follows from theorem 2.1 in [6]. Let C be a closed cone
in a Banach space X and let g : C ! C be a continuous compact map that is order
preserving and homogeneous of degree one. Assume that there exists u 2 C such
that fgm(u) : m > 1g is unbounded in norm. Then there exists x 2 C with kxk = 1
and t > 1 such that g(x) = tx. The assumption of compactness can be weakened.

Proof of lemma 4.9. If u 2 Ç , there exists c > 0 such that F (u) > cu (since
F (u) 2 Ç). Take a > 1 and de­ ne g(x) := (a=c)F (x), so that g(u) > au and
fgm(u) : m > 1g is unbounded in norm. It follows from the theorem mentioned
above (in remark 4.10) that there exists x 2 C with kxk = 1 and t > 1 such that
g(x) = tx, so that F (x) = (tc=a)x. A simple limiting and compactness argument,
letting a ! 1, shows that F has an eigenvector with eigenvalue not less than c. The
above argument actually shows that if we de­ ne

c := supfk : F (x) > kx for some x 2 C with kxk = 1g;

then there exists an eigenvector of F with eigenvalue c.

Definition 4.11 (cycle-time vector). From the viewpoint of applications, a natu-
ral question is whether the map f : Ķ ! Ķ has a cycle-time vector, de­ ned formally
by

À (f) := lim
k ! 1

(f k(x))1=k

(where x1=k indicates the component-wise kth root of x). If this limit exists for
some x 2 Ķ , then it follows, from the fact that f is non-expanding, that it exists
for all y 2 Ķ (for K = RN

+ ) and takes the same value everywhere. Thus the cycle
time is naturally regarded as a property of the map itself.

Existence of an eigenvector x 2 Ķ in the interior with, say, f (x) = ¶ x for some
¶ > 0, implies directly the existence of the cycle time (with À (f ) = ¶ 1). Thus our
above result establishes the following corollary.

Corollary 4.12 (no cycle-time implies an eigenvector on the boundary). If À (f )
does not exist, for f : Ķ ! Ķ homogeneous and order preserving on the positive
cone K, then the extended map F has at least one eigenvector in @K ¡ f0g with
non-zero eigenvalue (and there are no eigenvectors in Ķ).
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The cycle-time vector is known to exist for certain classes of maps in general
dimension N . Speci­ cally, a nonlinear hierarchy of such maps may be built from
simple maps by closure under a ­ nite set of operations (see [4]). The cycle-time also
exists for all order-preserving homogeneous maps with N = 1; 2.

However, À (f ) need not exist in general for N > 3, as illustrated by a family of
maps introduced in [5]. Consider a sequence of reals hak 2 [0; 1] : k > 1i and let

¼ k :=

kX

j = 1

aj

with ¼ 0 := 0. Then there exists a homogeneous order-preserving map f : Ķ ! Ķ
with K := R3

+ , such that

f k(1; 1; 1) = (1; exp( ¼ k); exp(k)) for all k > 0:

For suitable choices of the sequence haki, we can arrange that the sequence h ¼ k=ki
does not converge and, hence, that À (f) does not exist.

The construction of a particular family of such maps, for which there is no cycle
time, reveals that º ¯ F ­ xes a continuum of points on one edge of ¦ . It would be
interesting to have a characterization of the possible ­ xed-point sets for a general
projected map.

5. Upper semi-continuity

In this section, we return to the setting of theorem 2.13, in which the map
f : Ķ1 ! K2 has a natural extension F : K1 ! K2 that is not necessarily con-
tinuous. In this situation, we de­ ne a natural multi-valued extension © and give
conditions under which this extension is upper semi-continuous. We then examine
the structure of the image set © (x) of a single point x 2 K1 under this multi-valued
map.

Let K1 be a closed cone with non-empty interior Ķ1 in a Hausdor¬ TVS X1 and
let K2 be a closed cone in a TVS X2. Let f : Ķ1 ! K2 be continuous and order
preserving, and assume condition A: if hxk 2 Ķ1 : k > 1i is any sequence such that
xk + 1 6 xk for all k > 1, then the sequence hf (xj) : j > 1i converges to a point
y 2 K2.

