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We consider a class of autonomous delay-differential equations

ż(t) = f (zt)

which includes equations of the form

ż(t) = g
(
z(t), z(t − r1), . . . , z(t − rn)

)
,

ri = ri
(
z(t)

)
for 1 � i � n, (∗)

with state-dependent delays ri(z(t)) � 0. The functions g and ri
satisfy appropriate smoothness conditions.
We assume there exists a periodic solution z = x(t) which is lin-
early asymptotically stable, namely with all nontrivial characteristic
multipliers µ satisfying |µ| < 1. We prove that the appropriate
nonlinear stability properties hold for x(t), namely, that this so-
lution is asymptotically orbitally stable with asymptotic phase, and
enjoys an exponential rate of attraction given in terms of the lead-
ing nontrivial characteristic multiplier.
A principal difficulty which distinguishes the analysis of equations
such as (∗) from ones with constant delays, is that even with g
and ri smooth, the associated function f is not smooth in func-
tion space. Techniques of Hartung, Krisztin, Walther, and Wu are
employed to resolve these issues.
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1. Introduction

In this paper we study stability questions for a broad class of autonomous state-dependent delay-
differential equations. Specifically, we prove that linearized asymptotic stability of a periodic solution
x(t) implies nonlinear (Lyapunov) stability of that solution, in fact, asymptotic orbital stability with
asymptotic phase, and exponential attraction at a rate determined by the leading nontrivial character-
istic multiplier. This is, of course, the analog of a classic theorem in ordinary differential equations;
see, for example, [1]. The corresponding result for retarded equations with constant delay also has
been known for many years; see [7].

Among the equations we treat are those with pointwise state-dependent delays such as

ż(t) = g
(
z(t), z(t − r1), . . . , z(t − rn)

)
, ri = ri

(
z(t)

)
for 1 � i � n, (1.1)

where

g :Ug ⊆ Rm(n+1) → Rm, ri :Uri ⊆ Rm → [0, R] for 1 � i � n,

for some (typically open) sets Ug and Uri . In the case n = 1 this equation takes the form

ż(t) = g
(
z(t), z(t − r)

)
, r = r

(
z(t)

)
, (1.2)

where

g :Ug ⊆ R2m → Rm, r :Ur ⊆ Rm → [0, R]. (1.3)

The model equation

ε ż(t) = −z(t) − kz(t − r), r = r
(
z(t)

)
= 1+ z(t) (1.4)

with ε > 0 and k > 1, considered in [5] (see also [4]), is a special case.
Generally, we follow the setting of Walther [8] for state-dependent equations (see also Hartung,

Krisztin, Walther, and Wu [3]), which we now outline. Consider an autonomous equation

ż(t) = f (zt) (1.5)

where

f :UX ⊆ X → Rm is continuous, X = C
(
[−R,0],Rm)

,

zt ∈ X is given by zt(θ) = z(t + θ) for θ ∈ [−R,0], (1.6)

and where UX is an open subset of X . This is the classic setting of Hale, as described in the book of
Hale and Verduyn Lunel [2]. Local existence of the initial value problem

z0 = ϕ (1.7)

for any ϕ ∈ UX in forward time is guaranteed, that is, the problem (1.5), (1.7) has a solution z(t) for
0 � t < δ for some δ > 0. Note that Eq. (1.2) falls into this class by taking

f (ϕ) = g
(
ϕ(0),ϕ

(
−r

(
ϕ(0)

)))
. (1.8)
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For this equation we assume that Ug ⊆ R2m and Ur ⊆ Rm in (1.3) are open sets on which g and r are
continuous, and

UX =
{
ϕ ∈ X

∣∣ (
ϕ(0),ϕ

(
−r

(
ϕ(0)

)))
∈ Ug and ϕ(0) ∈ Ur

}
. (1.9)

For the model equation (1.4) one has g(z, ζ ) = −z − kζ and r(z) = 1 + z, with Ug = R2 and Ur =
(−1, R − 1), where typically one takes R � k + 1.

One has the analogous facts for the more general multiple-delay equation (1.1) as for the single-
delay equation (1.2).

In general the solution of the initial value problem (1.5), (1.7) is not unique, although it is unique if
f is locally lipschitz. We remark that for the special case of (1.8) and its multiple-delay generalization,
the map f is generally not locally lipschitz even if the functions g and r are smooth, unless r is a
constant. Thus in general, there is no assurance of a unique solution to the initial value problem (1.2),
(1.7). On the other hand, if the initial function ϕ is lipschitz and g and r are both locally lipschitz,
uniqueness does hold for (1.2) with (1.7).

Following Walther, let us consider Eq. (1.5) with a nonlinearity f for which

(H1) f :UY ⊆ Y → Rm is C1-smooth, where Y = C1([−R,0],Rm) and UY is open in Y .

Here we do not necessarily assume that f is defined in a domain U X ⊆ X as in (1.6), although we do
keep the notation zt(θ) = z(t + θ) for θ ∈ [−R,0]. For definiteness we shall always take

‖ϕ‖X = sup
θ∈[−R,0]

∣∣ϕ(θ)
∣∣, ‖ϕ‖Y = max

{
‖ϕ‖X , ‖ϕ̇‖X

}
, (1.10)

for the norm of ϕ ∈ X or ϕ ∈ Y , respectively. We consider solutions z(t) of (1.5) with initial condi-
tions (1.7) which are C1-smooth on their initial interval [−R,0], and which in addition satisfy the
compatibility condition ϕ̇(0) = f (ϕ). This condition ensures that the left- and right-hand derivatives
of any such solution z(t) at t = 0 are equal. Such solutions are thus C1 on any maximal interval
[−R,ω) of existence. In this spirit Walther introduces the so-called solutionmanifold S ⊆ Y , defined
to be

S =
{
ϕ ∈ UY

∣∣ ϕ̇(0) = f (ϕ)
}
,

which is a relatively closed subset of UY . It is easily seen that any solution z(t) with initial condition
z0 ∈ S on the solution manifold satisfies zt ∈ S for all t � 0 in its maximal interval of existence.

In general, condition (H1) alone is not enough to guarantee local existence of solutions to (1.5),
(1.7), with ϕ ∈ S . For example, if f (ψ) = ψ(0) + ψ̇(0) for every ψ ∈ UY = Y , then S = {ψ ∈ Y |
ψ(0) = 0}, and so any solution z(t) to this initial value problem would have to satisfy zt ∈ S for every
t � 0 in the interval of existence, namely, zt(0) = z(t) = 0 for such t . However, if the initial condition
ϕ satisfied ϕ(0) = 0 but ϕ̇(0) '= 0, we see that ż(t) would be discontinuous at t = 0. Thus z(t) could
not be considered a solution, as this would mean zt /∈ Y for t ∈ (0, R) in the interval of existence.

We recall two other conditions on f which play a central role in [3] and in [8], and which
with (H1) are sufficient to obtain unique local solutions:

(H2) The Fréchet derivative Df (ϕ) ∈ L(Y ,Rm) at any ϕ ∈ UY has a (necessarily unique) continuous
linear extension, denoted De f (ϕ) ∈L(X,Rm), to the larger space X .

(H3) The map (ϕ,ψ) → De f (ϕ)ψ from UY × X ⊆ Y × X into Rm is jointly continuous in ϕ and ψ .

See Proposition 2.3 below for a detailed statement of the relevant results on existence, uniqueness,
and regularity.

Generally, if Z1 and Z2 are Banach spaces, we let L(Z1, Z2) denote the Banach space of bounded
linear operators from Z1 to Z2 endowed with the operator norm. We remark that under the above
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conditions, the extended map De f (ϕ) may not vary continuously with ϕ ∈ UY in its operator norm,
that is, as an element of the space L(X,Rm).

