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Summary

Consider the second order di�erence equation u�1 > 0; u0 > 0 and un+1 = f(un�1; un)
for n � 0, where either (a) f(u; v) = u+pv

u+qv or (b) f(u; v) = p+qv
1+u . If 0 � q < p in case (a)

or p > 0 and q > 0 in case (b), it has been conjectured (see [8]) that lim
n!1

un exists and

equals L, where L > 0 and L = f(L;L).

We prove this conjecture in case (a) and signi�cantly extend the range of p and q for
which it is known in case (b). In cases (a) and (b), these questions are equivalent to
global stability of the �xed point (L;L) of the planar map �(u; v) = (v; f(u; v)). For �
as in case (a), we consider natural four dimensional extensions T of �3 and S of �2. For
0 � q < p, we prove that (L;L; L; L) is a global stable �xed point of T , but we also describe
precisely a range of parameters 0 � q < p for which S has at least three distinct �xed
points in the positive orthant. We describe (Section 3) some general principles underlying
our arguments. Symbolic calculations using Maple play a crucial role in our arguments in
Section 4.

1. Introduction.

Recently, M. Kulenovi�c [9] has informed the author of two interesting conjectures.

Conjecture 1.1. Assume that 0 � q < p, that u�1 > 0 and u0 > 0 and that un+1 =
un�1+pun
un�1+qun

for n � 0. Then lim
n!1

un = L :=
�
1+p
1+q

�
.

Conjecture 1.2. Assume that 0 < q; 0 < p; u�1 > 0 and u0 > 0 and that un+1 =
p+qun
1+un�1

for n � 0. Then we have lim
n!1

un = L, where L > 0 is the unique positive solution of

L = p+qL
1+L .

Conjecture 1.1 is Conjecture 6.10.5 on p.125 in [8] and Conjecture 1.2 is Conjecture
6.10.1 on p.124 in [8]. Despite their simple appearance, both conjectures have been open
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for several years. The conjectures arise as part of a program to understand the dynamics
of nonlinear, second order di�erence equations of the form

(1.1) xn+1 = g(xn�1; xn) :=
�+ �xn + xn�1
A+Bxn + Cxn�1

:

Equivalently, one is interested in understanding the dynamics of iterates of a planar map
G de�ned by

(1.2) G(u; v) = (v; g(u; v)):

Simple changes of variable reduce eq. (1.1) to certain \normal forms." For example, if � =
A = 0, and (1) BC � 0; � > 0; C > 0 and �C � B > 0 or (2) BC � 0; � > 0; C < 0
and �C �B < 0, then the change of variable xn =

�

C

�
yn yields

(1.3) yn+1 =
yn�1 + pyn
yn�1 + qyn

;

where 0 � q < p. In the case of eq. (1.3), the equivalent planar map � is given by

(1.4) �(u; v) =

�
v;
u+ pv

u+ qv

�
:

In Section 2 of this paper we shall prove Conjecture 1.1. In Section 6 we discuss
Conjecture 1.2. We do not prove the full conjecture, but we extend signi�cantly the range
of parameters p and q for which it is known that lim

n!1
un = L: see Theorem 6.1.

In Section 3 we discuss some general principles which underlie all the arguments in this
paper. In particular it is useful to discuss maps which preserve a partial ordering induced
by a (non-standard) cone in Rn .

As discussed in Section 4, the map � in eq.(1.4) can be considered as mapping the
set W = f(u; u; v; v)ju > 0; v > 0g � R

4 into itself. With this identi�cation we consider
in Section 4 a map T (see eq. (4.10)) which takes int (K4), the interior of the positive
orthant in R

4 , into int (K4) and is a natural extension of �3. With L as in Conjecture
1.1, we prove that T has the point (L;L; L; L) = � as a globally stable �xed point, i.e.,
T k(x)! � for all x 2 int (K4). This result generalizes Conjecture 1.1, but it is much more
subtle. A crucial part of the argument involves using Maple to symbolically compute two
polynomials in three variables with integral coeÆcients and to show that all coeÆcients
are nonnegative and some are positive. Since the polynomials have several thousand terms
and the coeÆcients are, in general, large, we know of no way of doing such a computation
by hand. It would be interesting to �nd an argument which avoided the use of Maple.
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In Section 5 we consider a map S : int (K4)! int (K4) which is a natural extension of
�2. The maps S and T both depend on parameters p and q as in Conjecture 1.1. In view
of the positive results of Section 4, one might expect that for all 0 � q < p;� = (L;L; L; L)
is a globally stable �xed point of S. However, in Theorem 5.1 we describe a wide range of
p and q for which S has at least three distinct �xed points in int (K4).

The essential idea of this paper is that some general theorems can, in combination with
the symbolic computational power of Maple, yield results which are otherwise inaccessible.
In a future paper we hope to show that this simple approach yields insights, for example,
about other conjectures in [8].

2 Global Stability for un+1 =
un�1+pun
un�1+qun

.

In this section we shall always assume that 0 � q < p. We shall write, for u > 0; v � 0

(2.1) f(u; v) :=
u+ pv

u+ qv

and

(2.2) h(u; v) := f(v; f(u; v)) =
(uv + qv2 + pu+ p2v)

(uv + qv2 + qu+ pqv)
:

In general, (D1g)(u; v) (respectively, (D2g)(u; v)) will denote the partial derivative of a
function g with respect to u (respectively, with respect to v). If we write N(u; v) =
uv + qv2 + qu+ pqv, a calculation gives

(2.3) (D1h)(u; v) = �(p� q)2v2N(u; v)�2 < 0 and

(2.4) (D2h)(u; v) = �(p� q)[(u+ qv)2 + q(p� q)v2]N(u; v)�2 < 0:

Given u�1 > 0 and u0 > 0 and f as in (2.1), we de�ne

(2.5) un+1 = f(un�1; un); n � 0:

Kulenovi�c and Ladas make the following conjecture.

Conjecture 2.1. (See [8], Conjecture 6.10.5, p.125) If u�1 > 0; u0 > 0 and p > q > 0,
then lim

n!1
un = L := (1 + p)=(1 + q).

If we de�ne �(u; v) = (v; f(u; v)), Conjecture 2.1 is equivalent to saying that
lim
n!1

�k(u; v) = (L;L) whenever u > 0 and v > 0.

It is known (see Theorem 6.9.7, p.123 in [8]) that Conjecture 2.1 is true if 0 < q < p
and p � pq + 1 + 3q.

In this section we shall prove the following theorem, which yields Conjecture 2.1:
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Theorem 2.1. Assume that 0 � q < p, that u�1 > 0 and u0 > 0 and that un is de�ned
by eq. (2.5) for n � 0. Then we have

(2.6) lim
n!1

un = L :=
(1 + p)

(1 + q)
:

We begin with a simple lemma. Note that q = 0 is allowed. If q > 0, one easily obtains
that 1 � un � p=q for all n � 1.

Lemma 2.1. Assume that 0 � q < 1; u�1 > 0 and u0 > 0 and un is given by eq.(2.5).
Then un � 1 for all n � 1 and, for n � 4,

(2.7) un �
�
q + 1 + p+ p2

q + 1+ q + qp

�
= h(1; 1):

If we de�ne L := (1+p)
(1+q) > 1; un � L2 � L+ 1 for all n � 4.

Proof. Obviously f(u; v) > 1 for u > 0 and v > 0, so un � 1 for n � 1. If n � 4, equations
(2.3) and (2.4) imply that

un = h(un�3; un�2) � h(1; 1) �
�
q + 1 + p+ p2

q + 1 + q + qp

�
:

If we express the right hand side of (2.7) in terms of q and L, we obtain

un � g(q; L) :=
L2(q + 1)� L+ 1

1 + Lq

for n � 4. A calculation shows (D1g)(q; L) < 0 for q � 0; L > 1, so g(q; L) � g(0; L) =
L2 � L+ 1. �

Lemma 2.2. De�ne a0 = 1 and b0 = h(1; 1) and for k � 0, de�ne ak+1 = h(bk; bk) and
bk+1 = h(ak; ak). If u0 > 0; u�1 > 0 and un is de�ned by eq. (2.5), we have

(2.8) ak � un � bk for all n � 4 + 3k:

Furthermore, we have ak � ak+1 � L := (1 + p)=(1 + q) and L � bk+1 � bk for all k � 0.

