GEVREY CLASS REGULARITY FOR ANALYTIC
DIFFERENTIAL-DELAY EQUATIONS

Roger D. Nussbaum!, Gabriella Vas?

Abstract This paper considers differential-delay equations of the form 2’ (t) =
p(t) x (t — 1), where the coefficient function p: R — C is analytic and not bounded
on any J-neighborhood of the intervals (—oo,7], v € R. For these equations, we
cannot apply the known results regarding the analyticity of the bounded solutions
z: (—o0,v] = C. We prove Gevrey class regularity for such solutions.
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1. INTRODUCTION

The analyticity of globally defined bounded solutions of autonomous analytic
delay equations was studied first in [6]. The result of [6] was generalized to the
nonautonomous case in [4]. Paper [4] verifies that if v € R, z: (—o00,7] —» C"is a
bounded, uniformly continuous solution of

o (t) = f (£, @)

on (—o0,v], and f is analytic and bounded on a d-neighborhood of the set
{(t,zy) : t € (—00,7]}, then z is real analytic, i.e, there exists an open neighbor-
hood V of (—00, 7] and a complex analytic map & : V — C" such that 2|(_cy = .
It is an interesting question whether the condition regarding the boundedness of f
can be relaxed.

The result of [4] is not applicable to equations of the form

1) o () =pt)z(t-1)

if p is analytic but not bounded on any é-neighborhood of (—oo,v]. Typical examples
of such coefficient functions are p (t) = ¢ and p () = sin (t9) with an integer ¢ > 2.
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|/ (to)] > 1. Let zp € R be given. The paper [3] gives a mild technical condition
under which equation (2) with initial value z (¢o) = xo has no analytic solution in
any open neighborhood of ¢t = ty. Using the results of [3], we easily show at the end
of this paper that such solutions are not of Gevrey class ¢ for any ¢ > 1 either.

2. THE PROOF OF THE THEOREM

The proof of the theorem relies on two lemmas and estimates on the derivatives
of the coefficient function p.
Recall that by the product rule,

RO =3 (M) 610 0

i

i=0
foralln e N={0,1,2,...}, /i € C"(R,C), fo» € C"(R,C) and ¢t € R. Hence for
any solution z: R — C of equation (1), t € Rand n € N with n > 1,

®) =3 ("7 ) 0 -1,

We use this observation to express z(™ (), n > 1, t € R, as a function of the values

z(t—k), ke {1,...,n}, and the derivatives of p at ¢ — [, where [ € {0,...,n — 1}.
Forallm>1and 1 <k <n, let Z(n,k) denote the sum taken over the elements

of the set

(4) S = {00 J1s o dk) ENFLim =g > j1 > ... > iy =0}

Lemma 1. Assume that z: R — C satisfies equation (1) on R. Then for allt € R
andn > 1,

™ (¢ ank )z (t—k),

where

pUi=1=du41) (t-1)
() Gnk (t) = n! Z(n K H

Ji .7l -1- Jl+1)

forallte R, n>1landl <k <n.

Note that by Lemma 1,
n—1

gny () = 7 (1) and  gnp(t) = Hp (t—1) forte Rand n > 1.
=0

Proof. 1t is clear that (™ (t) exists for all t € R and n > 1.

The proof goes by induction on n. By definition, ¢11 (t) = p (¢) for all real ¢, hence
the assertion holds for all ¢ € R and n = 1. Let n > 2 and suppose the lemma
holds for all £ € R and ¢ € N with 1 <4 < n. Then applying (3) and our induction



Let x: R — C be a solution of equation (1) on R such that |z (t)| < M for allt < .
Then

ix(n) (t)| < M (2C)" (|t + n)(q_l)n nl for allt <ty andn € N,

Proof. By assumption we have |z ()| < M (2C)° (max (|t|, 1)) 0! for all £ < t,.
Fix n > 1 and ¢t <1y. According to Lemma 1,

o () = > g )2 (6 B),
fom=1

where the coeflicient functions g, k, £ € {1,...,n}, are defined by (4) and (5). The
estimate (8) implies that

[ (- (Gi—1-g1+1)
Ch=t (max (|t — 1], 1 +
g O < S T et = 1], 1))
(n:k) 1=0 N
for all 1 < k < n. Notice that
max (|t —1],1) <|t|+k foranyk>1land 0<I<k—1.

Observe that )
|Sn | = (Z: ) forall 1 < k <n,

1

moreover,

k—1 k-1

Yoii-l-jm=jo—ji—k=n—k and [[i=n(k-1)

=0 =0
hold for all 1 <k <n and (jo,J1,-..,Jk) € Snp-

Hence
1
i (0] < (n—1)! O (4] o p\e D k)
s (O € (= DY =g O (I + )
1
= (n— 1S, o" (1t (g—1){(n—k)

= (n—1)! (Z B i) T . 37O (1t + ) (a0 k)
forall 1 <k <n, and
(9) i i
6 0] < 3 lans Ol ¢ = Bl < MO = 11Y

If we note that ) ) .
- n —
— < < on—1
(k—l) (k—=1)!~ (k——l) -

n—1\ (jt] + k) DOk
k—1 (k — 1)1



For each u € C,

q—1

uq—tqzn(u—nkt), where nk:ezzik, ke{0,1,...,¢—1} and i =+/—1.
k=0

It follows that

iy o (=10 i T -
(12) eilv Z =y = [ w—mty.
§=0 ! §=0 Y k=0

For each j > 0, define a set R, 4; of g-tuples as

g—1 :
Ry = {(lmll,---:lq—ﬁENinba:n, lo =7, OSlijforlﬁkSq—l}-
k=0

Let 3.™%7) denote the sum taken over the elements of R,,;. Let DI denote the
n-fold differentiation with respect to .