Let us also remark that conditions (H1), (H2), and (H3) together imply several useful properties
of f , in particular that:

(H4) If ϕ ∈ UY then there exists a neighborhood ϕ ∈ V ⊆ UY and a constant B > 0 such that
‖De f (ϕ̃)‖L(X,Rm) � B for every ϕ̃ ∈ V .

(H5) If ϕ ∈ UY then there exists a neighborhood ϕ ∈ V ⊆ UY and a constant B > 0 such that | f (ϕ̃) −
f (ϕ̂)| � B‖ϕ̃ − ϕ̂‖X for every ϕ̃, ϕ̂ ∈ V .

Properties (H4) and (H5) are closely related to the property of a map being almost locally lipschitz,
which was introduced in [6]. Note that while the relevant neighborhoods in these properties are in
the space Y , the relevant norms are associated with the space X . The proof of (H4) is an easy exercise
using the uniform boundedness principle; indeed, if there does not exist such a neighborhood V for
which the required bound B exists, then there would be a sequence ϕn ∈ UY with ϕn → ϕ in Y ,
with ‖De f (ϕn)‖L(X,Rm) → ∞. But then for every ψ ∈ X the sequence De f (ϕn)ψ would be bounded,
with the limit De(ϕ)ψ , by condition (H3). Thus the uniform boundedness principle would imply that
‖De f (ϕn)‖L(X,Rm) is bounded, a contradiction.

Also, (H5) follows from (H4) by a mean-value theorem. In particular, assuming that V in (H4) is
convex, one has for any ϕ̃, ϕ̂ ∈ V that

f (ϕ̃) − f (ϕ̂) =
1∫

0

Df
(
sϕ̃ + (1 − s)ϕ̂

)
(ϕ̃ − ϕ̂)ds, (1.11)

as f is C1 on UY . By (H4) we have the bound

∣∣Df
(
sϕ̃ + (1− s)ϕ̂

)
(ϕ̃ − ϕ̂)

∣∣ =
∣∣De f

(
sϕ̃ + (1 − s)ϕ̂

)
(ϕ̃ − ϕ̂)

∣∣ � B‖ϕ̃ − ϕ̂‖X (1.12)

on the above integrand, to give (H5).
With the above conditions, we now state the main results of this paper. The following theorem is

the basic result on asymptotic stability with asymptotic phase, for the class of equations considered.

Theorem 1.1. Assume that f satisfies conditions (H1), (H2), and (H3), and suppose that z = x(t) is a non-
constant periodic solution of Eq. (1.5) of period p > 0, with xt ∈ UY for every t ∈ R. Assume that the trivial
eigenvalue λ = 1 of the monodromy operator M of this solution has simple algebraic multiplicity. Also assume
that the remaining spectrum of M lies strictly inside the unit circle, specifically that

sup
{
|λ|

∣∣ λ ∈ spec(M) \ {1}
}

= λ0 < 1 (1.13)

for some λ0 . (In other words, z = x(t) has linearized asymptotic stability.)
Then z = x(t) is asymptotically orbitally stable with asymptotic phase in the following sense. There exist

K1, K2 > 0 such that the following holds. Given any

µ <
| logλ0|

p
, (1.14)

there exists K3(µ) > 0 such that if ‖ϕ − xσ ‖Y � K1 for some ϕ ∈ S and σ ∈ R, then there exists θ ∈ R such
that

‖zt − xt+σ+θ‖Y � K3(µ)e−µt‖ϕ − xσ ‖Y , |θ | � K2‖ϕ − xσ ‖Y , (1.15)

for all t � 0, where z(t) is the solution of the initial value problem z0 = ϕ to Eq. (1.5).
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A second result, involving the C0 norm instead of the C1 norm, follows more or less directly from
the above theorem provided that the following stronger condition holds in place of (H1):

(H1′) Condition (H1) holds. Moreover, there exists a set U X ⊆ X , open in X and with

UY = UX ∩ Y ,

to which f has a continuous (in the X-topology) extension. Further, given any compact (in the
Y -topology) set Q ⊆ S , there exist quantities B ′, B ′′ > 0 such that ϕ̃ ∈ UX and | f (ϕ) − f (ϕ̃)| �
B ′‖ϕ − ϕ̃‖X whenever ‖ϕ − ϕ̃‖X � B ′′ with ϕ ∈ Q and ϕ̃ ∈ X .

The following result holds.

Corollary 1.2. Assume all the conditions in the statement of Theorem 1.1, except that the stronger condi-
tion (H1′) is taken in place of condition (H1). Then there exist K ′

1, K
′
2 > 0 such that the following holds. Given

any µ as in (1.14), there exists K ′
3(µ) > 0 such that if ‖ϕ − xσ ‖X � K ′

1 for some ϕ ∈ UX and σ ∈ R, and with
z(t) any solution of the initial value problem z0 = ϕ to Eq. (1.5), then

‖zt − xt+σ+θ‖X � K ′
3(µ)e−µt‖ϕ − xσ ‖X for 0 � t � R,

‖zt − xt+σ+θ‖Y � K ′
3(µ)e−µt‖ϕ − xσ ‖X for t � R, |θ | � K ′

2‖ϕ − xσ ‖X , (1.16)

for some θ ∈ R.

Concerning notation, we shall let z(t) denote a general solution of Eq. (1.5), often (although not
always) lying on S ⊆ Y , while x(t) is reserved for the periodic solution in the statements of the above
results. In the setting of Corollary 1.2, note that zt ∈ S for all t � R . Of course for the periodic solution
it is the case that xt ∈ S , and also that ẋt '= 0, for every t ∈ R.

Let us also remark that in both Theorem 1.1 and Corollary 1.2, it is implicit that the solution z(t)
starting near the periodic solution x(t) exists for all t � 0, that is, it is part of the conclusion of these
results that the maximal interval of existence of this solution is [0,∞).

While this paper is a companion to [5], it can also be considered a self-contained work to be read
on its own. As such, we do not necessarily follow the notational conventions of [5], and in fact our
notation herein adheres more closely to that of [3] and [8].

2. The functional analytic setting

We begin by recalling some basic results from [3] and [8].

Proposition 2.1. (See [3, Theorem 3.2.1] and [8, Proposition 1].) Assume that f satisfies conditions (H1), (H2),
and (H3). Then for every ϕ ∈ S the map ψ → ψ̇(0) − Df (ϕ)ψ takes Y onto Rm. Thus S is an embedded C1

submanifold of Y of codimension m, with tangent space

TϕS =
{
ψ ∈ Y

∣∣ ψ̇(0) = Df (ϕ)ψ
}

at any ϕ ∈ S .

We remark that the tangent space TϕS in the above result is dense in the space X . This follows
easily from the fact that the operator Df (ϕ) on Y has a continuous extension De f (ϕ) to X .

Proposition 2.2. Assume that g :Ug ⊆ R2m → Rm and r :Ur ⊆ Rm → [0, R] are C1 functions, where U g and
Ur are open subsets of R2m and Rm. Let U X be as in (1.9) and UY = UX ∩Y , and let f (ϕ) be defined by Eq. (1.8)
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for ϕ ∈ UX . Then f :UX → R satisfies condition (H1′) (and thus condition (H1)), as well as conditions (H2)
and (H3). The Fréchet derivative of f is given by

D f (ϕ)ψ =
(
D1g

(
ϕ(0),ϕ

(
−r

(
ϕ(0)

)))
− D2g

(
ϕ(0),ϕ

(
−r

(
ϕ(0)

)))
ϕ̇

(
−r

(
ϕ(0)

))
r′

(
ϕ(0)

))
ψ(0)

+
(
D2g

(
ϕ(0),ϕ

(
−r

(
ϕ(0)

))))
ψ

(
−r

(
ϕ(0)

))
(2.1)

for any ϕ ∈ UY and ψ ∈ Y , and with the same formula for the extension De f (ϕ) with ϕ ∈ UY and ψ ∈ X.
The analogous results hold for the function f associated to the multiple-delay problem (1.1).