Proof. Lemma 2.1 implies that a0 � un � b0 for all n � 4. Assume, for some k � 0, that
eq (2.8) holds. Then for n � 4 + 3(k + 3) we have

un = h(un�3; un�2):
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Since n� 3 � 4 + 3k; ak � un�3 � bk and ak � un�2 � bk, so, using equations (2.3) and
(2.4), we have

h(bk; bk) := ak+1 � un � bk+1 = h(ak; ak):

By induction, equation (2.8) holds for all k � 0.
We have a1 = h(b0; b0) > 1 = a0 and b1 = h(1; 1) � b0. Also, we see that 1 <

L = h(L;L) < h(1; 1) = b0 and a1 = h(b0; b0) < h(L;L) = L. Assume that for some
n � 0; an � an+1 � L and L � bn+1 � bn. Using equations (2.3) and (2.4) we see that

an+1 = h(bn; bn) � h(bn+1; bn+1) = an+2 � h(L;L) = L;

and an analogous argument shows that L � bn+2 � bn+1. The lemma now follows by
mathematical induction. �

Proof of Theorem 2.1. Let ak and bk be as de�ned in Lemma 2.2. Lemma 2.2 implies
that ak ! a � L and bk ! b � L. Because ak+1 = h(bk; bk) and bk+1 = h(ak; ak), the
continuity of h implies that

(2.9) a = h(b; b) and b = h(a; a):

Thus it suÆces to prove that if x � L :=
�
1+p
1+q

�
and

(2.10) x = h(h(x; x); h(x; x))

then x = L. However, writing u = h(x; x) = f(x; f(x; x)) = f(x; L), we �nd that

(2.11) h(h(x; x); h(x; x)) = f(u; f(u; u)) = f(u; L) =
f(x; L) + pL

f(x; L) + qL
:

so equation (2.10) has at most two distinct solutions. However, any solution x of h(x; x) = x
also solves equation (2.10), and x = �p and x = L solve h(x; x) = x. Thus equation (2.10)
has no solution x > L. �

In the next section we shall present a useful abstract framework which generalizes the
argument used to prove Theorem 2.1.

3. Some general remarks about global stability of �xed points.

By a closed cone C (with vertex at 0) in a Banach space X we mean, as usual, a closed
convex set C � X such that (1) tC � C for all t � 0 and (2) C \ (�C) = f0g. A
closed cone C induces a partial ordering �C on X by x �C y if and only if y � x 2 C.
A closed cone C is called \normal" if there exists a constant M such that whenever
0 �C x �C y; kxk �Mkyk. It is well known that any closed cone C in a �nite dimensional
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Banach space X is normal. If X = R
n and " = ("1; "2; � � � ; "n) 2 R

n satis�es j"ij = 1 for
1 � i � n, one can de�ne a closed cone C = C" by

(3.1) C := C" := fx = (x1; x2; � � � ; xn) 2 R
n j"ixi � 0 for 1 � i � ng:

If "i = 1 for 1 � i � n, we shall write Kn instead of C", so

(3.2) Kn := fx 2 R
n jxi � 0 for 1 � i � ng:

As usual, if G is a subset of a Banach space X and C is a closed cone in X, a map
T : G ! X will be called order-preserving (with respect to the partial ordering �C from
C) if whenever x; y 2 G and x �C y it follows that T (x) �C T (y). In the special case of
maps T : G � R ! R we shall say that T is increasing (respectively, strictly increasing)
if T (x) � T (y) (respectively, T (x) < T (y)) whenever x; y 2 G and x � y (respectively
x < y). Of course T is decreasing (respectively, strictly decreasing) if �T is increasing
(respectively, strictly increasing).

The following theorem provides a useful abstract framework for studying global stability
of �xed points.

Theorem 3.1. Let C be a closed, normal cone in a Banach space X and let T : G �
X ! G be a continuous map. Make the following assumptions on T :

(1) T is order-preserving with respect to the partial ordering from C.
(2) For every x 2 G, the closure of fT j(x)jj � 0g is a compact subset of G.
(3) T has a unique �xed point x� in G.
(4) For every x 2 G there exist y and z in G with y � x � z; T (y) � y and T (z) � z.

(Here, we write � for �C).
Then it follows that lim

k!1
T k(x) = x� for every x 2 G.

Proof. Given x 2 G, select y 2 G with y � x and Ty � y. By property (1), we have
T k(y) � T k+1(y) and T k(y) � T k(x) for all k � 0, and property (2) implies that M; the
closure of fT j(y) : j � 0g, is a compact subset of G. By compactness of M , there exists a
subsequence ki ! 1 with T ki(y) ! � 2 G. Since T ki(y) � T kj (y) for j � i; � � T ki(y)
for all i � 1. Thus, if j � ki, we have that

T ki(y) � T j(y) � �:

Since T ki(y)! � and C is normal, it follows that T j(y)! � as j !1, and by continuity of
T; T (�) = �. The same proof shows that if x � z 2 G and Tz � z, then T j(z) � T j(x) for
all j � 1 and T j(z)! � and T (�) = �. Thus we have proved that T has a �xed point in G,
call it x�, and by property (3), x� is unique, so � = x� = �. Because T j(y) � T j(x) � T j(z)
and T j(z)� T j(y)! 0, the normality of C implies that T j(x)! �. �
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Note that our proof shows that assumptions (1), (2) and (4) in Theorem 3.1 actually
imply that T has a �xed point in G, so the point of assumption (3) in Theorem 3.1 is the
uniqueness of the �xed point.

In certain applications, assumption (4) in Theorem 3.1 is too restrictive: G may always
contain an element z as in assumption (4) of Theorem 3.1 but it may fail to contain y as
in assumption (4), or vice-versa.

Theorem 3.2. Let hypotheses and notation be as in Theorem 3.1, but replace assumption
(4) by the following two asumptions:

(4)0 for every x 2 G, there exists z 2 G with x � z and T (z) � z.
(5)0 If x 2 G and x � x�, where x� is the unique �xed point of T in G, then x = x�.
Then it follows that T k(x)! x� for all x 2 G.

Proof. Given x 2 G, select z 2 G with x � z and T (z) � z. The same argument as in
Theorem 3.1 shows that T j(z) ! x� as j ! 1 and T j(x) � T j(z) for all j � 1. We
claim that T j(x) ! x�. If not, by using assumption (2) in Theorem 3.1, there exists a
sequence jk " 1 such that T jk(x) ! � 2 G and � 6= x�. However, T jk(x) � T jk(z) and
T jk(z)! x�, so � � x�. Assumption (5)0 then implies that � = x�, a contradiction. �

If H is a subset of a topological space Y , we shall use the notation int(H) to denote
the interior of H in Y . In our applications here, G will typically be a subset of int(Kn) �
R
n = X and C = C" will be as in equation (3.1). The following proposition gives an

example of how the framework in Theorem 3.2 may arise.

Corollary 3.1. Let �: int (Km)! int (Km) be a continuous map, with
�(x) = ('1(x); '2(x); � � � ; 'm(x)) for x 2 int(Km). De�ne n = 2m and de�ne
� � int (Kn) by

� = fz = (z1; z2; � � � ; zn) 2 int (Kn) : z2i�1 � z2i for 1 � i � mg:

For z 2 �, de�ne B(z) � int (Km) by

B(z) = fx 2 int (Km) : z2i�1 � xi � z2i for 1 � i � mg:

De�ne a closed cone C in R
n by

C = fw = (w1; w2; � � � ; wn) 2 R
n j(�1)iwi � 0 for 1 � i � ng:

and de�ne T (z) = (t1(z); t2(z); � � � ; tn(z)) for z 2 � by

t2i�1(z) = minf'i(x)jx 2 B(z)g

and
t2i(z) = maxf'i(x)jx 2 B(z)g:
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Then T : �! � is continuous and order-preserving with respect to the partial ordering �C

induced by C. If, in addition, there exists � 2 � such that �(B(�)) � B(�), then � has a
�xed point y� = (L1; L2; � � � ; Lm) 2 B(�). Furthermore, if we de�ne G by

G = fz 2 �jz �C �g;

then T (G) � G; T (�) �C � and G is a compact subset of Rn . If we de�ne x� =
(L1; L1; L2; L2; � � � ; Lm; Lm) 2 G; then T (x�) = x�; and if z 2 G and z �C x�, then
z = x�. If T has only one �xed point x� in G, then lim

k!1
T k(z) = x� for all z 2 G and

lim
k!1

�k(x) = y� for all x 2 B(�).

Proof. We shall write � instead of �C . Notice that for z; w 2 R
2m ; z � w if and only

w2i�1 � z2i�1 for 1 � i � m and z2i � w2i for 1 � i � m. It follows easily that if
z; w 2 � and z � w, then B(z) � B(w); and this in turn implies that t2i�1(z) � t2i�1(w)
and t2i(z) � t2i(w) for 1 � i � m, so T (z) � T (w) and T is order-preserving. Since
t2i�1(z) � t2i(z) for 1 � i � m and z 2 �, we certainly have that T (z) 2 � when z 2 �;
and the continuity of T follows easily from the continuity of �.

For all z 2 �; B(z) is a compact, convex set, so if there exists � 2 � with �(B(�)) � B(�),
the Brouwer �xed point theorem implies that � has a �xed point y� = (L1; L2; � � � ; Lm) 2
B(�). Because we assume that �(B(�)) � B(�), we see that t2i(�) � �2i and t2i�1(�) �
�2i�1 for 1 � i � m, which implies that T (�) � �. If z 2 G, it follows that T (z) � T (�) � �,
and this implies that T (G) � G. The reader can verify, that

G = fz 2 R
2m j�2i�1 � z2i�1 � z2i � �2i for 1 � i � mg;

so G is a compact, convex subset of Rn :
For x = (x1; x2; � � � ; xm) 2 R

m de�ne S(x) = y 2 R
2m by

y = (x1; x1; x2; x2; � � � ; xm; xm)

and let V = fy 2 R
2m jy2i�1 = y2i for 1 � i � mg. Our de�nition of T immediately gives

that T (V \ int (Kn)) � V \ int (Kn) and

(3.3) (S�1TS)(x) = �(x)

for all x 2 int (Km), so � is conjugate to T jV \ int (Kn). Equation (3.3) implies as a
special case that x� is a �xed point of T in G. If z 2 G and z � x�, then z2i�1 � Li
and z2i � Li for 1 � i � m; and since we must have that z2i � z2i�1, we conclude that
z2i�1 = Li = z2i for 1 � i � m. If we now assume that T has a unique �xed point in G,
all hypotheses of Theorem 3.2 are satis�ed and lim

k!1
T k(z) = x� for all z 2 G. The fact

that lim
k!1

�k(x) = y� for all x 2 B(�) follows from equation (3.3). �
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Remark 3.1. If �: int (K2) ! int (K2) is as in Section 2, we shall apply the framework

of Corollary 3.1 to �̂ := �j rather then directly to �. In Section 4 we shall choose j = 3
and obtain a map T which extends naturally as an order-preserving map of int (K4) to
itself. In Section 5 we shall choose j = 2 and obtain a map S. We shall see that the global
stability properties of the �xed points of the maps T and S are strikingly di�erent.