If condition A holds, we have seen that we can de­ ne a map F : K1 ! K2 in a
natural way, by F (x) := y, where x 2 K1, hxn : n > 1i is any `allowable’ sequence in
Ķ1 (i.e. xn ¾ x for all n) such that limn! 1 xn = x, and where y := limn ! 1 f (xn).
(We saw that this limit necessarily exists and is independent of the particular
sequence hxni.) The map F , thus de­ ned, is order preserving and extends f . Further,
we saw that if x 2 K1 and hxni is any sequence in K1 such that xn ¾ x for all n
and limn ! 1 xn = x, then limn! 1 F (xn) = F (x). However, for a general sequence
xn ! x, lack of sequential continuity means that limn ! 1 F (xn) need not take the
value F (x).

Definition 5.1 (multi-valued extension © ). Assuming condition A and that f is
continuous and order preserving, we now de­ ne a natural multi-valued version © of
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the extended map F by

© (x) :=
\

V 2 N (x)

f (V \ Ķ1); (5.1)

where N (x) denotes the collection of open neighbourhoods V » X1 that contain x.

We now show that at every point x 2 K1, our single-valued extension F takes a
maximal value in the set © (x).

Lemma 5.2 (the single-valued extension is maximal). Let f be continuous and
order preserving and assume condition A. Let © (x) be de¯ned as in 5.1. Then
F (x) 2 © (x) for all x 2 K1. Further, if y 2 © (x), then y 6 F (x).

Proof. Given x 2 K1, let hxn : n > 1i be a sequence in Ķ1 with xn ¾ x for all n
and limn! 1 xn = x. Given any open neighbourhood V of x, we have xn 2 V for
all n > nV , say.

It follows that

F (x) = lim
n! 1

f (xn) 2 f (V \ Ķ1):

Since V was arbitrary, we have

F (x) 2
\

V 2 N (x)

f (V \ Ķ1):

Suppose now that

y 2
\

V 2 N (x)

f (V \ Ķ1):

For a given n, there exists an open neighbourhood V of x such that xn ¡ V 2 Ķ1

(because xn ¡ x 2 Ķ1). It follows that f (xn) > f(z) for all z 2 V \ Ķ1. So, since
K2 is closed,

f (xn) > ± for all ± 2 f (V \ Ķ1):

This implies that f (xn) > y. Since n > 1 was arbitrary and K2 is closed, we
conclude that F (x) = limn ! 1 f (xn) > y.

Definition 5.3 (upper semi-continuity). Given a map © from a topological space
X to P(Y ), the power set of a topological space Y , we say that ` © is upper
semi-continuous at x 2 X ’ if, for every open neighbourhood W of © (x), there
exists an open neighbourhood V of x with © (V ) » W . We say that ©̀ is
upper semi-continuous’ if it is upper semi-continuous at x for all x 2 X. (Here,
© (V ) :=

S
x 2 V © (x).)

In other words, the `multi-valued’ map © is `upper semi-continuous’ if and only
if it is continuous when viewed as a map © : X ! P(Y ).

Under an additional compactness assumption, we deduce upper semi-continuity
of © .
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Theorem 5.4 (compactness and upper semi-continuity). Assume that f is contin-
uous and order preserving and that condition A holds. For each x 2 @K1, assume
that there exists an open neighbourhood V of x such that

f (V \ Ķ1)

is compact. Let © (x) be de¯ned as in 5.1. Then © is upper semi-continuous.

Proof. By virtue of lemma 5.2, it su¯ ces to prove upper semi-continuity at x ¤ for
x ¤ 2 @K1. Let V ¤ » X1 be an open neighbourhood of x ¤ such that

M := f (V ¤ \ Ķ1)

is compact. If O » X2 is an open neighbourhood of © (x ¤ ), we need to prove that
there exists V 2 N (x¤ ), V » V ¤ , such that © (x) » O for all x 2 V \ K1. Since

© (x) » f (V \ Ķ1)

whenever x 2 K1 \V and V is open, it su¯ ces to show that there exists V 2 N (x ¤ ),
V » V ¤ , with

f(V \ Ķ1) » O:

If not, then for every V 2 N (x ¤ ), V » V ¤ , we have

MV := f (V \ Ķ1) \ (O0 \ M) 6= ;;

where O0 denotes the complement, (X2 ¡ O), of O. Now, MV is a compact non-
empty subset of the compact Hausdor¬ space O0 \ M for V 2 N (x ¤ ), V » V ¤ . If n
is an integer and Vj 2 N (x¤ ), Vj » V ¤ , for 1 6 j 6 n, then

n\

j = 1

MVj
6= ;;

because
Tn

j = 1 Vj =: W 2 N (x¤ ), W » V ¤ and MW »
Tn

j = 1 MVj
6= ;.