Proof. For simplicity we consider only the single-delay problem, with f as in (1.8). Following [8], we
write

f (ϕ) = g
(
Ev(ϕ,0),Ev

(
ϕ,−r

(
Ev(ϕ,0)

)))

for ϕ ∈ UY , where Ev : Y × [−R,0] → Rm is the evaluation map given by

Ev(ϕ, t) = ϕ(t).

As noted in [8], the function Ev is C1-smooth with derivative

D Ev(ϕ, t)(ψ, s) = ψ(t) + ϕ̇(t)s, (2.2)

so in particular the function f is C1 on UY . This establishes (H1). Further, using (2.2) one sees that
the derivative of f is

Df (ϕ)ψ = D1g
(
Ev(ϕ,0),Ev

(
ϕ,−r

(
Ev(ϕ,0)

)))
ψ(0)

+ D2g
(
Ev(ϕ,0),Ev

(
ϕ,−r

(
Ev(ϕ,0)

)))(
ψ

(
−r

(
Ev(ϕ,0)

))

− ϕ̇
(
−r

(
Ev(ϕ,0)

))
r′

(
Ev(ϕ,0)

)
ψ(0)

)
,

which is identical to Eq. (2.1). From this formula one sees easily that both (H2) and (H3) hold.
There remains to prove condition (H1′). Certainly f is continuous on the set UX given by (1.9).

Now with Q ⊆ S as in the statement of condition (H1′), note that {ϕ(0)|ϕ ∈ Q } is a compact subset
of the open set Ur ⊆ Rm . Thus there exists a quantity B ′′ > 0 such that ϕ(0)+β ∈ Ur whenever ϕ ∈ Q
and |β| � B ′′ . Further, there exists B1 > 0 such that |r′(ϕ(0)+β)| � B1 whenever ϕ ∈ Q and |β| � B ′′ .

Next let B2 > 0 be such that ‖ϕ‖Y � B2 for every ϕ ∈ Q , where we are using the fact that Q is
compact in Y . Noting that the set {(ϕ(0),ϕ(−r(ϕ(0)))) | ϕ ∈ Q } is a compact subset of the open set
Ug ⊆ R2m , we see that by decreasing B ′′ if necessary, we may assume that (ϕ(0) + β,ϕ(−r(ϕ(0))) +
γ ) ∈ Ug whenever ϕ ∈ Q with |β| � B ′′ and |γ | � (B1B2 + 1)B ′′ . Further, there exist B3, B4 > 0 such
that

∣∣D1g
(
ϕ(0) + β,ϕ

(
−r

(
ϕ(0)

))
+ γ

)∣∣ � B3,
∣∣D2g

(
ϕ(0) + β,ϕ

(
−r

(
ϕ(0)

))
+ γ

)∣∣ � B4,

for any such ϕ , β , and γ .
With B ′′ as above, assume that ϕ ∈ Q and ϕ̃ ∈ X with ‖ϕ − ϕ̃‖X � B ′′ . Then |ϕ(0) − ϕ̃(0)| � B ′′

and so ϕ̃(0) ∈ Ur . Also,
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∣∣ϕ
(
−r

(
ϕ(0)

))
− ϕ̃

(
−r

(
ϕ̃(0)

))∣∣

�
∣∣ϕ

(
−r

(
ϕ(0)

))
− ϕ

(
−r

(
ϕ̃(0)

))∣∣ +
∣∣ϕ

(
−r

(
ϕ̃(0)

))
− ϕ̃

(
−r

(
ϕ̃(0)

))∣∣

� B2
∣∣r

(
ϕ(0)

)
− r

(
ϕ̃(0)

)∣∣ + ‖ϕ − ϕ̃‖X

� (B1B2 + 1)‖ϕ − ϕ̃‖X

� (B1B2 + 1)B ′′,

and therefore (ϕ̃(0), ϕ̃(−r(ϕ̃(0)))) ∈ Ug . Thus ϕ̃ ∈ UX . Finally,

∣∣ f (ϕ) − f (ϕ̃)
∣∣ =

∣∣g
(
ϕ(0),ϕ

(
−r

(
ϕ(0)

)))
− g

(
ϕ̃(0), ϕ̃

(
−r

(
ϕ̃(0)

)))∣∣

� B3
∣∣ϕ(0) − ϕ̃(0)

∣∣ + B4
∣∣ϕ

(
−r

(
ϕ(0)

))
− ϕ̃

(
−r

(
ϕ̃(0)

))∣∣

�
(
B3 + B4(B1B2 + 1)

)
‖ϕ − ϕ̃‖X .

Upon setting B ′ = B3 + B4(B1B2 + 1), we obtain the desired result. !

Proposition 2.3. (See [3, Theorem 3.2.1] and [8, Theorem 1].) Assume that f satisfies conditions (H1), (H2),
and (H3). Then for every ϕ ∈ S the initial value problem (1.5), (1.7) has a unique solution z(t) = z(t,ϕ) on a
maximal interval 0 � t < ω(ϕ), where 0 < ω(ϕ) � ∞. Moreover, zt(ϕ) ∈ S for every such t. Denote

D =
{
(t,ϕ) ∈ [0,∞) × S

∣∣ t < ω(ϕ)
}
,

Dt =
{
ϕ ∈ S

∣∣ (t,ϕ) ∈D
}
, D∗ =

{
(t,ϕ) ∈D

∣∣ t > R
}
,

where t � 0 in the definition ofDt , and denote

Z(t,ϕ) = zt(ϕ) for (t,ϕ) ∈D,

and so Z :D→ S is the semiflow map. ThenD is a relatively open subset of [0,∞) ×S , and Z is continuous,
jointly in t and ϕ , onD. Also, for every fixed t � 0 the map ϕ → Z(t,ϕ) is C1-smooth onDt . Further, the map
Z is C1-smooth, again jointly in t and ϕ , on D∗ . Finally, the derivative D2 Z(t,ϕ) of the semiflow map with
respect to its initial condition is given by

D2 Z(t,ϕ)ψ = yt (2.3)

where y(t) is the unique solution of the linear variational equation

ẏ(t) = Df (zt)yt, (2.4)

with initial condition y0 = ψ ∈ Tz0S , with zt = Z(t,ϕ) on its maximal interval, and where yt ∈ TztS holds.

Let us remark that the proof of local existence in the C1 setting of Proposition 2.3 above is not a
direct application of the usual Picard iteration. Rather it is a variant of the Picard method which in-
volves both C1 and C0 estimates in the spirit of (1.11) and (1.12), where both conditions (H4) and (H5)
come into play.

As in [8], given a solution z(t) of Eq. (1.5) with zt lying on the solution manifold S , one may gener-
ally consider the linear variational equation (2.4). Proposition 2.3 asserts the existence and uniqueness
of a solution to (2.4) with the initial condition y0 taken in the tangent space Tz0S , as variations are
taken only with respect to the C1 norm in S . Thus one has yt ∈ TztS for every t � 0 in the interval
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of existence, and so D2 Z(t,ϕ) ∈ L(Tz0S, TztS). In particular, Tz0S and TztS are subspaces of Y and
are thus endowed with the C1 norm.