Typically, a major diÆculty in using Theorem 3.1 is verifying that T has exactly one
�xed point in G. Although we shall not use it here, we mention a simple but useful criterion
which utilizes topological degree and has been helpful in related problems. See [1-4, 10,
11, 12, 13] for discussions of topological degree. For simplicity we restrict attention to the
�nite dimensional case.

Proposition 3.1. Let G be a bounded, open set in R
n and let T : cl(G) ! R

n be a
continuous map such that x 6= T (x) for all x 2 @G. Let I denote the identity map and
I � T the map x ! x � T (x). Assume that deg(I � T;G; 0) = 1, where deg(I � T;G; 0)
denotes the topological degree of I � T on G. If x� 2 G is any �xed point of T in G,
assume that T is Fr�echet di�erentiable at x� with Jacobian matrix T 0(x�); I � T 0(x�) is
one-one and sgn(det(I � T 0(x�))) = 1, where \det" denotes \determinant" and \sgn"
denotes \sign". Then T has exactly one �xed point in G.

Proof. By assumption and the implicit function theorem, the set of �xed points of T in
G is compact and each �xed point is isolated. Thus T has �nitely many �xed point, say
x1; x2; � � � ; xm. For each �xed point xk there is an open neighborhood Uk of xk such that
xk is the only �xed point of T in cl(Uk) and Uk � G. The additivity property of the
topological degree implies that

1 = deg(I � T;G; 0) =
mX
i=1

deg(I � T; Ui; 0):

However, the properties of the topological degree also imply that

deg(I � T; Ui; 0) = sgn(det(I � T 0(xi))) = 1;

so

1 =
mX
i=1

1 = m;

and m = 1. �

Remark 3.2. It is often easy to prove that deg(I�T;G; 0) = 1. For example, if G is convex,
x 6= T (x) for x 2 @G and T (@G) � cl(G), then deg(I � T;G; 0) = 1. More generally, if
there exists a continuous homotopy Ts(x); 0 � s � 1, with T0 = T; T1(x) = y� 2 G for all
x 2 cl(G) and Ts(x) 6= x for all x 2 @G and for 0 � s � 1, then deg(I � Ts; G; 0) = 1 for
0 � s � 1.
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The argument which we have used in Section 2 and will use later in Section 6 does not
quite �t the framework of Corollary 3.1, and it may be useful to abstract that argument.
For simplicity we restrict attention to the two dimensional case.

We begin with some notation which will be used in Theorem 3.3 below.
If g : int (K2)! (0;1) is a continuous map, we shall de�ne g0(u; v) = v; g1(u; v) = g(u; v)
and

(3.4) gk(u; v) = g(gk�2(u; v); gk�1(u; v))

for k � 2. If u�1 > 0 and u0 > 0; hukjk � �1i will denote the sequence given recursively
for k � 1 by

(3.5) uk = g(uk�2; uk�1):

Clearly, we have for k � 1

(3.6) uk = gk(u�1; u0):

If a and b are real numbers with a � b, we shall de�ne

(3.7) V (a; b) = f(u; v) 2 R
2 ja � u � b and a � v � bg:

We shall denote by C (compare Corollary 3.1) the closed cone given by

(3.8) C = f(u; v) 2 R
2 ju � 0 and v � 0g:

Theorem 3.3. Let g: int (K2) ! (0;1) be a continuous map and assume (1) there
exists a unique L � 0 with g(L;L) = L. Asume also (2) there exist a positive integer
m and positive reals a0 � L and b0 � L such that for all (u; v) 2 V (a0; b0) and all
k � m; gk(u; v) 2 V (a0; b0). De�ne G by

(3.9) G = f(a; b) 2 V (a0; b0)ja � L and L � bg

and for (a; b) 2 G, de�ne T (a; b) = (t1(a; b); t2(a; b)) by

(3.10) t1(a; b) = minfgm(u; v)j(u; v) 2 V (a; b)g

and

(3.11) t2(a; b) = maxfgm(u; v)j(u; v) 2 V (a; b)g:

Then T (G) � G, T is a continuous map and T is order-preserving in the partial ordering
�C induced by C. If T has a unique �xed point x� 2 G, then x� = (L;L) and for every
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x 2 G; lim
k!1

T k(x) = x�. Furthermore, for every (u�1; u0) 2 V (a0; b0); lim
k!1

uk = L, where

uk is given by equation (3.5).

Proof. The proof that T (G) � G; T is continuous and T is order-preserving is left to the
reader (compare Corollary 3.1). De�ne (ak; bk) = T k(a0; b0) and note as in Section 2
that ak � ak+1 � L and L � bk+1 � bk for all k � 0. It follows that (ak; bk) ! (a; b)
and T (a; b) = (a; b). Since we assume that T has a unique �xed point in G and since
T (L;L) = (L;L); (a; b) = (L;L). If x 2 G and � denotes the partial ordering induced by
C, then we have

(L;L) � x � (a0; b0);

which implies that
T k(L;L) = (L;L) � T k(x) � (ak; bk)

for all k � 1. It follows that T k(x)! (L;L) as k !1. If (u�1; u0) 2 V (a0; b0) and uj is
given by equation (3.5), one can see as in Section 2 that for each k � 1 there is an integer
N(k) with ak � uj � bk for all j � N(k), so uj ! L as j !1. �

4 Global stability for a four dimensional relative of un+1 =
un�1+pun
un�1+qun

..

We continue to use the notation of Section 2; in particular, f and h are de�ned by equa-
tion (2.1) and equation (2.2), � : int (K2) ! int (K2) is de�ned by �(u; v) = (v; f(u; v))
and L = 1+p

1+q . Furthermore, we always assume in this section that 0 � q < p.

If we de�ne j: int (K2)! (0;1) by

(4.1) j(u; v) := f(f(u; v); h(u; v));

we see that

(4.2) �3(u; v) = (h(u; v); j(u; v)):

If we write U = f(u; v) and V = h(u; v) and de�ne M(u; v) by

(4.3) M(u; v) = (U + qV )2(u+ qv)2(v + qU)2;

then a calculation gives that

(4.4) (D1j)(u; v) = [(p� q)2v(v2 + 2qUv + pqU2]=M(u; v) > 0

and

(4.5) (D2j)(u; v) = �(p� q)2[(v + pU)(v + qU)u+ U(u2 + 2quv + pqv2)]=M(u; v) < 0:

Equations (2.3) and (2.4) imply that u ! h(u; v) and v ! h(u; v) are strictly decreasing
on (0;1) for u > 0 and v > 0, and equations (4.4) and (4.5) imply that u ! j(u; v) is
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strictly increasing on (0;1) and v ! j(u; v) is strictly decreasing on (0;1) for u > 0 and
v > 0.

We now de�ne 	(u; v) = �3(u; v) and de�ne

G = fz 2 int (K4) : z1 � z2 and z3 � z4g and(4.6)

C = fw = (w1; w2; w3; w4)j(�1)i�1wi � 0 for 1 � i � 4g
Given z 2 G, we de�ne B(z) = f(u; v) 2 int (K2) : z1 � u � z2; z3 � v � z4g and,
following Corollary 3.1, we de�ne

(4.7) t1(z) = minfh(u; v)j(u; v) 2 B(z)g; t2(z) = maxfh(u; v)j(u; v) 2 B(z)g
and

(4.8) t3(z) = minfj(u; v)j(u; v) 2 B(z)g; t4(z) = maxfj(u; v)j(u; v) 2 B(z)g:
We de�ne T : G! G by

(4.9) T (z) = (t1(z); t2(z); t3(z); t4(z)):

Using the previously described monotonicity properties of h and j, it is easy to check that
for z = (z1; z2; z3; z4) 2 G;
(4.10) T (z) = (h(z2; z4); h(z1; z3); j(z1; z4); j(z2; z3)):

Corollary 3.1 implies that T is order-preserving with respect to the partial ordering
induced by the cone C in equation (4.6). Note that equation (4.10) actually de�nes T
naturally as a map of int (K4) to int (K4); and the reader can verify directly that
T : int (K4)! int (K4) given by (4.10) is order-preserving with respect to C.

If we can prove that for all z 2 G; T k(z) ! (L;L; L; L; ) as k ! 1, equation (3.3)
implies that for all (u; v) 2 int (K2);�k(u; v) ! (L;L). Thus a global stability result for
the �xed point (L;L; L; L) of T will imply, as a special case, Theorem 2.1.

Our goal in this section is to prove the following global stability result.