It follows that \

V 2 N (x¤); V »V¤

MV 6= ;:

Since \

V 2 N (x¤); V »V¤

MV »
\

V 2 N (x¤)

f (V \ Ķ1) =: © (x) » O

and \

V 2 N (x¤); V »V¤

MV » (O0 \ M );

we have a contradiction and thus deduce upper semi-continuity at x ¤ . Since
x ¤ 2 @K1 was arbitrary, this completes the proof.

Lemma 5.5. Assume the hypotheses in the statement of theorem 5.4 and assume, in
addition, that X1 is a locally convex topological vector space. Then © (x) is compact
and connected (when viewed as a subset of Y ) for all x 2 K1.
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Proof. We have already noted that © (x) is compact and non-empty. For a given
x 2 @K1, select V ¤ 2 N (x) such that

f (V ¤ \ Ķ1)

is compact. Let H = H(x) denote the collection of open convex sets V » X1 such
that V » V ¤ and x 2 V . The assumption that X1 is a locally convex TVS implies
that for every W 2 N (x), there exists V 2 H with V » W . Thus we have

© (x) =
\

V 2 N (x)

f (V \ Ķ1) =
\

V 2 H
f (V \ Ķ1):

Note that V \ Ķ1 is convex, and hence connected, for V 2 H(x). Thus f(V \ Ķ1),
the continuous image of a connected set, is also connected. Finally,

f (V \ Ķ1);

the closure of a connected set, is connected.
Let

M := f (V ¤ \ Ķ1);

a compact set. Assume, by way of contradiction, that © (x) is not connected. Then
there exist disjoint relatively open subsets Oj » M , j = 1; 2, with Oj \ © (x) 6= ;
and © (x) » (O1 [ O2). If V1; V2; : : : ; Vn are in H, note that \n

j = 1Vj 2 H. Thus the
same argument used in the proof of theorem 5.4 shows that there exists V 2 H
with

f (V \ Ķ1) » (O1 [ O2):

Because f (V \ Ķ1) is connected, we must have that

f(V \ Ķ1) » Oj for j = 1; 2:

Assume, without loss of generality, that

f (V \ Ķ1) » O1:

But then f (V \ Ķ1)\O2 = ;, which is a contradiction. Thus © (x) is connected.

6. Applications to operator-valued means

Remark 6.1 (operator-valued means). Theorem 2.13 can be applied to the study
of `operator-valued means’ (see, for example, [2] and references to the literature
in that paper). In the ­ nite-dimensional case, theorem 5.4 is also applicable to
operator-valued means, but in the in­ nite-dimensional case the assumptions are
too restrictive. It would be interesting to have a version of theorem 5.4 that could
be applied to the study of operator-valued means for linear operators on separable
Hilbert spaces.

We now give a map on a normal cone that is continuous, order preserving and
homogeneous of order 1 and that has an order-preserving homogeneous extension
that is not continuous (the cone does not satisfy condition G of theorem 3.10). This
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map arises naturally in the study of operator-valued means; the extension problem is
a natural one for operator-valued means and there are many other related questions.

In what follows, let H be a real Hilbert space, with inner product hx; yi. Let
L (H) denote the bounded linear maps L : H ! H and let A(H) » L (H) denote
the self-adjoint bounded linear maps A : H ! H . Note that A(H) forms a Banach
space when equipped with the usual operator norm kAk := supfkAxk : kxk = 1g.

Now, let C := fA 2 A(H) : hAx; xi > 0 for all x 2 Hg, the positive semi-de¯nite
operators in A(H). Since kAk = supfhAx; xi : kxk = 1g for A 2 C, it follows that
C is a normal cone and that Ç 6= ; (the identity operator, I 2 Ç).