On the other hand, one can instead consider the related equation

ẏ(t) = De f (zt)yt , (2.5)

and with arbitrary continuous (not necessarily smooth) initial conditions y0 = ψ ∈ X . This amounts
to taking variations in the larger space X and with respect to the C0 norm. (We still, however, have
zt ∈ S for the solution of the underlying nonlinear equation.) As noted earlier, the coefficient operator
De f (zt) need not vary continuously with t in the space L(X,Rm). However, it follows easily from
property (H4) that for every t > 0 in the maximal interval of the solution z(t), there is a uniform
bound

∥∥De f (zs)
∥∥
L(X,Rm)

� B0 = B0(t) for 0 � s � t (2.6)

for the norm of De f (zs). With this, and again using the continuity condition (H3), one easily shows
the existence of a unique solution to Eq. (2.5) for any y0 ∈ X , along with a standard bound

‖ys‖X � eB0s‖y0‖X for 0 � s � t. (2.7)

In the special case that y0 ∈ Tz0S , then we have the bound | ẏ(s)| � ‖ ẏ0‖X for −R � s � 0, and
| ẏ(s)| � B0‖ys‖X � B0eB0s‖y0‖X for 0 � s � t , using (2.5) and (2.7). With (2.7) this gives the bound

‖ys‖Y � B00eB0s‖y0‖Y for 0 � s � t, B00 = max{B0,1}, (2.8)

where the definition (1.10) of the norm on Y is used.

3. The monodromy operator

The monodromy operator of our periodic solution can be defined using either Eq. (2.4) or Eq. (2.5).
As we shall see, for the class of equations considered here the two approaches are essentially equiva-
lent.

Throughout this section we assume all the conditions in the statement of Theorem 1.1. Let us note
that we do not require that p > 0 be the minimal period; unless noted otherwise, p can be any
integer multiple of the minimal period. Of course the monodromy operator will depend on which
such period is chosen.

In defining the monodromy operator, we may, on the one hand, consider the operator M̃ defined
by

M̃ = D2 Z(p, x0)

as in (2.3), and so M̃ ∈L(Tx0S, Tx0S). By Proposition 2.3 the operator M̃ is given by the formula

M̃ y0 = yp, y0 ∈ Tx0S,

where y(t) is the solution of the linear equation (2.4) with the periodic solution xt in place of zt . On
the other hand, a formally different operator M is obtained by solving equation (2.5), again with xt in
place of zt , and defining

My0 = yp, y0 ∈ X .
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Then M ∈L(X, X) for this operator, and M agrees with M̃ on Tx0S , which is densely contained in X .
We observe that the Banach spaces X and Tx0S on which M and M̃ act are endowed with different
norms, namely the C0 and C1 norms, respectively.

Differentiating the identity ẋ(t) = f (xt) with respect to t gives ẏ(t) = Df (xt)yt where y(t) = ẋ(t).
Then M̃ y0 = yp , and as yp = y0 '= 0, it follows that

Mẋ0 = M̃ẋ0 = ẋ0,

which is the trivial eigenvector of the monodromy operator with trivial eigenvalue λ = 1.
In a standard fashion, Mn and M̃n are the monodromy operators for x(t) considered with period

np, where M and M̃ as above are the monodromy operators corresponding to period p. In the case
that np � R , we have the following compactness result.

Proposition 3.1. Assume all the conditions in the statement of Theorem 1.1 hold, and let M and M̃ denote the
monodromy operators of x(t) with period p as above. Also assume that n � 1 is such that np � R. Then the
monodromy operators Mn ∈L(X, X) and M̃n ∈L(Tx0S, Tx0S) of x(t) with period np are compact.

Proof. Let B0 be as in (2.6) with t = np, with zs replaced by xs , and let B00 be as in the equality
in (2.8). Considering first the operator Mn , let y(t) satisfy Eq. (2.5), with zt replaced by xt . Then
Mny0 = ynp , and we have

‖ynp‖X � eB0np‖y0‖X (3.1)

by (2.7). Further, as np � R we have that [np − R,np] ⊆ [0,np], and so | ẏ(s)| � B0eB0s‖y0‖X for
s ∈ [np − R,np], from the differential equation (2.5) and (2.7). Thus

‖ ẏnp‖X � B0eB0np‖y0‖X . (3.2)

Thus the elements ynp are uniformly bounded and equicontinuous for y0 in bounded set of X , and
so Mn is compact.

Now consider M̃n . Here we take y0 ∈ Tx0S ⊆ Y , with y(t) the solution of (2.4), again with zt
replaced by xt , and M̃n y0 = ynp . The bounds (3.1) and (3.2) still hold, and as ‖y0‖X � ‖y0‖Y , we
again obtain uniform bounds on ‖ynp‖X and ‖ ẏnp‖X for y0 in bounded subsets of Tx0S . We must
establish equicontinuity of the elements ẏnp for such y0 in order to conclude compactness of M̃n . To
this end, take s1, s2 ∈ [np − R,np] ⊆ [0,np], and using (2.4) along with (2.8), we have the estimate

∣∣ ẏ(s1) − ẏ(s2)
∣∣ �

∣∣Df (xs1)ys1 − Df (xs1)ys2
∣∣ +

∣∣Df (xs1)ys2 − Df (xs2)ys2
∣∣

� B0‖ys1 − ys2‖X +
∥∥Df (xs1) − Df (xs2)

∥∥
L(Y ,Rm)

‖ys2‖Y

� B00eB0np
(
B0|s1 − s2| +

∥∥Df (xs1) − Df (xs2)
∥∥
L(Y ,Rm)

)
‖y0‖Y .

The continuity of Df (xs) in s, in the operator norm, with the above estimate, immediately gives the
desired equicontinuity property. !

The following result clarifies the relation between the spectra of the operators M and M̃ .

Proposition 3.2. Assume all the conditions in the statement of Theorem 1.1 hold, and let M and M̃ denote the
monodromy operators of x(t) with period p as above. Then M ∈ L(X, X) and M̃ ∈ L(Tx0S, Tx0S) have the
same spectrum

spec(M) = spec(M̃). (3.3)
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Further, if λ '= 0 then for every k � 1 we have that

ker(λI − M)k = ker(λI − M̃)k, (3.4)

so in particular, the algebraic multiplicities of λ as an eigenvalue of M and of M̃ are equal.

Proof. Fix n � 1 so that np � R . Then both Mn and M̃n are compact operators by Proposition 3.1, and
so for both these operators the essential spectrum is just the point {0}, and every nonzero point of
the spectrum is an isolated point of finite algebraic multiplicity. From this we see that (3.3) follows
directly from (3.4).

To prove (3.4), fix any λ '= 0 and k � 1. Clearly ker(λI − M̃)k ⊆ ker(λI − M)k as M is an extension
of M̃ . To prove the opposite inclusion, let us first observe that

range
(
Mn) ⊆ Tx0S. (3.5)

The proof of (3.5) is simply the observation that if y(t) satisfies (2.5) (with xt in place of zt ), then
ynp ∈ Y as np � R , and also ẏ(np) = De f (xnp)ynp = De f (x0)ynp = Df (x0)ynp . This implies that ynp ∈
Tx0S , as desired.

Next we write (λI−M)k = λk I−MΨ (M) where Ψ is a polynomial depending on λ and k. Similarly
(λI − M̃)k = λk I − M̃Ψ (M̃). Take any ψ ∈ ker(λI −M)k . Then MΨ (M)ψ = λkψ and thus MnΨ (M)nψ =
λknψ . This implies, with (3.5), that ψ ∈ Tx0S , which is the domain of M̃ . It follows that M̃Ψ (M̃)ψ =
λkψ , equivalently, ψ ∈ ker(λI − M̃)k . This completes the proof. !