Theorem 4.1. Assume that 0 � p < q and let maps f; h and j be de�ned by equations
(2.1), (2.2) and (4.1) respectively. Let T : int (K4) ! int (K4) be de�ned by equation
(4.10). Then for any z int (K4) we have

lim
k!1

T k(z) = (L;L; L; L);

where L = (1 + p)=(1 + q):

Our strategy in proving Theorem 4.1 will be to show that the hypotheses of Theorem
3.1 are satis�ed. We have already observed that T is order-preserving with respect to
�C (C as in equation (4.6)). The only real diÆculty will be to prove that (L;L; L; L) is
the only �xed point of T in int (K4), and we shall prove this with the aid of a symbolic
calculation by Maple.

We begin with an easy lemma.
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Lemma 4.1. Let T : int (K4)! int (K4) be de�ned by equation (4.10) and assume that
0 � q < p. For any z 2 int (K4), if w = (w1; w2; w3; w4) = T 3(z), then

(4.11) 1 � wi �
�
1 + ph(1; 1)

1 + qh(1; 1)

�
� 1 + ph(1; 1); 1 � i � 4:

Proof. Let � = T (z) and � = T 2(z). Because f(u; v) � 1 for all (u; v) 2 int (K2), we have
that 1 � �i; 1 � �i and 1 � wi for 1 � i � 4. The monotonicity properties of h imply that

�1 = h(�2; �4) � h(1; 1) and w1 � h(�2; �4) � h(1; 1);

and the same argument shows that

�2 � h(1; 1) and w2 � h(1; 1):

Note that we have h(1; 1) = f(1; f(1; 1)) � f(1; f(1; L)) = f(1; h(1; 1)), because 1 � L.
By de�nition of j,

w3 = f(f(�1; �4); h(�1; �4)):

We know that h(�1; �4) � h(1; 1) and f(�1; �4) � 1; so

w3 � f(1; h(1; 1)) =

�
1 + ph(1; 1)

1 + qh(1; 1)

�
:

The same argument gives the desired estimate for w4. �

Lemma 4.2. Assume that 0 � q < p, that C is as in equation (4.6) and T : int (K4) !
int (K4) is as in equation (4.10). If x 2 int (K4), there exist y 2 int (K4) and
z 2 int (K4) such that y �C x �C z; y �C T (y) and T (z) �C z.

Proof. For convenience we write � instead of �C . Given x 2 int (K4); y � x is equivalent
to yi � xi for i = 1 and i = 3 and yi � xi for i = 2 and i = 4. If y0 = T (y); y0 � y
is equivalent to h(y2; y4) � y1; h(y1; y3) � y2; j(y1; y4) � y3 and j(y2; j3) � y4. Select
0 < y1 � min(x1; 1) and 0 < y3 � min(x3; 1). Because h(u; v) � 1 and j(u; v) � 1 for all
(u; v) 2 int (K2), we have y01 = h(y2; y4) � y1 and y03 = j(y1; y4) � y3, no matter how
y2 > 0 and y4 > 0 are chosen. If we select y2 � max(h(y1; y3); x2), then y2 � y02 and
y2 � x2. Finally, if we select y4 � max(j(y2; y3); x4) we have arranged that y04 � y4 and
y4 � x4. With this choice of y we have shown that y � x and y � T (y). The proof of
the existence of z is similar: Take z2 = min(1; x2); z4 = min(1; x4); z1 = max(h(z2; z4); x1)
and z3 = max(j(z1; z4); x3). �

If T is as in equation (4.10) Lemmas 4.1 and 4.2 and our previous remark show that
properties (1), (2) and (4) of Theorem 3.1 are satis�ed. It remains to investigate whether
(L;L; L; L) is the only �xed point of T in int (K4).
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Lemma 4.3. Assume that 0 � q < p, and T is de�ned by equation (4.10). De�ne
F : int (K2)! int (K2) by F (u; v) = ( 1(u; v);  2(u; v)), where

(4.12)  1(u; v) = h(h(u; v); j(h(u; v); v))

and

(4.13)  2(u; v) = j(u; j(h(u; v); v)):

Then (L;L; L; L) is the only �xed point of T in int (K4) if and only if (L;L) is the only
�xed point of F in int (K2).

Proof. If x 2 int (K4) and T (x) = x, we have x1 = h(x2; x4); x2 = h(x1; x3); x3 = j(x1; x4)
and x4 = j(x2; x3). Expressing x3 in terms of x2 and x4 we �nd that

x1 = h(x2; x4); and x3 = j(h(x2; x4); x4):

This gives
x2 = h(h(x2; x4); j(h(x2; x4); x4)) =  1(x2; x4)

and
x4 = j(x2; j(h(x2; x4); x4)) =  2(x2; x4):

Writing u = x2 and v = x4; F (u; v) = (u; v). Also, if x 6= (L;L; L; L), we cannot have
x2 = x4 = L, for if x2 = x4 = L; x1 = h(L;L) = L and x3 = j(x1; x4) = j(L;L) = L.

Conversely, suppose that F (u; v) = (u; v) for (u; v) 2 int (K2). De�ning x2 = u; x4 =
v; x1 = h(u; v) = h(x2; x4) and x3 = j(x1; x4); the equation F (u; v) = (u; v) implies that
x2 = h(x1; x3) and x4 = h(x2; x3), so T (x) = x. If (u; v) 6= (L;L), then we certainly have
that x 6= (L;L; L; L) �

Lemma 4.3 reduces a four dimensional problem to a more complicated two dimensional
problem. Our next lemma makes a further reduction to two one dimensional problems.

Lemma 4.4. Assume that 0 � q < p and that  1;  2 and Fare as in Lemma 4.3. Then
it follows that F is order-preserving in the partial ordering from K2. De�ne maps
�i : (0;1)! (0;1); i = 1; 2; by

(4.14) �i(u) =  i(u; u):

If �i(u) 6= u for u > L and i = 1 and i = 2, then the map T de�ned by equation (4.10) has
only the �xed point (L;L; L; L) in int (K4).

Proof. The monotonicity properties of h and j (see equations (2.3), (2.4), (4.4) and (4.5))
easily imply that F is order-preserving in the partial ordering from K2; details are left
to the reader. In fact if 0 < u � u0; 0 � v � v0 and (u; v) 6= (u0; v0), one sees that
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 i(u; v) <  i(u
0; v0) for i = 1; 2. It follows that �1 and �2 are strictly increasing maps on

(0;1).
If z = (z1; z2; z3; z4) 2 int(K4) is a �xed point of T , note that � = (z2; z1; z4; z3) is a

�xed point of T . Suppose we can prove that whenever z = (z1; z2; z3; z4) is a �xed point of
T , then z2 � L and z4 � L, where L := 1+p

1+q
. Since � = (z2; z1; z4; z3) is also a �xed point

of T , it follows that z1 � L and z3 � L. However, z1 = h(z2; z4); and because z2 � L and
z4 � L,

(4.15) z1 = h(z2; z4) � h(L;L) = L;

with strict inequality in (4.15) if z2 < L or z4 < L. Thus we must have z2 = z4 = L.
Because z2 = L = h(z1; z3) and z1 � L and z3 � L, the same argument shows that we
must have z1 = z3 = L, so z = (L;L; L; L).

Before continuing, it is convenient to make some preliminary observations. A calculation
shows that (D1f)(u; v) < 0 and (D2f)(u; v) > 0 for all (u; v) 2 int (K2), so u ! f(u; v)
is strictly decreasing and v ! f(u; v) is strictly increasing (always assuming 0 � q < p).
Because f(u; v) > 1 for all (u; v) 2 int (K2), we also have h(u; v) > 1 and j(u; v) > 1. It
follows that for all u > 0,

(4.16) 1 � �1(u) = h(h(u; u); j(h(u; u); u))� h(1; 1):

If u � � > 0, we claim also that there is a constant M =M(�) with

(4.17) 1 � �2(u) �M(�):

The monotonicity properties of h give, for u � � > 0,

1 � h(u; u) � h(�; �);

and the monotonicity properties of j then imply that

(4.18) 1 � j(h(u; u); u) := V � j(h(�; �); �) :=M1(�):

We deduce from eqution (4.18) that

(4.19) 1 � f(u; V ) = 1 +
(p� q)V

u+ qV
� 1 +

(p� q)M1(�)

�
:=M2(�)

and

(4.20) 1 � h(u; V ) = f(V; f(u; V )) � f(1;M2(�)) :=M3(�):
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We deduce from equation (4.20) that

(4.21) �2(u) = j(u; V ) = f(f(u; V ); h(u; V )) � f(1;M3(�)) :=M(�):

We now return to the main thread of the argument. We have shown that it suÆces to
prove that whenever z = (z1; z2; z3; z4) is a �xed point of T , then z2 � L and z4 � L. We
write u� = z2 and v� = z4, and we recall that Lemma 4.3 implies that u� =  1(u�; v�) and
v� =  2(u�; v�). There are two possibilities: (a) u� � v� and (b) v� � u�. In case (a) we
see that

u� � v� =  2(u�; v�) �  2(v�; v�) = �2(v�):

A simple induction shows that �k2 (v�) � �k+12 (v�) for k � 0; and using equation (4.17), we
conclude that �k2(v�) � M(v�) < 1 for all k � 0. It follows that �k2(v�) ! v � v� and
�2(v) = v. By assumption, v � L, so we must have u� � v� � L. The proof in case (b) is
analogous and is left to the reader. �

It remains to prove that the equation �i(x) = x has no solution x > L for i = 1 or i = 2.
This appears to be a diÆcult calculus question. We shall write p = q+ r and x = L(1+ z),
where L = 1+p

1+q , and we shall reduce the question to whether certain polynomials in the

variables q; r and z and with integral coeÆcients are positive for all positive values of q; r
and z. Although there are several thousand terms in the polynomials in question, with the
aid of a symbolic calculation using Maple 10, we can compute all the integral coeÆcients
and show that all integral coeÆcients are nonnegative. We emphasize that the procedure
using Maple is exact, since it computes only polynomials with integral coeÆcients.