Note that o =1 and np # 1 if 1 < k < g — 1. This observation and the product
rule for higher order derivatives together give that

g—1 q—1 .
j (na‘L] i —{
DT (= mit) fume =Y TR |H _l (b=t
Pl otlhl. gl (5= Uk)

S (TL:‘Z)j) q_ ] i—1]
— plai—n 1—n) %,
DY H(l)< m)

As iy <jforall 0 <k <g—1, we see that n < gj. The above sum is nonempty if
and only if
“<ji<n
q
Substituting into equation (12), we deduce that
Dzeiu‘I'urt — eitq Dzei(uq—tq)lu:t
3 ng.j) e _
— it? Zplp—n i J k
= 3 Do 3 ( > |
F<i<n k=0

Actually we eventually shall need a formula for DPe****, where o € R is a constant.
However, such a formula follows easily from the above formula for De'’. Select
B € C such that 8¢ = « and write v = St. Then

D?ei(ﬁt)q — BnD;Leiuq |u=ﬁt‘



Our estimates imply that

Dreiat? < al : n! — (n — §)! (max (¢, 1 (¢=1)n 92(q-1)j+q~2
¢ 3t (n —5)!

<27 e (1] 1) 0= 3 (1) (lad 22,

<j<n

3

where j, denotes the smallest positive integer j such that n/q < j < n. By the
binomial theorem,

> (?) (lo] 220-0) < 3~ (7;) (1] 226-9) — (14 |a] 220-0)",

h<j<n 0<jsn

S0

(13) | Dpee®| < 2972 (max (Jt], 1)) 0" (14 [ 407D)" (n = j)1.

We conclude that there exists a constant C' > 1 such that for all ¢t € R and n € N,
| D] < ™ (max (Jt], 1)) 7" (n — 5)! < O™ (max (|t], 1))l

As a consequence we can verify the Theorem.

Proof of Theorem. Let p(t) = Y., cp Ame™ " for all ¢ € R, where F' is a finite
set of integers, A,, € Cform € F, w > 0, Ag-= 0 and ¢ > 2 is an integer. Our
calculations above show that p satisfies inequality (8) in Lemma 2. The boundedness
of = on intervals of the form (—oo,t] is clear because lim;.,. ., z (¢) exists and is
finite. If one applies Lemma 2 and uses Stirling’s formula, the theorem follows. [

Remark. In fact, with the aid of the advanced calculus form of Stirling’s formula,
one can replace (n — 7,)! in (13) with (n!)*Y/4,
It is obvious that (n — j.)! = 1 for n = 1,2 because ¢ > 2. Thus we can assume
that n > 3.
Note that n/q < j, <n/g+ 1, so if we choose g, > 0 such that j. = n/qg,, then
l§—1—<-1——|—l and n—ﬁzn——£>n—ﬁ—1.
a G g n q d« q
Also, since n > 3 and ¢ > 2, it is true that n —n/qg > 1.

By Stirling’s formula,




We know from Theorem 4.2 in [3] that the finite limit lim,,_,o, wy, = We exists, and
if we # 0, then equation (14) with initial value y (0) = yo has no analytic solution
in any neighborhood of £ = 0. It is clear that the corresponding solutions of (2) are
also nonanalytic.

We claim that if we # 0, then the solutions y of (14) with y(0) = yo do not
belong to any Gevrey class in any neighborhood of £ = 0 either. We can prove this
by contradiction. Suppose that the solution y is of Gevrey class ¢ with some ¢ > 1
in a neighborhood of £ = 0. Then there exists a constant C' > 0 such that

ly(n) (0)] < ™ (nl)* for all n € N.

As wy # 0, there exists a constant w > 0 such that |w,| > w for all large n. Then
for such n, the definition of w, and Stirling’s formula together yield that

NI w < [y )] < 0 ) < 0 (2)T (2nm et

Taking the n'® root, we obtain that
T < CY*% (2mn)n e
nt T eyl

Applying L’Hopital’s rule repeatedly, we see that

(16) for all large n.

This is a contradiction as the right hand side of (16) is bounded.

According to [7], the composite of Gevrey functions is of Gevrey class again. This
implies that if 2 is a solution of (2) corresponding to a solution y of (14) with
W # 0, then 2 cannot be of Gevrey class ¢ in any neighborhood of ¢ = ¢, for any
g > 1 either.
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