4. The Poincaré map

Here we construct a Poincaré map in the solution manifold S for our periodic solution x(t). We
continue to assume that the conditions in the statement of Theorem 1.1 hold. In addition, we assume
the (not necessarily minimal) period p satisfies

p > R. (4.1)

Let us note that from the point of view of Theorem 1.1 and Corollary 1.2, condition (4.1) is in fact
no restriction at all. Indeed, replacing the period p with any multiple np does not affect the inequal-
ity (1.14) in the statement of Theorem 1.1, as this would replace λ0 with λn

0, leaving the right-hand
side of that inequality unchanged. Thus, in proving Theorem 1.1 and Corollary 1.2, we may assume
without loss of generality that p is any multiple of the minimal period for which (4.1) holds.

Let U ⊆ S be an open set (in the relative topology of S) which contains the initial point x0 of the
periodic orbit, and let H : U → R be a C1-smooth function with

H(x0) = 0, DH(x0)ẋ0 '= 0. (4.2)

Define the set

P =
{
ϕ ∈ U

∣∣ H(ϕ) = 0
}
. (4.3)

Then in a sufficiently small neighborhood of x0, the set P is a C1 manifold containing x0 and which
is transverse to the periodic orbit in S at x0. The tangent space of P at x0 is the subspace

Tx0P = ker
(
DH(x0)

)
=

{
ψ ∈ Tx0S

∣∣ DH(x0)ψ = 0
}
, (4.4)
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which is a subspace of Tx0S of codimension one. (We shall only be interested in points of P in a
sufficiently small neighborhood of x0; outside a neighborhood of this point the set P need not be
a manifold.) The set P , in a sufficiently small neighborhood of x0 in S , is a Poincaré section to the
periodic orbit. As an example of such a function H , one could take H(ϕ) = Λ(ϕ − x0) where Λ is any
bounded linear functional on Y for which Λẋ0 '= 0.

The following result defines a return map to the Poincaré section P in a sufficiently small neigh-
borhood of x0.

Proposition 4.1. Assume all the conditions in the statement of Theorem 1.1 hold. Assume further that the
period p of x(t) satisfies (4.1), and fix a function H :U → R with Poincaré section P as above in (4.2), (4.3).
Then there exists a neighborhood V ⊆ U containing x0 , and a unique C1 function δ : V → R with δ(x0) = 0,
such that

Z
(
p + δ(ϕ),ϕ

)
∈ P

for every ϕ ∈ V .

Proof. Consider the function H(δ,ϕ) = H(Z(p + δ,ϕ)) defined in a sufficiently small neighborhood
of (δ,ϕ) = (0, x0) in R × S . Then due to condition (4.1), the function H is C1 with H(0, x0) =
H(Z(p, x0)) = H(x0) = 0. Moreover,

d
dδ

H(δ, x0) = d
dδ

H
(
Z(p + δ, x0)

)
= d

dδ
H(xp+δ) = d

dδ
H(xδ) = DH(xδ)ẋδ (4.5)

for |δ| sufficiently small, and so the quantity (4.5) is nonzero at δ = 0 by (4.2). The result now follows
by applying the implicit function theorem to the function H . !

Let us note that the neighborhood V of x0 in the above result is a neighborhood in the solution
manifold S , and not just a neighborhood in the Poincaré section P which is locally a submanifold
of S . Thus the above result allows for initial conditions ϕ which do not necessarily lie on the Poincaré
section. In this context we define the return map Γ by

Γ (ϕ) = Z
(
p + δ(ϕ),ϕ

)
∈ P (4.6)

for ϕ ∈ V , and so Γ : V → P . Certainly Γ (x0) = x0, and in fact Γ (xt) = x0 if |t| is sufficiently small.
Because the range of Γ lies in P , we have that

range
(
DΓ (x0)

)
⊆ Tx0P. (4.7)

Thus DΓ (x0) ∈ L(Tx0S, Tx0P), although we may also regard DΓ (x0) ∈ L(Tx0S, Tx0S) due to the in-
clusion Tx0P ⊆ Tx0S as a subspace.

The next result relates the spectrum of DΓ (x0) to the spectrum of the monodromy operators. In
preparation for this, observe the direct sum decomposition

Tx0S = 〈ẋ0〉 ⊕ Tx0P, (4.8)

which holds by (4.4) because DH(x0)ẋ0 '= 0. Here 〈ẋ0〉 denotes the one-dimensional span of ẋ0.

Proposition 4.2. Assume all the conditions in the statement of Theorem 1.1 hold. Assume further that the
period p of x(t) satisfies (4.1), and fix a function H with Poincaré section P as above in (4.2), (4.3). Let the
neighborhood V and map δ be as in the statement of Proposition 4.1, with return map Γ as in (4.6). Then rel-
ative to the decomposition (4.8), the operators M̃, DΓ (x0) ∈L(Tx0S, Tx0S) have the matrix representations
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M̃ =
(
1 A
0 M̂

)
, DΓ (x0) =

(
0 0
0 M̂

)
,

A = −Dδ(x0)|Tx0P , M̂ = DΓ (x0)|Tx0P . (4.9)

Here A ∈L(Tx0P,R) and M̂ ∈L(Tx0P, Tx0P), and further, M̂ and DΓ (x0) are compact operators, as are M̃
and M. If k � 1 denotes the algebraic multiplicity of λ = 1 as an eigenvalue of the operator M̃, or equivalently
of M, then

spec(M̂) = spec
(
DΓ (x0)

)
=

{
spec(M̃) \ {1} = spec(M) \ {1} if k = 1,

spec(M̃) = spec(M) if k > 1,
(4.10)

and if k > 1 then λ = 1 has algebraic multiplicity k − 1 as an eigenvalue of M̂ and of DΓ (x0). Further, the
multiplicity of any given λ '= 0,1 in the spectrum of M̂, DΓ (x0), M̃ , or M is the same for these four operators.

Proof. First, we have the trivial eigenvector M̃ẋ0 = ẋ0, to give the first column of the matrix for M̃ .
Next let A ∈ L(Tx0P,R) and M̂ ∈ L(Tx0P, Tx0P) be defined to be the matrix entries in the formula
for M̃ in (4.9), that is, the first equation in (4.9). We must verify the remaining formulas in (4.9).
Differentiating the formula (4.6) for Γ at x0 gives

DΓ (x0) = D1 Z(p, x0)Dδ(x0) + D2 Z(p, x0) = ẋp Dδ(x0) + M̃ = ẋ0Dδ(x0) + M̃

which we may write as

M̃ = −ẋ0Dδ(x0) + DΓ (x0). (4.11)

The two terms in the right-hand side of (4.11) correspond to the decomposition (4.8), in particular
because of (4.7). Thus letting P ∈ L(Tx0S, Tx0S) denote the projection from Tx0S onto Tx0P with
kernel 〈ẋ0〉, we have that P = diag(0, I) in matrix form and it follows that

−ẋ0Dδ(x0) = (I − P )M̃ =
(
1 A
0 0

)
, DΓ (x0) = P M̃ =

(
0 0
0 M̂

)
. (4.12)

This gives the matrix representation of DΓ (x0) in (4.9). One also immediately reads off from (4.12)
the formulas for A and M̂ as claimed in (4.9).

The operators M and M̃ are compact by Proposition 3.1 and the inequality (4.1), and from the ma-
trix representations (4.9) it follows that M̂ and DΓ (x0) are also compact. The remaining claims about
the spectra of the various operators follows simply and directly from the matrix representations (4.9),
using in particular the upper triangular structure, and from Proposition 3.2. !

5. Proofs of the main results

In this section we prove both Theorem 1.1 and Corollary 1.2. Before doing this, we need the fol-
lowing result.