Lemma 4.5. Assume that 0 � q < p and let �i(x); x > 0; i = 1; 2, be de�ned by equations

(4.12)-(4.14). Then �i(x) 6= x for x > L :=
�
1+p
1+q

�
and for i = 1; 2.

Proof. We de�ne p = q + r, so r > 0, and we write x = L(1 + z). We shall associate to
�i a polynomial wi = wi(q; r; z) with integer coeÆcients such that �i(x) 6= x for all x > L
if and only if wi > 0 for all q � 0; r > 0; z > 0. The polynomials wi can be computed
with the aid of Maple, and it turns out that all the integer coeÆcients are nonnegative and
some are positive, a much stronger result than we need.

We construct w1 and w2 in stages:

(4.22) h(x; x) = f(x; L) =
x+ pL

x+ qL
=

1 + p+ z

1 + q + z
:=

u1
v1

(4.23) u1 = 1 + p+ z and v1 = 1 + q + z:

Note that u1 and v1 are polynomials with integer coeÆcients in q; r and z. Next we have

(4.24) f(h(x; x); x) =
h(x; x) + px

h(x; x) + qx
=

(1 + q)u1 + p(1 + p)(1 + z)v1
(1 + q)u1 + q(1 + p)(1 + z)v1

:=
u2
v2
;
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where

(4.25) u2 := (1 + q)u1 + p(1 + p)(1 + z)v1 and v2 := (1 + q)u1 + q(1 + p)(1 + z)v1

Again u2 and v2 are polynomials with integer coeÆcients in the variables q; r; z.

(4.26) h(h(x; x); x) = f(x; f(h(x; x); x)) =
(1 + p)(1 + z)v2 + p(1 + q)u2
(1 + p)(1 + z)v2 + q(1 + q)u2

:=
u3
v3
;

where

(4.27) u3 = (1 + p)(1 + z)v2 + p(1 + q)u2 and v3 = (1 + p)(1 + z)v2 + q(1 + q)u2:

By de�nition of j we have

(4.28) j(h(x; x); x) = f

�
u2
v2
;
u3
v3

�
=
u2v3 + pu3v2
u2v3 + qu3v2

=
u4
v4
;

where

(4.29) u4 = u2v3 + pu3v2 and v4 = u2v3 + qu3v2:

Using equation (4.22) and (4.28) we obtain that

(4.30) f(h(x; x); j(h(x; x); x)) = f

�
u1
v1
;
u4
v4

�
=
u1v4 + pu4v1
u1v4 + qu4v1

:=
u5
v5
;

where

(4.31) u5 = u1v4 + pu4v1 and v5 = u1v4 + qu4v1:

Using the de�nition of h we obtain that

(4.32) �1(x) = f

�
u4
v4
;
u5
v5

�
=
u6
v6
;

where

(4.33) u6 = u4v5 + pu5v4 and v6 = u4v5 + qu5v4:

It follows that �1(x) = x for some x > L if and only if

(4.34) w1 := (1 + p)(1 + z)v6 � (1 + q)u6 = 0
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for some z > 0. Our construction insures that uj and vj ; 1 � j � 6, and w1 are polynomials
in the variables q; r and z with integer coeÆcients.

To proceed analogously for �2(x) we write

(4.35) f(x; j(h(x; x); x)) = f

�
x;
u4
v4

�
=

(1 + p)(1 + z)v4 + p(1 + q)u4
(1 + p)(1 + z)v4 + q(1 + q)u4

:=
U5
V5
;

where

(4.36) U5 = (1 + p)(1 + z)v4 + p(1 + q)u4 and V5 = (1 + p)(1 + z)v4 + q(1 + q)u4:

It then follows that

(4.37) h(x; j(h(x; x); x)) = f

�
u4
v4
;
U5
V5

�
:=

U6
V6
;

where

(4.38) U6 = u4V5 + pU5v4 and V6 = u4V5 + qU5v4:

It follows fron the de�nition of j that

(4.39) �2(x) = f

�
U5
V5
;
U6
V6

�
:=

U7
V7
;

where

(4.40) U7 = U5V6 + pU6V5 and V7 = U5V6 + qU6V5:

If we de�ne w2 by

(4.41) w2 = (1 + p)(1 + z)V7 � (1 + q)U7;

w2 is a polynomial in the variables q; r and z; w2 has integer coeÆcients and �2(x) = x for
some x > L if and only if w2 = 0 for some z > 0.

Using the above sequence of steps it is easy to write a Maple program which computes
the polynomials w1 and w2 and veri�es that all the integer coeÆcients are nonnegative and
that, even if q is set equal to zero, some coeÆcients are positive. A simple Maple program
which accomplishes this is given in Appendix A. �

Proof of Theorem 4.1. We have already noted that, for C as in equation (4.6), T is order-
preserving with respect to �C . Lemma 4.1 proves that property 2 of Theorem 3.1 is
satis�ed, and Lemma 4.2 shows that property 4 of Theorem 3.1 is satis�ed, Lemmas 4.3-
4.5 prove that T has a unique �xed point in int (K4). Theorem 4.1 now follows from
Theorem 3.1. �

Remark 4.1. If � : int (K2)! int (K2) is given by �(u; v) = (v; f(u; v)) and if H = fx 2
int (K4) : x1 = x2 and x3 = x4g, we have already noted in the proof of Corollary 3.1 that
T (H) � H, that H can be identi�ed with int (K2) and that T jH is conjugate to �3.
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5. Another four dimensional relative of un+1 =
un�1+pun
un�1+qun

.

In this section we always assume at least that 0 � q � p and p > 0; f and h will
denote the functions in equations (2.1) and (2.2) and �(u; v) := (v; f(u; v)), so �2(u; v) =
(f(u; v); h(u; v)).

If one applies the construction in Corollary 3.1 to �2, one obtains a map
S : int (K4)! int (K4) de�ned by

(5.1) S(x1; x2; x3; x4) = (y1; y2; y3; y4) = (f(x2; x3); f(x1; x4); h(x2; x4); h(x1; x3)):

Since the map T in Section 4 was obtained by applying the construction in Corollary 3.1 to

�3 and since we have proved that the �xed point � := (L;L; L; L); L :=
�
1+p
1+q

�
; satis�es

T k(x)! � for all x 2 int (K4) whenever 0 � q < p one might hope that the same theorem
is true for S. Our goal in this section is to prove that this hope is false, a failure which
suggests the delicacy of such results. Speci�cally we shall prove the following theorem:

Theorem 5.1. Assume that 0 � q < p and that S is de�ned by equation (5.1). The
equation 1� 2t+ 2t2 � 2t3 = 0 has a unique real root t�, and t� is approximately equal to
.647798871. If p�q

(1+p)(1+q) > t�; S has at least three distinct �xed points in int (K4).

We shall not study here the question of when the �xed point � = (L;L; L; L) of S is
globally stable, but we make the following conjecture.

Conjecture 5.1. If 0 � q � p; p > 0 and (p�q)
(1+p)(1+q) � t�, then for every

x 2 int (K4); Sk(x)! � = (L;L; L; L) as k !1.

We shall view elements x of Rn as column vectors, but we shall abuse notation and
write x = (x1; x2; � � � ; xn). If A is an n� n real matrix, A induces a linear map of Rn to
R
n in the usual way by x! Ax = y.
The results of this section are suggested by an analysis of the eigenvalues of the Jacobian

matrix of S at � = (L;L; L; L):

Lemma 5.1. Assume that 0 � q � p; p > 0; L := 1+p
1+q and � = (L;L; L; L). If S0(�)

denotes the Jacobian matrix of S at �, then

(5.2) S0(�) =

2
64

0 �� � 0
�� 0 0 �
0 ��2 0 ��(1� �)

��2 0 ��(1� �) 0

3
75 :=M(�);

where � := (p�q)
(1+p)(1+q) . If two dimensional subspaces V � R

4 and W � R
4 are de�ned by

(5.3) V = fx 2 R
4 jx1 = �x2 and x3 = �x4g
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and

(5.4) W = fx 2 R
4 jx1 = x2 and x3 = x4g;

then M(�)(V ) � V and M(�)(W ) �W . If we de�ne 2� 2 matrices M1(�) and M2(�) by

(5.5) M1(�) =

�
� �
�2 �(1� �)

�
and M2(�) =

� �� �
��2 ��(1� �)

�
;

every eigenvalue z of M(�) is an eigenvalue of M1(�) or M2(�); and if z is an eigenvalue
of M1(�) or M2(�); z is an eigenvalue of M(�). Every eigenvalue z of M2(�) satis�es
jzj < 1. The equation 1 � 2t + 2t2 � 2t3 = 0 has a unique real root t� approximately
equal to .6477988713; and if 0 � � < t�, every eigenvalue z of M1(�) satis�es jzj < 1. If
� > t�;M1(�) has two real eigenvalues z1 and z2 with �1 < z1 < 1 < z2.