Example 6.2 (map without continuous extension). With C de­ ned as above, let
K1 := C £ C , a cone in the Banach space A(H) £ A(H), and let K2 := C, a cone
in the Banach space A(H). De­ ne the map f : Ç £ Ç = Ķ1 ! Ķ2 = Ç to be the
`harmonic mean’,

f (A; B) := (A¡1 + B¡1)¡1: (6.1)

We claim that the map f is order preserving, homogeneous of degree 1 and contin-
uous on Ķ1, but that f need not have a continuous extension to @K1. In particular,
for the case where C is the cone of positive semi-de­ nite symmetric real n£n matri-
ces, we claim that f may not be extended continuously even in the case n = 2.

It is known that A ! A¡1 is order reversing on Ç. Thus we have that A 6C B
implies B¡1 6C A¡1, where 6C is the standard ordering induced by C . This means
that hAx; xi 6 hBx; xi for all x 2 H. If follows that f is order preserving and
homogeneous of degree 1.

We have, for A; B 2 Ç ,

A¡1 + B¡1 = A¡1(A + B)B¡1 = B¡1(A + B)A¡1;

and thus

f (A; B) = A(A + B)¡1B = B(A + B)¡1A: (6.2)

If A; B 2 C and A + B 2 Ç , then the above formula may be used to extend f
continuously to a relatively open neighbourhood of (A; B) in C £ C .

Lemma 6.3 (discontinuity of the extension). Now consider H = RN with inner
product hx; yi :=

PN
i = 1 xiyi. We may then identify A(H) with the n £ n symmet-

ric real matrices, and C is the set of positive semi-de¯nite n £ n symmetric real
matrices. If A; B 2 C, then we may de¯ne

f (A; B) = lim
t ! 0+

((A + tI)¡1 + (B + tI)¡1)¡1: (6.3)

If A + B is invertible, then we have, using 6.2,

f (A; B) = A(A + B)¡1B = B(A + B)¡1A; (6.4)

and f is continuous at (A; B) 2 K1 := C £ C.
However, if A + B is not invertible, we claim that f may not be continuous at

(A; B), even in the case n = 2.
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Proof. Take H = R2 with the usual inner product and take

A = B =

µ
1 0

0 0

¶
2 C:

We have

f (A; B) = lim
t ! 0+

(A + tI)(A + B + 2tI)¡1(B + tI)

= lim
t ! 0+

µ
1 + t 0

0 t

¶
1

2t(2 + 2t)

µ
2t 0

0 2 + 2t

¶ µ
1 + t 0

0 t

¶

= lim
t ! 0+

1

2t(2 + 2t)

µ
2t(1 + t)2 0

0 t2(2 + 2t)

¶

=

µ
1
2 0

0 0

¶
:

Recall that f is order preserving. Suppose that (Am; Bm) 2 Ķ1 and (Am; Bm) !
(A; B) and f (Am; Bm) ! L. Since (Am; Bm) 6 (A; B) + ¯ (I; I) for ¯ > 0 and m
su¯ ciently large, then, for m large, we have

f (Am; Bm) 6 f(A + ¯ I ; B + ¯ I);

and L 6 f(A + ¯ I ; B + ¯ I) for every ¯ > 0. This implies that

0 6C L 6C

µ
1
2 0

0 0

¶
:

It follows from properties of the ordering 6C , induced by C, that the only possible
form for L is a matrix

L( ¬ ) =

µ
¬ 0

0 0

¶
with 0 6 ¬ 6 1

2 :

We claim that, for every ¬ 2 [0; 1
2 ], there is a sequence (Am; Bm) 2 Ķ1 with

(Am; Bm) ! (A; B) and limm! 1 f(Am; Bm) = L( ¬ ).
In the above calculation, we exhibited an example with ¬ = 1

2
. Therefore, it will

su¯ ce to take 0 6 ¬ < 1
2
. If we let

~A =

µ
1 ¯ 1

¯ 1 "1

¶
; ~B =

µ
1 ¯ 2

¯ 2 "2

¶
;

then ~A 2 Ç if and only if "1 > ¯ 2
1 . Similarly, ~B 2 Ç if and only if "2 > ¯ 2