Proposition 5.1. Assume all the conditions in the statement of Theorem 1.1 hold. Assume further that the
period p of x(t) satisfies (4.1), and fix a function H with Poincaré section P as above in (4.2), (4.3). Let the
neighborhood V and map δ be as in the statement of Proposition 4.1, with return map Γ as in (4.6). Then given
any λ satisfying λ0 < λ < 1, where λ0 is as in (1.13), there exists a neighborhood V λ ⊆ V containing x0 , a C1

function δλ : V λ → R with δλ(x0) = 0, and an integer n � 1, such that

Γ n(ϕ) = Z
(
np + δλ(ϕ),ϕ

)
∈ P,

∥∥Γ n(ϕ) − x0
∥∥
Y � λn‖ϕ − x0‖Y (5.1)

for every ϕ ∈ V λ .
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Proof. We have spec(DΓ (x0)) = spec(M) \ {1} by (4.10) of Proposition 4.2, as the eigenvalue λ = 1
of M is assumed to have simple algebraic multiplicity. Thus the spectral radius of DΓ (x0) equals λ0,
and so there exists n � 1 such that

∥∥DΓ (x0)n
∥∥
L(Tx0S,Tx0S)

� λn

2
. (5.2)

Fix any such n. Then with V as in Proposition 4.1, there exists a neighborhood Ṽ ⊆ V containing x0
such that if ϕ ∈ Ṽ then we have the iterates Γ k(ϕ) ∈ V for every 1 � k � n − 1 and so Γ n(ϕ) is
well-defined. We claim that for such ϕ we have

Γ k(ϕ) = Z
(
kp + δ(ϕ,k),ϕ

)
, δ(ϕ,k) =

k−1∑

j=0

δ
(
Γ j(ϕ)

)
, (5.3)

holding for 1 � k � n. Indeed, one easily proves (5.3) by finite induction on k. The claim holds by
definition if k = 1. If (5.3) holds for some k with 1 � k � n − 1 then

Γ k+1(ϕ) = Γ
(
Γ k(ϕ)

)
= Z

(
p + δ

(
Γ k(ϕ)

)
,Γ k(ϕ)

)
= Z

(
p + δ

(
Γ k(ϕ)

)
, Z

(
kp + δ(ϕ,k),ϕ

))

= Z
(
(k + 1)p + δ(ϕ,k) + δ

(
Γ k(ϕ)

)
,ϕ

)
= Z

(
(k + 1)p + δ(ϕ,k + 1),ϕ

)
,

to give it for k + 1. Note that the semiflow property of Z is used in the penultimate equality above.
As x0 is a fixed point of Γ , we have that DΓ n(x0) = DΓ (x0)n for the derivative of the nth iterate

Γ n . Thus by (5.2) there exists a neighborhood V λ ⊆ Ṽ containing x0 such that

‖Γ n(ϕ) − x0‖Y � 2‖DΓ (x0)n‖L(Tx0S,Tx0S)‖ϕ − x0‖Y � λn‖ϕ − x0‖Y

for every ϕ ∈ V λ . With (5.3) and upon setting δλ(ϕ) = δ(ϕ,n), we have (5.1). !

Proof of Theorem 1.1. Throughout this proof z(t), for t � 0, is the solution of (1.5) with initial con-
dition z0 = ϕ , where ϕ ∈ S is as in the statement of the theorem. In particular, zt = Z(t,ϕ). Also, as
noted earlier, we may assume without loss that condition (4.1) on the period p of the periodic solu-
tion x(t) holds. Additionally, all norms in this proof are either the norm of Y or else C1-type norms of
associated spaces of operators, unless noted otherwise. Finally, we shall introduce various constants
K j , for 1 � j � 18. Some of these constants will depend on the choice of µ, in which case we write
K j(µ). We write simply K j if the constant is independent of µ.

Fix K4 > 0 such that we have the bounds

∣∣ẋ(t)
∣∣,

∣∣ẍ(t)
∣∣ � K4 for all t ∈ R, (5.4)

for the periodic solution x(t), and note that for any t1, t2 ∈ R we have

‖xt1 − xt2‖ � K4|t1 − t2|, (5.5)

here using the Y -norm. In particular, the bounds ‖xt1 − xt2‖X � K4|t1 − t2| and ‖ẋt1 − ẋt2‖X � K4|t1 −
t2| in the X-norm follow from (5.4), and together these give (5.5).

We shall first prove that for every µ > 0 satisfying the inequality (1.14) in the statement of the
theorem, there exist quantities K5(µ), K6(µ), K7(µ) > 0 such that if ‖ϕ − x0‖ � K5(µ) and ϕ ∈ S ,
then there exists θ ∈ R such that
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‖zt − xt+θ‖ � K7(µ)e−µt‖ϕ − x0‖, |θ | � K6(µ)‖ϕ − x0‖, (5.6)

for all t � 0. Note that the conclusion (5.6) is weaker than the desired conclusion (1.15), as the con-
stants K5(µ) and K6(µ) depend on µ, unlike K1 and K2 in the statement of the theorem. Also, the
initial condition ϕ is compared only to x0, and not to xσ as in the statement of the theorem.

To prove this claim, first take any µ as above and let λ = e−µp . Then λ0 < λ < 1 holds and
so Proposition 5.1 applies. Fix n as in Proposition 5.1, let V λ and δλ be as in that result, and let
K5(µ), K8(µ) > 0 and W (µ) ⊆ S be such that

W (µ) =
{
ϕ ∈ S

∣∣ ‖ϕ − x0‖ � K5(µ)
}

⊆ V λ,
∣∣δλ(ϕ)

∣∣ � K8(µ)‖ϕ − x0‖ for every ϕ ∈ W (µ). (5.7)

In particular, we take K5(µ) sufficiently small and we use the smoothness of δλ(ϕ) in ϕ to obtain
K8(µ). By possibly decreasing K5(µ) further, we may also assume that there exists K9(µ) > 0 such
that

∥∥Z(t,ϕ) − xt
∥∥ � K9(µ)‖ϕ − x0‖ if ϕ ∈ W (µ) and 0 � t � np + K5(µ)K8(µ). (5.8)

Indeed, the fact that Z(t,ϕ) is C1 on the set D∗ of Proposition 2.3 ensures that the first inequality
in (5.8) holds at least for ϕ ∈ W (µ) and 2R � t � max{2R,np + K5(µ)K8(µ)}, provided that the
radius K5(µ) of W (µ) is small enough. Further, this inequality holds also at t = R for small enough
K5(µ), as Z(t,ϕ) is C1 in ϕ for fixed t = R . But now with the first inequality in (5.8) holding at
both t = R and t = 2R , and assuming without loss that K9(µ) � 1 so that it also holds at t = 0, it
is elementary to see that (5.8) holds throughout the interval 0 � t � 2R since (roughly speaking) the
segment zt = Z(t,ϕ) ∈ S ⊆ C1[−R,0] is composed of pieces taken from the segments z0 = ϕ , zR , and
z2R . Thus (5.8) holds for all ϕ and t as stated.