Proof. The formula for S0(�) follows by a simple calculation, which we leave to the reader.
Note that our assumptions on p and q insure that 0 � � < 1. One can also easily
verify that M(�)(V ) � V and M(�)(W ) � W . If x = (u;�u; v;�v) 2 V;M(�)x = y =
(u0;�u0; v0;�v0), where

(5.6) M1(�)

�
u
v

�
=

�
u0

v0

�
;

and a similar formula holds if x 2 W and M1(�) is replaced by M2(�) in equation (5.6).
The assertions about the realtionship between eigenvalues of M(�) and eigenvalues of
M1(�) and M2(�) now follow easily.

If a and b are real numbers, recall the elementary result that all solutions z of

z2 + az + b = 0

satisfy jzj < 1 if and only if

(5.7) jaj < 1 + b and b < 1:

The eigenvalues z of M2(�) are solutions of

(5.8) z2 + (2�� �2)z + �2 = 0;

and using equation (5.7) and the fact that 0 � � < 1, we se that all solutions z of eqaution
(5.8) satisfy jzj < 1. The eigenvalues z of M1(�) satisfy

(5.9) z2 � (2�� �2)z + (�2 � 2�3) = 0
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Because 0 � � < 1; �2 � 2�3 < 1 and so equation (5.7) implies that all roots z of equation
(5.9) satisfy jzj < 1 if and only if

(5.10) 1� 2�+ 2�2 � 2�3 > 0:

If we de�ne g(t) by
g(t) = 1� 2t+ 2t2 � 2t3;

one has

g0(t) = �6[(t� 1

3
)2 +

2

9
] < 0;

and since g(0) = 1 and g(1) = �1; g(t) = 0 has exactly one real root t� and 0 < t� < 1. It
follows that all roots z of equation (5.9) satsify jzj < 1 if and only if � < t�. It is easy to
estimate t� as in the statement of Lemma 5.1. The roots of equation (5.9) are

z1 =
2�� �2 �p

4�3 + �4

2
and z2 =

2�� �2 +
p
4�3 + �4

2
;

so both roots are real and distinct if � > 0 and jz2j > jz1j if � > 0. It follows that z2 > 1
for � > t�. Since jz1z2j = j�2 � 2�3j < 1, we must have that jz1j < 1. �

Remark 5.1. The same analysis can be applied to the Jacobian matrix T 0(�) for � =
(L;L; L; L) and T as in Section 4, but in that case one �nds that all eigenvalues z of T 0(�)
satisfy jzj < 1 if 0 � q < p.

For technical reasons, we also need to prove that if 0 � q � p and p > 0; S3( int (K4))
is contained in a compact, convex subset of int (K4).

Lemma 5.2. Assume that 0 � q � p and p > 0 and that S is given by equation (5.1).
If x 2int(K4) and w = (w1; w2; w3; w4) = S3(x), we have 1 � wi � 1 + p + p2 + p3 for
i = 1; 2, and 1 � wi � 1 + p+ p2 for i = 3; 4.

Proof. We write y = S(x) and z = S(y), so w = S(z). Because f(u; v) � 1 for all u > 0
and v > 0, yi � 1 for 1 � i � 4. The same argument implies that zi � 1 and wi � 1 for
1 � i � 4. The monotonicity properties of h imply that

z3 = h(y2; y4) � h(1; 1) and z4 = h(y1; y3) � h(1; 1);

and the same argument also gives that

w3 � h(1; 1) and w4 � h(1; 1):

A calculation gives that

h(1; 1) = 1 +
(p� q)(1 + p)

1 + 2q + pq
� 1 + p(1 + p) = 1 + p+ p2:
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The monotonicity properties of f now imply that

w1 = f(z2; z3) � f(1; h(1; 1)) = 1 +
(p� q)h(1; 1)

1 + qh(1; 1)
� 1 + ph(1; 1) � 1 + p+ p2 + p3;

and the same argument gives w2 � 1 + p+ p2 + p3. �

At this point we need again to use the topological degree: see [1-4, 10, 11, 12, 14]. Recall
that if G is a bounded open subset of Rn and 	 : cl(G) ! R

n is a continuous map such
that 	(x) 6= a for all x 2 @G, one can assign an integer deg(	; G; a), called the topological
degree of 	 on G with respect to a. Roughly speaking, deg(	; G; a) is an algebraic count
of the number of solutions x 2 G of 	(x) = a.

Lemma 5.3. Assume that 0 � q � p and p > 0 and let S be de�ned by equation (5.1).
Assume that 0 < r1 < 1 and r2 > 1+ p+ p2+ p3 and de�ne G = fx 2 R

4 jr1 < xi < r2 for
1 � i � 4g. Let I denote the identity map, so I � S denotes the map x! x� S(x). Then
it follows that

(5.11) deg(I � S;G; 0) = 1:

Proof. Notice that the map S actually depends on p > 0 and q; 0 � q � p. We shall view
p as �xed, allow q to vary with 0 � q � p, and write Sq(x) instead of S(x) to indicate the
dependence of S on q. If x = Sq(x) for some x 2 int(K4), then x = S3q (x) and Lemma 5.2.

implies that 1 � xi � 1 + p + p2 + p3 for 1 � i � 4. It follows that all �xed points of Sq
in int(K4) lie in a compact set contained in G and Sq(x) 6= x for 0 � q � p and x 2 @G.
The homotopy property of the topological degree implies that deg(I � Sq; G; 0) is de�ned
and constant for 0 � q � p. However, if q = p; Sq(x) = (1; 1; 1; 1) for all x 2int(K4); and
since (1; 1; 1; 1) 2 G, for 0 � q � p we have

deg(I � Sp; G; 0) = 1 = deg(I � Sq; G; 0);

which completes the proof. �

Lemma 5.4. Assume that 0 � q � p; p > 0 and S is given by equation (5.1). If W is
given by equation (5.4), then S(W\ int (K4)) � W\ int (K4). If x 2 W\ int (K4) and

S(x) = x, it follows that x = (L;L; L; L); where L =
�
1+p
1+q

�
.

Proof. It is straightforward to see that S(W\int(K4)) � W\ int(K4). If x = (u; u; v; v),
where u > 0 and v > 0, and if S(x) = x, then equation (5.1) gives

(5.12) u = f(u; v)

and

(5.13) v = h(u; v) = f(v; f(u; v)) = f(v; u):
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If u = v, we �nd that u = f(u; u) = L = v, and we are done, so we assume, by way of
contradiction, that u 6= v. Equation (5.12) gives

(5.14) u2 + quv = u+ pv;

and equation (5.13) gives

(5.15) v2 + quv = v + pu:

Subtracting equation (5.15) from (5.14) and dividing by u� v we obtain

(5.16) u+ v = 1� p:

However, f(u; v) � 1 and f(v; u) � 1, so u+ v � 2, which contradicts equation (5.16) �

With the aid of Lemmas 5.1 - 5.4, Theorem 5.1 now follows by a simple argument using
the topological degree.

Proof of Theorem 5.1. Let S0(�) denotes the Jacobian matrix for S at � = (L;L; L; L)

and assume that (p�q)
(1+p)(1+q) > t�, where t� is the unique real root of 1� 2t+ 2t2 � 2t3 = 0

which is guaranteed by Lemma 5.1. Lemma 5.1 implies that S0(�) has one real eigenvalue
z2 > 1 and all other eigenvalues z of S0(�) satisfy jzj < 1. If we express the determinant
of I � S0(�); det(I � S0(�)), in terms of the eigenvalues of S0(�), it follows that I � S0(�)
is invertible and

sgn(det(I � S0(�))) = �1:
The implicit function theorem implies that � is an isolated �xed point of S, so there exist
" > 0 such that if

B" = fx 2 R
4
��kx� �k < "g;

then � is the only �xed point of S in cl(B"), the closure of B". Elementary properties of
the topological degree imply that

deg(I � S;B"; 0) = �1:

If G is de�ned as in Lemma 5.3, we can take " > 0 so small that cl(B") � G, and if
H" := G nB", the additivity property of the topological degree implies that

deg(I � S;B"; 0) + deg(I � S;H"; 0) = deg(I � S;G; 0):

Lemma 5.3 implies that deg(I � S;G; 0) = 1, so

(5.17) deg(I � S;H"; 0) = 2:
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It follows from equation (5.7) that S has a �xed point in H", but a priori, we cannot assert
that S has at least two �xed points in H". Notice, however, that if x = (x1; x2; x3; x4) is a
�xed point of S then y = (x2; x1; x4; x3) is also a �xed point of S and y 6= �. Lemma 5.4
implies that y 6= x, so S has at least three distinct �xed points. �

Remark 5.1. De�ne D = fx 2 R
4 jx1 � L; x2 � L; x3 � L and x4 � Lg so D is a

closed cone with vertex at � = (L;L; L; L). One can verify that S(D\ int(K4)) � D\
int(K4). If, for " > 0; V" = fx 2 D

��kx � �k < "g one can use the so-called \�xed
point index" (see [1,4,12] for expositions.) Standard arguments show that, for " small and

(p�q)
(1+p)(1+q)

> t�; iD(S; V") = 0. On the other hand, one shows that for G as in Lemma 5.3

iD(S;G \D) = 1, so S has a �xed point x in (G \D) n V". In fact, if one freezes q with�
1

1+q

�
> t� and one views p � q as a parameter, abstract global bifurcation theorems as

in [12] and [13] are applicable.