2 . If
"j > ¯ 2

j > 0 for j = 1; 2 and ¯ 1 6= ¯ 2 (so that ¯ 2
1 + ¯ 2

2 > 2 ¯ 1 ¯ 2), then we calculate,
using 6.4, that

f ( ~A; ~B) =
1

2("1 + "2) ¡ ( ¯ 1 + ¯ 2)2

£
µ

("1 ¡ ¯ 2
1) + ("2 ¡ ¯ 2

2) ¯ 1("2 ¡ ¯ 2
2) + ¯ 2("1 ¡ ¯ 2

1)

¯ 1("2 ¡ ¯ 2
2) + ¯ 2("1 ¡ ¯ 2

1) "1("2 ¡ ¯ 2
2) + "2("1 ¡ ¯ 2

1)

¶
:
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Notice that

2("1 + "2) ¡ ( ¯ 1 + ¯ 2)2 = ("1 ¡ ¯ 2
1) ¡ ("2 ¡ ¯ 2

2) + ("1 + "2 ¡ 2 ¯ 1 ¯ 2)

> ("1 ¡ ¯ 2
1) + ("2 ¡ ¯ 2

2) + ("1 + "2 ¡ ¯ 2
1 ¡ ¯ 2

2)

= 2("1 ¡ ¯ 2
1) + 2("2 ¡ ¯ 2

2):

It follows that
¯̄
¯̄ ¯ 1("2 ¡ ¯ 2

2) + ¯ 2("1 ¡ ¯ 2
1)

2("1 + "2) ¡ ( ¯ 1 + ¯ 2)2

¯̄
¯̄ 6 max(j̄ 1j; j ¯ 2j)[("2 ¡ ¯ 2

2) + ("1 ¡ ¯ 2
1)]

2[("1 ¡ ¯ 2
1) + ("2 ¡ ¯ 2

2)]

6 1
2

max(j ¯ 1j; j̄ 2j) (6.5)

and

0 6 "1("2 ¡ ¯ 2
2) + "2("1 ¡ ¯ 2

1)

2("1 + "2) ¡ ( ¯ 1 + ¯ 2)2

6 max("1; "2)[("2 ¡ ¯ 2
2) + ("1 ¡ ¯ 2

1)]

2[("1 ¡ ¯ 2
1) + ("2 ¡ ¯ 2

2)]

6 1
2

max("1; "2): (6.6)

Now select constants k > 1 and M > 1 and de­ ne

¯ 1 =
1

m
; ¯ 2 =

M

m
; "1 = k¯ 2

1 =
k

m2
and "2 = k¯ 2

2 =
kM 2

m2
;

so that

~A := Am =

µ
1 1=m

1=m k=m2

¶
! A

and

~B := Bm =

µ
1 M=m

M=m kM2=m2

¶
! B:

If we de­ ne

f (Am; Bm) =:

µ
am bm

bm cm

¶
;

then (6.5) and (6.6) imply that limm ! 1 bm = limm ! 1 cm = 0, and our formula for
f ( ~A; ~B) implies that

am =
(k ¡ 1) + (k ¡ 1)M 2

(k ¡ 1) + (k ¡ 1)M 2 + k + kM 2 ¡ 2M
;

which is independent of m. (Note that ¯ 2 6= ¯ 1, because M > 1 and thus

k + kM2 ¡ 2M > (M ¡ 1)2 > 0

and the denominator of am is always positive for k > 1.) When k = 1, am = 0.
When k ! 1,

lim
k ! 1

am = lim
k ! 1

k + kM 2

k + kM 2 + k + kM2
= 1

2 :
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Since am is a continuous map of k > 1, we conclude that every value ¬ , 0 6 ¬ < 1
2
,

is taken for some k > 1 and, as a consequence, that the extension F cannot be
continuous at (A; B) 2 @K1.

Remark 6.4 (maps that are not order preserving). In the study of operator-val-
ued means, one may also come across the problem of extending naturally maps
that are not order preserving. For example, let C denote the cone of n £ n real self-
adjoint positive semi-de­ nite matrices in the vector space of real n £ n self-adjoint
matrices. Let K1 = C £ C , K2 = C , and de­ ne f : Ķ1 ! Ķ2 by

f (A; B) := exp( 1
2

log(A) + 1
2

log(B)):

Note that (A; B) 7! 1
2 log A + 1

2 log(B) is order preserving, but f is not. R. D. Nuss-
baum (unpublished notes) has shown that f has a `natural’ extension F : K1 ! K2

given by

F (A; B) = lim
k ! 1

exp( 1
2 log(A + k¡1I) + 1

2 log(B + k¡1I)):

(The problem is to show that the above limit exists for all (A; B) 2 K1.)