Now suppose that ϕ ∈ W (µ) for the initial condition of z(t). Then ϕ ∈ V λ , and so by Proposi-
tion 5.1 and the fact that W (µ) is a ball, we have for every k � 1 that Γ kn(ϕ) ∈ W (µ) with

∥∥Γ kn(ϕ) − x0
∥∥ � λkn‖ϕ − x0‖ = e−µknp‖ϕ − x0‖. (5.9)

In particular, the solution z(t) exists for all t � 0. Further, we have from Proposition 5.1 that

Γ kn(ϕ) = Z(tk,ϕ) = ztk , tk = knp + δλ(ϕ,k), δλ(ϕ,k) =
k−1∑

j=0

δλ
(
Γ jn(ϕ)

)
, (5.10)

for every k � 1, as is easily proved by induction on k, and where the above formulas define tk and
δλ(ϕ,k). Let us also define t0 = 0, and note that tk < tk+1 for every k � 0. Now set

θ = − lim
k→∞

δλ(ϕ,k), (5.11)

where the estimate

∣∣δλ
(
Γ jn(ϕ)

)∣∣ � K8(µ)
∥∥Γ jn(ϕ) − x0

∥∥ � K8(µ)e−µ jnp‖ϕ − x0‖ (5.12)

follows from (5.7) and (5.9) and ensures the convergence of the limit (5.11). In fact, upon summing
the right-hand side of (5.12) we obtain the estimates
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∣∣δλ(ϕ,k)
∣∣, |θ | �

∞∑

j=0

∣∣δλ
(
Γ jn(ϕ)

)∣∣ � K6(µ)‖ϕ − x0‖,

∣∣θ + δλ(ϕ,k)
∣∣ �

∞∑

j=k

∣∣δλ
(
Γ jn(ϕ)

)∣∣ � K6(µ)e−µknp‖ϕ − x0‖, K6(µ) = K8(µ)

1− e−µnp , (5.13)

with the above equation defining K6(µ). At this point notice that the second inequality in (5.6) holds.
Now let Ik = [tk, tk+1]. Certainly tk → ∞ as k → ∞, and so the intervals Ik for k � 0 cover [0,∞).

It is thus enough that we establish the first inequality of (5.6) in each Ik , of course with the constant
K7(µ) independent of k. Consider then the solution z(t) for t ∈ Ik . Note first from (5.10) and (5.12)
and because ϕ ∈ W (µ) that

tk+1 − tk = np + δλ
(
Γ kn(ϕ)

)
� np + K8(µ)e−µknp‖ϕ − x0‖ � np + K5(µ)K8(µ). (5.14)

Then (5.8) applied with the initial point ztk = Γ kn(ϕ), with the aid of the inequalities (5.9) and (5.14),
implies that

‖zt − xt−tk‖ =
∥∥Z

(
t − tk,Γ

kn(ϕ)
)
− xt−tk

∥∥

� K9(µ)
∥∥Γ kn(ϕ) − x0

∥∥ � K9(µ)e−µknp‖ϕ − x0‖ (5.15)

for every t ∈ Ik . (Note that t has been shifted by tk in the above formula vis-à-vis the formula (5.8).)
Also, from (5.5), (5.10), and (5.13) we have that

‖xt−tk − xt+θ‖ = ‖xt−tk − xt+θ−knp‖
� K4|θ − knp + tk| = K4

∣∣θ + δλ(ϕ,k)
∣∣ � K4K6(µ)e−µknp‖ϕ − x0‖,

and combining this with (5.15) gives

‖zt − xt+θ‖ � K10(µ)e−µknp‖ϕ − x0‖, K10(µ) = K9(µ) + K4K6(µ), (5.16)

for every t ∈ Ik , with the above equation defining K10(µ). Observing further from (5.13) that

tk+1 − knp = np + δλ(ϕ,k + 1) � np + K6(µ)‖ϕ − x0‖ � np + K5(µ)K6(µ),

we have from (5.16) that for t ∈ Ik

‖zt − xt+θ‖ � K10(µ)eµ(−knp+tk+1−t)‖ϕ − x0‖ � K10(µ)eµ(np+K5(µ)K6(µ))e−µt‖ϕ − x0‖,

to give the desired result (5.6) with K7(µ) = K10(µ)eµ(np+K5(µ)K6(µ)) .
We next refine the bounds (5.6) by showing that there exist K11, K12 > 0 such that the following

holds. Given µ > 0 as in (1.14), there exists K13(µ) > 0 such that if ‖ϕ − x0‖ � K11 and ϕ ∈ S , then
there exists θ ∈ R such that

‖zt − xt+θ‖ � K13(µ)e−µt‖ϕ − x0‖, |θ | � K12‖ϕ − x0‖, (5.17)

for all t � 0. Here K11 and K12 are independent of µ, as are K1 and K2 in the statement of the theo-
rem. However, the initial condition ϕ is still compared only to x0 rather than to the more general xσ
as in the statement of the theorem.
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To prove this claim, let us first fix some µ > 0 satisfying (1.14). The quantity µ will stay fixed for
the remainder of the proof, while the quantity µ as before is allowed to take on any positive value
satisfying (1.14). Let us also assume, without loss, that

K5(µ)K6(µ) < p (5.18)

holds for every such µ. This is accomplished for each µ by decreasing K5(µ) sufficiently. With µ
now fixed, set

K11 = K5(µ), K12 = K6(µ),

and assume that ϕ ∈ S satisfies ‖ϕ − x0‖ � K11 as in the claim. Then from the earlier and now
established claim (5.6) in this proof, we have that

‖zt − xt+θ‖ � K7(µ)e−µt‖ϕ − x0‖ (5.19)

for all t � 0, for some θ ∈ R satisfying the second inequality in (5.17). Now given any µ > 0 satisfy-
ing (1.14), set

K14(µ) = max
{
0,

1
µ

log
(
K7(µ)K11

K5(µ)

)}
.

We see from (5.19) that if t � K14(µ) then

‖zt − xt+θ‖ � K7(µ)e−µK14(µ)‖ϕ − x0‖ � K5(µ)‖ϕ − x0‖
K11

� K5(µ). (5.20)

Further, let

K15(µ) = 1+
[
K11K12 + K14(µ)

p

]
, t∗ = K15(µ)p − θ . (5.21)

Here [c], for any c ∈ R, denotes the unique integer m satisfying m � c <m + 1. Then from the second
inequality in (5.17) we have that t∗ � K15(µ)p − K11K12 � K14(µ), and so from (5.20) we have

‖zt∗ − x0‖ = ‖zt∗ − xt∗+θ‖ � K5(µ), (5.22)

in particular because t∗ + θ is an integer multiple of the period p. Upon letting z̃(t) = z(t + t∗), and
so ‖̃z0 − x0‖ � K5(µ), we have from the earlier claim (5.6) but for z̃(t), and then from (5.19), that

‖zt+t∗ − xt+θ̃‖ = ‖̃zt − xt+θ̃‖ � K7(µ)e−µt‖zt∗ − x0‖
= K7(µ)e−µt‖zt∗ − xt∗+θ‖ � K7(µ)K7(µ)e−µt−µt∗‖ϕ − x0‖

(5.23)

for all t � 0, for some θ̃ ∈ R satisfying

|θ̃ | � K6(µ)‖zt∗ − x0‖ � K5(µ)K6(µ) < p, (5.24)

by (5.6) and (5.22), and by (5.18). We have next that
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‖xt − xt+θ̃‖ = ‖xt+t∗+θ − xt+θ̃‖ � ‖xt+t∗+θ − zt+t∗‖ + ‖zt+t∗ − xt+θ̃‖ → 0 (5.25)

as t → ∞, by (5.19) with t replaced with t + t∗ and by (5.23), and by again noting that t∗ + θ is an
integer multiple of p. It follows from (5.25) that θ̃ must be an integer multiple of p, and thus θ̃ = 0
by (5.24). Let us also note the upper bound t∗ � (K15(µ) + 1)p, which holds by (5.21) and because
|θ | � K11K12 = K5(µ)K6(µ) < p. We see from these facts and from (5.23), wherein we replace t with
t − t∗ , that

‖zt − xt+θ‖ = ‖zt − xt−t∗‖ � K7(µ)K7(µ)e−µ(t−t∗)−µt∗‖ϕ − x0‖
� K7(µ)K7(µ)eµ(K15(µ)+1)p−µt‖ϕ − x0‖ = K16(µ)e−µt‖ϕ − x0‖