6. Global stability for un+1 =
p+qun
1+un�1

.

In this section we change notation, and for (u; v) 2 K2 we de�ne f(u; v) by

(6.1) f(u; v) :=
p+ qv

1 + u

and

(6.2) h(u; v) := f(v; f(u; v)) =
p(1 + u) + q(p+ qv)

(1 + u)(1 + v)
:

We shall always assume that p > 0 and q > 0. Sometimes it will be convenient to write
f(u; v) = f1(u; v); h(u; v) = f2(u; v) and for j > 2,

(6.3) fj(u; v) = f(fj�2(u; v); fj�1(u; v)):

If p > 0; q > 0; u�1 > 0 and u0 > 0 and

(6.4) un+1 = f(un�1; un); n � 0;

it has long been conjectured (see [5], [6] and Conjecture 6.10.1 on p. 124 of [8]) that

(6.5) lim
n!1

un = L :=
1

2
(q � 1) +

1

2

p
(q � 1)2 + 4p:

The constant L in equation (6.5) denotes the unique nonnegative solution of f(L;L) = L.
We shall call this conjecture \the global stability conjecture for equation (6.4)." A simple
argument (see Theorem 6.3.3, p. 81, in [8]) proves the global stability conjecture if 0 �
q < 1. Results in [5] prove the conjecture when p < q; see, also, Theorem 6.3.3 in [8].
Theorem 3.4.3 in [6] proves the conjecture for q � p � 2(q + 1) and q � 1.

In this section we shall present a uni�ed approach which generalizes the above results,
although it does not yield the full conjecture. Our goal is to prove the following theorem.
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Theorem 6.1. Assume either that 0 < q � 1 and p > 0 or that q > 1 and

(6.6) 0 < p � 2q +

�
4q2

(q � 1)2

�
:

Then if u�1 > 0; u0 > 0 and un; n � 1, is de�ned by equation (6.4), lim
n!1

un = L, where L

is as in equation (6.5).

Notice that the right hand side of equation (6.6) is always greater than 2(q+2), and for
q � 1 of moderate size it may be substantially larger than 2(q + 2). For example, if q = 2,
previous theorems allow 0 � p � 6, while Theorem 6.1 allows 0 � p � 20.

Because L in equation (6.5) plays an important role in our arguments, it is convenient
to take a parametric representation which puts L in a simple form. We write

(6.7) L = q + s:

and note that, becuase p > 0; s satis�es

(6.8) s > �min(1; q):

The reader can use equations (6.5) and (6.7) to verify that

(6.9) p = (q + s)(1 + s):

We shall sometimes use q and s as parameters, rather than p and q.
A simple calculation yields, for u � 0 and v � 0,

(6.10) (D1f)(u; v) =
�(p+ qv)

(1 + u)2
< 0 and (D2f)(u; v) =

q

1 + u
> 0:

One also obtains that

(6.11) (D1h)(u; v) = � q(p+ qv)

(1 + v)(1 + u)2
< 0

and

(6.12) (D2h)(u; v) =

�
1

(1 + u)(1 + v)2

� ��p(1 + u) + q2 � pq
�
:

If p � (q2=q+1), equation (6.12) implies that (D2h)(u; v) < 0 for all u � 0 and v � 0, but
in general the sign of D2h(u; v) depends on u.

For the reader's convenience we include the proof of the following elementary lemma.
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Lemma 6.1. Assume that p > 0 and q > 0 and that for u�1 > 0 and u0 > 0; un; n � 1,
is de�ned by equation (6.4). Then for all n � 2 we have

(6.13) un � p+ qmax(p; q) := b0:

For all n � 5 we have

(6.14) un � p+ qmin(p; q)

1 + b0
:= a0:

Proof. Because u! h(u; v) is decreasing for u � 0 and v � 0, we see that

(6.15) h(u; v) � h(0; v) =
p

1 + v
+
q(p+ qv)

1 + v
� p+

qmax(p; q)(1 + v)

1 + v
= p+ qmax(p; q):

Since un = h(un�3; un�2) for n � 2; we deduce equation (6.13) from equation (6.15).
For n � 5, we know that un�3 � b0 and un�2 � b0, so

un = h(un�3; un�2) � h(b0; un�2) =
p

1 + v
+

2(p+ qv)

(1 + b0)(1 + v)

� p

(1 + b0)
+
qmin(p; q)

1 + b0
;

which establishes equation (6.14) �

We now argue roughly as in Section 2.

Lemma 6.2. For h as in equation (6.2), L as in equation (6.5) and for 0 < a � L � b,
de�ne functions �1(a; b) and �2(a; b) by

(6.16) �1(a; b) = minfh(u; v) : a � u � b; a � v � bg:
and

(6.17) �2(a; b) = maxfh(u; v) : a � u � b; a � v � bg:
Then we have that

(6.18) �1(a; b) = minfh(b; a); h(b; b)g
and

(6.19) �2(a; b) = maxfh(a; a); h(a; b)g:
If q2 � p � pq � pa � 0; �1(a; b) = h(b; b) and �2(a; b) = h(a; a). If q2 � p � pq � pa > 0
and q2 � p � pq � pb � 0; �1(a; b) = h(b; b) and �2(a; b) = h(a; b). If q2 � p� pq � pa > 0
and q2� p� pq� pb > 0; �1(a; b) = h(b; a) and �2(a; b) = h(a; b). It is always the case that
�1(a; b) � L � �2(a; b).

Proof. Equations (6.18) and (6.19) and the other assertions of the lemma follow directly
from equation (6.11) and (6.12). Because a � L � b and h(L;L) = L, we also see that
�1(a; b) � L � �2(a; b): �
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Lemma 6.3. Let a0 and b0 be as in Lemma 6.1 and �1 and �2 as in Lemma 6.2. For
k � 1 de�ne ak and bk inductively by ak = �1(ak�1; bk�1) and bk = �2(ak�1; bk�1). Then
we have bn � bn+1 � L and an � an+1 � L for all n � 0. If u�1 > 0; u0 > 0 and un is
de�ned by equation (6.4), then ak � uj � bk for all j � 5 + 3k.

Proof. The proof of Lemma 6.1 actually shows that for all u � 0; v � 0; we have h(u; v) �
b0. Also, the proof of Lemma 6.1 shows that h(u; v) � a0 for all u; v with 0 � u � b0
and 0 � v � b0. It follows that a1 = �1(a0; b0) � a0 and b1 = �2(a0; b0) � b0. Since
h(L;L) = L � b0 and h(L;L) = L � a0, Lemma 6.2 implies that b1 � L � a1.

We now argue by induction and assume that a0 � a1 � a2 � � � � � an � L and
L � bn � bn�1 � � � � � b1 � b0 for some n � 1. By de�nition of �1 and �2; �1(an; bn) �
�1(an�1; bn�1) because [an�1; bn�1] � [an; bn] and similarly �2(an; bn) � �2(an�1; bn�1)
because [an�1; bn�1] � [an; bn]. It follows that an � an+1 and bn+1 � bn, and Lemma
6.2 implies that an+1 � L � bn+1. Thus we have proved the �rst part of Lemma 6.3 by
mathematical induction.

Lemma 6.1 implies that a0 � uj � b0 for all j � 5. We argue by induction and assume
that for some k � 0 we have proved that ak � uj � bk for all j � 5+3k. If j � 5+3(k+1),
we can write uj = h(uj�3; uj�2) and ak � uj�3 � bk and ak � uj�2 � bk. By de�nition of
�1 and �2, it follows that

�1(ak; bk) = ak+1 � uj � bk+1 = �2(ak; bk);

so the second part of Lemma 6.3 also follows by mathematical induction. �

Just as in Section 2, if an and bn are as in Lemma 6.3 we see that
lim
n!1

an = a � L; lim
n!1

bn = b � L and

(6.20) �1(a; b) = a and �2(a; b) = b:

Furthermore, Lemma 6.3 implies that if u�1 > 0 and u0 > 0, and un is given by equation
(6.4) for n � 1, then

(6.21) a � lim inf un
n!1

and lim sup un
n!1

� b:

If we can prove that (a; b) = (L;L) is the only solution (a; b) of equation (6.20) with
0 < a � L � b, equation (6.21) implies that lim

n!1
un = L. In our next lemma we analyze

equation (6.20).

Lemma 6.4. Assume that 0 < q � 1 and p > 0 or that q > 1 and p satis�es equation
(6.6). Let L be as in equation (6.5) and �1 and �2 be functions as in Lemma 6.2. If
0 < a � L � b and �1(a; b) = a and �2(a; b) = b; then a = L = b.