7. Extension of our results to an intermediate situation

In this section, we extend our results to an `intermediate’ situation that arises in
some important applications and in which essentially the same arguments that we
have used previously will give continuity.

Example 7.1 (construction of di¬usions on ­ nitely rami­ ed fractals). The paper
of Sabot [10], for example, concerns the construction of di¬usions on certain types
of ­ nitely rami­ ed fractals. The construction is achieved with the aid of so-called
`reproduction-decimation operators’. One considers the real Banach space X of n£n
real symmetric matrices A such that A1 = 0, where 1 denotes the column vector
all of whose entries are identically 1. In X , one considers the cone K of the posi-
tive semi-de­ nite elements in X and a closed cone D, contained in K, of so-called
`Dirichlet forms’. On Ķ, the interior of K , one de­ nes a reproduction-decimation
operator g : Ķ ! Ķ .

One can prove that g(Ķ \ D) » D, so that it makes sense to consider f :=
gj(Ķ \ D) viewed as a map f : Ķ \ D ! D. The map g is homogeneous of degree 1
and order preserving with respect to the ordering induced by K . Thus f is homo-
geneous of degree 1 and order preserving. However, f is not order preserving with
respect to the natural ordering induced by D, but rather with respect to the order-
ing induced by the larger cone K.

The important point, from the viewpoint of applications, is to establish the exis-
tence and uniqueness of suitably non-degenerate eigenvectors of the reproduction-
decimation operator f , and for this purpose it is useful to know that f can always
be extended to a continuous map F : D ! D. In what follows, we present a
straightforward generalization of our results to establish that this is indeed the
case.

For simplicity, we restrict ourselves to the following situation. Let K1 and K2 be
closed cones in ­ nite-dimensional Banach spaces X1 and X2, respectively. Suppose
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also that the interior, Ķ1, of K1 is non-empty. Finally, assume that f : Ķ1 ! K2 is
homogeneous of degree one and order preserving.

In what follows, the term `partial ordering’ will always refer to the partial order-
ings 61 and 62. The particular partial ordering in use will always be evident from
the context, so we shall sometimes abuse notation and write 6 instead of the more
explicit 6i.

Given the above assumptions, the results that we present here are very special
cases of our more general theorems presented in this paper.

We have already shown that there exists an order-preserving, homogeneous of
degree one, map F : K1 ! K2 such that F jĶ1 = f , i.e. the map F extends f .

Suppose that the map f is continuous. If x 2 K1 and hxn : n > 1i is any sequence
such that xn ¡ x 2 Ķ1 for all n > 1, then F (x) = limn! 1 f(xn). If hun : n > 1i is
a sequence in K1 such that un > un+ 1 for all n and if limn! 1 un = x, then we also
have limn! 1 F (un) = F (x).

Recall that F need not be continuous, as we demonstrated above. Recall, however,
that if K1 is polyhedral, then it follows that F is continuous.

7.1. Continuous extension to sub-cones

Theorem 7.2 (continuous extension to sub-cones). Let our assumptions be as
above. In addition, assume that there exist closed cones Di » Ki (i = 1; 2)
such that Ḑ1 6= ; and f (Ķ1 \ D1) » D2. Assume also that D1 is polyhedral. Then
F (D1) » D2 and F jD1 is continuous.

Proof. Take u 2 Ḑ1 » Ķ1. If x 2 D1, the remarks above show that

F (x) = lim
n ! 1

f (x + "nu) 2 D2

whenever h"ni is a sequence of positive reals converging to zero.
Since we assume that D1 is polyhedral, there exist continuous linear functionals

Á1; Á2; : : : ; ÁN on X1 such that

D1 = fy 2 X : Ái(y) > 0 for 1 6 i 6 Ng:

Take ¶ , 0 < ¶ < 1, and let hxn : n > 1i be any sequence of points in D1

with limn ! 1 xn = x 2 D1. We claim that there exists an integer n( ¶ ) such that
xn ¡ ¶ x 2 D1 for all n > n( ¶ ). The proof is the same as one given earlier in this
paper.