(5.26)

for t � t∗ , where the final equality above serves as the definition of K16(µ). Next, for 0 � t � t∗ we
have from (5.19) and again from the upper bound on t∗ , that

‖zt − xt+θ‖ � K7(µ)e(µ−µ)t−µt‖ϕ − x0‖ � K7(µ)eµt∗−µt‖ϕ − x0‖
� K7(µ)eµ(K15(µ)+1)p−µt‖ϕ − x0‖ = K17(µ)e−µt‖ϕ − x0‖, (5.27)

with the final equality above serving to define K17(µ). Combining (5.26) and (5.27) and letting

K13(µ) = max
{
K16(µ), K17(µ)

}
,

we have that the first inequality in (5.17) holds for all t � 0, as claimed.
To complete the proof of the theorem, let K1, K18 > 0 be such that

∥∥Z(t,ϕ) − xt+σ
∥∥ � K18‖ϕ − xσ ‖ if 0 � t � p, and

ϕ ∈ S is such that ‖ϕ − xσ ‖ � K1 for some σ ∈ R, (5.28)

and also

K1K18 � K11. (5.29)

The proof of the existence of such K1 and K18 follows the same lines as the proof of (5.8). Suppose
now that ϕ ∈ S satisfies ‖ϕ − xσ ‖ � K1 for some σ ∈ R, and again let z(t) be the solution with
initial condition ϕ . Also, fix any µ > 0 satisfying (1.14), as in the statement of the theorem. Assuming
without loss that 0 � σ < p, we have from (5.28) that

‖zt − xt+σ ‖ � K18‖ϕ − xσ ‖ � K18eµ(p−t)‖ϕ − xσ ‖ (5.30)

for 0 � t � p − σ . In particular, at t = p − σ we have, using (5.29), that

‖zp−σ − x0‖ � K18‖ϕ − xσ ‖ � K1K18 � K11.

Thus from (5.17), but with initial condition zp−σ there, there exists θ ∈ R such that for t � 0 we have

‖zt+p−σ − xt+θ‖ � K13(µ)e−µt‖zp−σ − x0‖ � K13(µ)K18e−µt‖ϕ − xσ ‖,
|θ | � K12‖zp−σ − x0‖ � K12K18‖ϕ − xσ ‖. (5.31)
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Upon setting K2 = K12K18, we see from this that the second formula in (1.15) holds. Also, for t � p−σ
we have that

‖zt − xt+σ+θ‖ � K13(µ)K18eµ(p−σ−t)‖ϕ − xσ ‖ � K13(µ)K18eµ(p−t)‖ϕ − xσ ‖. (5.32)

Finally, from (5.30) and (5.31), and using (5.5), we have for 0 � t � p − σ that

‖zt − xt+σ+θ‖ � ‖zt − xt+σ ‖ + ‖xt+σ − xt+σ+θ‖
� K18eµ(p−t)‖ϕ − xσ ‖ + K4|θ | � (1+ K4K12)K18eµ(p−t)‖ϕ − xσ ‖. (5.33)

Upon setting K3(µ) = K18eµp max{K13(µ),1 + K4K12)}, the desired conclusion (1.15) of the theorem
follows directly from (5.32) and (5.33). !

Proof of Corollary 1.2. Let Q = {xt | t ∈ R} ⊆ S denote the periodic orbit, which is a compact subset
of S ⊆ Y , and let B ′ and B ′′ be as in condition (H1′). Take any ϕ ∈ X satisfying

‖ϕ − xσ ‖X � K ′
1, K ′

1 = min
{
B ′′, K1, K1

(
B ′)−1}

e−B ′R

for some σ ∈ R, where K1 is as in the statement of Theorem 1.1 and where the above formula defines
K ′
1. Then ‖ϕ − xσ ‖X < B ′′ hence ϕ ∈ UX by (H1′). Let z(t) be any solution of (1.5) with z0 = ϕ on its

maximal interval, which we denote by [0,ω), where 0 < ω � ∞. (We recall that there is no assurance
that such a solution is unique.) Also let ωR = min{ω, R}. We claim that

‖zt − xt+σ ‖X � eB
′t‖ϕ − xσ ‖X < eB

′R K ′
1 (5.34)

whenever 0 � t < ωR . To prove this, let

t0 = sup
{
t ∈ [0,ωR)

∣∣ ‖zt1 − xt1+σ ‖X < eB
′R K ′

1 for every t1 ∈ [0, t]
}
,

noting that ‖z0 − xσ ‖X = ‖ϕ − xσ ‖X < eB
′R K ′

1. Then if 0 � t < t0 we have by (H1′) that

∣∣z(t1) − x(t1 + σ )
∣∣ � ‖ϕ − xσ ‖X +

t1∫

0

∣∣ f (zs) − f (xs+σ )
∣∣ds

� ‖ϕ − xσ ‖X + B ′
t1∫

0

‖zs − xs+σ ‖X ds

� ‖ϕ − xσ ‖X + B ′
t∫

0

‖zs − xs+σ ‖X ds, (5.35)

provided that 0 � t1 � t . Letting

η(t) = sup
s∈[−R,t]

∣∣z(s) − x(s + σ )
∣∣ = sup

s∈[0,t]
‖zs − xs+σ ‖X

for such t , we have upon taking the supremum of the left-hand side of (5.35) for −R � t1 � t that
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η(t) � ‖ϕ − xσ ‖X + B ′
t∫

0

η(s)ds, hence η(t) � eB
′t‖ϕ − xσ ‖X < eB

′R K ′
1

by Gronwall’s inequality. If t0 < ωR the above inequality is valid for 0 � t � t0, however, this contra-
dicts the choice of t0. Thus t0 = ωR and our claim, that (5.34) holds whenever 0 � t < ωR , follows
directly. From this we see further that if 0 � t < ωR then

∣∣ż(t) − ẋ(t + σ )
∣∣ =

∣∣ f (zt) − f (xt+σ )
∣∣ � B ′‖zt − xt+σ ‖X � B ′eB

′t‖ϕ − xσ ‖X < B ′eB
′R K ′

1

(5.36)

and thus the limit limt→ωR z(t) = z(ωR) exists. It follows that ωR < ω, that is, R < ω. Moreover,
from (5.34) and (5.36) we conclude that

‖zR − xR+σ ‖Y � K ′
4‖ϕ − xσ ‖X � K ′

1K
′
4 � K1, K ′

4 = max
{
1, B ′}eB

′R ,

where the above equality serves as the definition of K ′
4. Thus from Theorem 1.1, and with any µ as

in the statement of that result, we have

‖zt − xt+σ+θ‖Y � K3(µ)e−µ(t−R)‖zR − xR+σ ‖Y � K3(µ)K ′
4e

−µ(t−R)‖ϕ − xσ ‖X ,

|θ | � K2‖zR − xR+σ ‖Y � K2K ′
4‖ϕ − xσ ‖X , (5.37)

for t � R . Also, for 0 � t � R we have that

‖zt − xt+σ+θ‖X � ‖zt − xt+σ ‖X + ‖xt+σ − xt+σ+θ‖X � eB
′t‖ϕ − xσ ‖X + K4|θ |

�
(
eB

′t + K2K4K ′
4
)
‖ϕ − xσ ‖X �

(
eB

′R + K2K4K ′
4
)
e−µ(t−R)‖ϕ − xσ ‖X

(5.38)

from (5.34) and (5.37), and where K4 is as in (5.4). Thus from (5.37) and (5.38), we see that the de-
sired conclusions (1.16) of the corollary hold with K ′

2 = K2K ′
4 and K ′

3(µ) = max{K3(µ)K ′
4e

µR , (eB
′R +

K2K4K ′
4)e

µR}. !
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