Proof. As we have noted if L = 1+ s; s > �min(1; q) and p = (q+ s)(1+ s). Furthermore,
for q > 1, the reader can verify that p > 0 satis�es inequality (6.6) if and only if

(6.22) �1 < s �
�
q + 1

q � 1

�
:
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We assume, by way of contradiction, that equation (6.20) has a solution (a; b) with 0 <
a � L � b and a < b. Using Lemma 6.2, we distinguish three cases: (1) q2�p�pq�pa � 0,

(2) q2 � p� pq � pa > 0 and q2 � p� pq � pb � 0 and
(3) q2 � p� pq � pa > 0 and q2 � p� pq � pb > 0.
Case 1. In this case Lemma 6.2 implies that �1(a; b) = h(b; b) and �2(a; b) = h(a; a).

Using equation (6.2) for h we �nd that

(6.23) (p+ qp) + (p+ q2)a = (1 + a)2b

and

(6.24) (p+ qp) + (p+ q2)b = (1 + b)2a:

Subtracting equation (6.24) from equation (6.23) and dividing by (a� b) (since a < b), we
obtain that

(6.25) b =
p+ q2 + 1

a
:

Substituting from equation (6.25) for b in equation (6.23) and simplifying yields a quadratic
equation for a:

(6.26) a2 + a[p+ 2q2 + 2� pq] + (p+ q2 + 1) = 0:

If 0 < q � 1, the coeÆcients of a in equation (6.26) are all postive, so equation (6.26)
has no positive solution a. Thus we can assume q > 1. Using equation (6.24) and equation
(6.25), note that b > a also solves equation (6.26), so solving equation (6.26) yields

(6.27) a = �B
2
�
p
R

2
;

where

(6.28) B = p+ 2q2 + 2� pq and R = B2 � 4(p+ q2 + 1):

If B � 0, equation (6.27) implies that the real part of a is not positive, which contradicts
our assumption that a > 0. Thus we must have B < 0 or, equivalently,

(6.29) p >
2(q2 + 1)

q � 1
= 2(q + 1) +

4

q � 1
;

otherwise we have obtained a contradiction. Equation (6.29) implies that s > 1, where
p = (q + s)(1 + s). A calculation (use Maple) shows that

(6.30) R = ((q � 1)s� (q + 1))((q � 1)s+ q(q + 1))(s2 + (q + 1)s� q);
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so R < 0 if 1 < s < q+1
q�1 and R = 0 if s = q+1

q�1 . If R < 0, we already have a contradiction,

and if R = 0; a = b = �B=2, which is again a contradiction.
Case 2. In Case 2, Lemma 6.2 implies that �1(a; b) = h(b; b) and �2(a; b) = h(a; b).

Arguing as in Case 1 we �nd that

(6.31) p(1 + b) + q(p+ qb) = a(1 + b)2

and

(6.32) p(1 + a) + q(p+ qb) = b(1 + a)(1 + b):

Subtracting equation (6.32) from equation (6.31) yields

p(b� a) = �(1 + b)(b� a);

which implies that 1 + b = �p, a contradiction.
Case 3. In case 3, Lemma 6.2 implies that �1(a; b) = h(b; a) and �2(a; b) = h(a; b).

Thus we �nd that

(6.33) (p+ qp) + pa+ q2b = (1 + a)(1 + b)b

and

(6.34) (p+ qp) + pb+ q2a = (1 + a)(1 + b)a:

Subtracting equation (6.34) from equation (6.33) gives

(6.35) q2 � p = (1 + a)(1 + b) and b =
q2 � p� 1� a

1 + a
:

Substituting from equation (6.35) in equation (6.33) and simplifying yields

(6.36) a2 + (q + 1)a+ (q2 + q � p) = 0:

If p � q2+q, we are in case 1, so we can assume that q2+q�p > 0, in which case equation
(6.36) clearly has no solution a > 0. �

Proof of Theorem 6.1. By our previous remark it suÆces to prove that under the given
assumption, equation (6.20) has no solution (a; b) with 0 < a � L � b and a < b. However,
this is the content of Lemma 6.4. �

Remark 6.1. Given k � 2, one can de�ne, for 0 < a � L � b,

 1(a; b) = minffk(u; v) : a � u � b and a � v � bg



30 ROGER D. NUSSBAUM

and
 2(a; b) = maxffk(u; v) : a � u � b and a � v � bg:

Suppose that 0 < q � p and k are such that if

 1(a; b) = a and  2(a; b) = b;

then a = b = L. For this p and q and for u�1 � 0; u0 � 0 and uj given by equation (6.4),
it then follows by our previous arguments that lim

j!1
uj = L. One might assume that as

k increases, the results obtained in this way automatically improve, however this is not
the case. For example, the results obtained by choosing k = 3 are worse than than those
obtained by taking k = 2.

Some insight can be obtained by a linear analysis at the point (L;L). To obtain positive
results for a given k, it is necessary that the map (a; b)! ( 1(a; b);  2(a; b)) := 	(a; b) be
locally stable at (L;L). One can prove that a necessary condition for the local stability of
	 at (L;L) is that

(6.37) jD1fk(L;L)j+ jD2fk(L;L)j � 1;

and strict inequality in equation (6.37) is a suÆcient condition for local stability. If we
write �k = D1fk(L;L) and �k = D2fk(L;L), so (using the parametrization L = q+ s and

p = (q + s)(1 + s) for s � 0) �1 = �
�

q+s
q+s+1

�
and �1 = q

q+s+1 , one can prove that, for

k � 1,

(6.38) Mk :=

�
�k�1 �k
�k�1 �k

�
=Mk

1 =

�
0 �1
1 �1

�k
:

Here we make the convention that �0 = 0 and �0 = 1.
The eigenvalues of M1 are

(6.39) z =
q

2(q + s+ 1)
� i

2(q + s+ 1)

p
4(q + s)(q + s+ 1)� q2;

so jzj2 = q+s
q+s+1 . Notice that if s = o(q) and q is large, z is approximately equal to

jzj exp(i�=3). For z as in equation (6.37), one can calculate that equation (6.37) is satis�ed
if and only if

(6.40)
1

jIm(z)j [j�1jjIm(zk)j+ jIm(zk+1)j] � 1:
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Appendix A.

We describe below a list of Maple 10 instructions which implements the sequence of
steps in Lemma 4.5 and computes the polynomial w1 in equation (4.34). The polynomial
w1 in the variables q; r and z has several thousand terms with integer coeÆcients, so
it is important to note that, after w1 has been put in appropriate form, the instruction
min(coe�s (w1)) computes the minimum of these coeÆcients and obviates the need to print
the full polynomial. One can, of course, replace any or all colons by semicolons below to
have Maple print out uj ; vj and w1. We denote by W1 below the polynomial w1 evaluated
at q = 0. Maple will verify that the minimum coeÆcient of w1 and of W1 is 1.

1. p := q + r :
2. L := (1 + p)=(1 + q) :
3. x := L � (1 + z) :
4. u1 := 1 + p+ z :
5. v1 := 1 + q + z :
6. u2 := (1 + q) � u1 + p � (1 + p) � (1 + z) � v1 :
7. v2 := u2 + (q � p) � (1 + p) � (1 + z) � v1 :
8. u3 := (1 + p) � (1 + z) � v2 + p � (1 + q) � u2 :
9. v3 := u3 + (q � p) � (1 + q) � u2 :
10. u3 := normal (u3) :
11. v3 := normal (v3) :
12. u4 := u2 � v3 + p � u3 � v2
13. v4 := u4 + (q � p) � u3 � v2 :
14. u4 := normal (u4) :
15. v4 := normal (v4) :
16. u5 := u1 � v4 + p � u4 � v1 :
17. v5 := u5 + (q � p) � u4 � v1 :
18. u5 := normal (u5) :
19. v5 := normal (v5) :
20. u6 := u4 � v5 + p � u5 � v4 :
21. v6 := u6 + (q � p) � u5 � v4 :
22. u6 := normal (u6) :
23. v6 := normal (v6) :
24. w1 := (1 + p) � (1 + z) � v6� (1 + q) � u6 :
25. w1 := normal (w1) :
26. w1 := expand (w1) :
27. min(coeÆcients (w1));
28. W1 := eval (w1; q = 0) :
29. W1 := normal (W1) :
30. W1 := expand (W1) :
31. min(coeÆcients (W1));
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To obtain the polynomial w2 in equation (4.41), we follow instructions 1-15 above and
then replace instructions 16-31 by the instructions below. We denote by W2 below the
polynomial w2 evaluated at q = 0. Again, Maple will verify that the minimum coeÆcient
of w2 and of W2 is 1.

16. U5 := (1 + p) � (1 + z) � v4 + p � (1 + q) � u4 :
17. V 5 := U5 + (q � p) � (1 + q) � u4 :
18. U5 := normal (U5) :
19. V 5 := normal (V 5) :
20. U6 := u4 � V 5 + p � U5 � v4 :
21. V 6 := U6 + (q � p) � U5 � v4 :
22. U6 := normal (U6) :
23. V 6 := normal (V 6) :
24. U7 := U5 � V 6 + p � U6 � V 5 :
25. V 7 := U7 + (q � p) � U6 � V 5 :
26. U7 := normal (U7) :
27. V 7 := normal (V 7) :
28. w2 := (1 + p) � (1 + z) � V 7� (1 + q) � U7 :
29. w2 := normal (w2) :
30. w2 := expand (w2) :
31. min(coeÆcients (w2));
32. W2 := eval (w2; q = 0) :
33. W2 := normal (W2) :
34. W2 := expand (W2) :
35. min(coeÆcients (W2));
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