If Ái(x) = 0, then Ái(xn ¡ ¶ x) = Ái(xn) > 0 for all n. If Ái(x) > 0, then
Ái(xn ¡ ¶ x) ! (1 ¡ ¶ )Ái(x) > 0, so that Ái(xn) > 0 for all n su¯ ciently large.
Thus, for all n su¯ ciently large (n > n( ¶ )), Ái(xn ¡ ¶ x) > 0 for 1 6 i 6 N . It follows
that xn ¡ ¶ x 2 D1 » K1 for n > n( ¶ ). Because F is order preserving (with respect
to the partial orders from K1 and K2), it follows that F (xn) > F ( ¶ x) = ¶ F (x) for
n > n( ¶ ).

Now we change the notation slightly. Given a sequence hxn : n > 1i in D1 with
limn! 1 xn = x, for n > 1 we de­ ne

¶ n := supf ¶ 6 1 : xk ¡ ¶ x 2 D1 for all k > ng:

The argument above shows that limn ! 1 ¶ n = 1 and, of course, ¶ n 6 ¶ n+ 1 for all
n.
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Similarly, for u 2 Ḑ1, de­ ne

"n := inff" > 0 : x + "u ¡ xk 2 D1 for all k > ng:

One checks readily that "n ! 0 as n ! 1. Since F is order preserving on K1 and
¶ nx 6 xn 6 x + "nu, we have

F ( ¶ nx) = ¶ nF (x) 6 F (xn) 6 F (x + "nu):

We have that limn ! 1 F ( ¶ nx) = F (x) = limn ! 1 F (x + "nu). Because K2 is nor-
mal (recall that any closed cone a ­ nite-dimensional normed space is normal), we
conclude that

lim
n ! 1

F (xn) = F (x) = lim
n ! 1

F ( ¶ nx) = lim
n! 1

F (x + "nu):

7.2. Application to maps on cones of Dirichlet forms

We apply this result to the following situation. Consider the real Hilbert space
Rm with the usual inner product. Let 1 denote the column vector in Rm, all of
whose components are identically equal to 1. If f; g 2 Rm, then let f ^ g denote the
pointwise minimum of f and g, i.e. (f ^ g)i = fi ^ gi := min(fi; gi). Let Am denote
the set of symmetric m £ m real matrices A such that A1 = 0 and let K1 denote
the set of positive semi-de­ nite matrices in Am. Of course, Am is a Banach space
and K1 is a closed cone with non-empty interior. We de­ ne D1 » K1 by saying
that A 2 D1 if and only if A 2 K1 and

hA(f ^ 1); f ^ 1i 6 hAf; f i for all f 2 Rm:

The bilinear forms induced by A 2 D1 are called Dirichlet forms. One can prove
that A 2 D1 if and only if there exists cij > 0 for 1 6 i < j 6 m such that

hAf; f i =
X

i<j

cij(fi ¡ fj)2:

This implies that if A = (aij), then aij = ¡ cij for 1 6 i < j 6 m, aij = aji and
aii = ¡

P
j 6= i aij for 1 6 i 6 m. It follows that D1 is linearly isomorphic to the

standard cone in Rm(m¡1)=2, so that D1 is polyhedral.
We can carry out this construction in Rn also, obtaining An (the set of n £ n

symmetric matrices B such that B1 = 0; a Banach space), K2 (the set of posi-
tive semi-de­ nite matrices in An) and D2 (the corresponding elements in K2 that
give Dirichlet forms). If f : Ķ1 ! K2 is homogeneous of degree one and order pre-
serving and if f (D1 \ Ķ1) » D2, then it follows that f extends to a continuous,
homogeneous of degree one, order-preserving map F : D1 ! D2.

If m > n, then there are natural `decimation’ maps from Ķ1 ! Ķ2 that satisfy
these conditions, and which thus have a continuous extension F : D1 ! D2.

In a forthcoming paper, we provide full details of the application to the
`reproduction-decimation’ operators arising in the construction of di¬usions on cer-
tain fractals. The above remarks are intended to supplement the main results of
the present paper.
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