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Abstract. We consider a broad class of linear Perron–Frobenius oper-
ators Λ : X → X, where X is a real Banach space of Cm functions.
We prove the existence of a strictly positive Cm eigenvector v with
eigenvalue r = r(Λ) = the spectral radius of Λ. We prove (see Theo-
rem 6.5 in Sect. 6 of this paper) that r(Λ) is an algebraically simple
eigenvalue and that, if σ(Λ) denotes the spectrum of the complexifi-
cation of Λ,σ(Λ)\{r(Λ)} ⊆ {ζ ∈ C

∣∣|ζ| ≤ r∗}, where r∗ < r(Λ). Fur-

thermore, if u ∈ X is any strictly positive function, ( 1rΛ)k(u) → suv
as k → ∞, where su > 0 and convergence is in the norm topology on
X. In applications to the computation of Hausdorff dimension, one is
given a parametrized family Λs, s > s∗, of such operators and one wants
to determine the (unique) value s0 such that r(Λs0) = 1. In another
paper (Falk and Nussbaum in Cm Eigenfunctions of Perron–Frobenius
operators and a new approach to numerical computation of Hausdorff
dimension, submitted) we prove that explicit estimates on the partial
derivatives of the positive eigenvector vs of Λs can be obtained and that
this information can be used to give rigorous, sharp upper and lower
bounds for s0.
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1. Introduction

The motivation for this paper comes from the problem of finding rigorous,
sharp estimates for the Hausdorff dimension of “invariant sets” for iterated
function systems or for graph directed iterated function systems. We refer,
for example to [9,18,19,21–32,40,44] for definitions, background information
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and discussions of some interesting examples. In [40] a general construction
is given which associates to a graph directed iterated function system a fam-
ily of “Perron–Frobenius” operators Ls defined naturally for s > s∗, where
s∗ = 0 if there are only finitely many functions in the graph directed it-
erated function system and Ls∗ is defined in that case. A generalization of
the Krein–Rutman theorem is used in [40] to prove that Ls has a strictly
positive, Hölder continuous eigenvector vs with eigenvalue rs > 0, rs equals
the spectral radius of Ls, which we denote by r(Ls), and s → rs, s > s∗,
is a strictly decreasing, continuous positive function. Related results can be
found in §5 and §6 of [38]. Under natural conditions on the graph directed
iterated function system (so, in particular, the functions θ in the iterated
function system must be “infinitesimal similitudes”), the Hausdorff dimen-
sion s0 of the invariant set satisfies s0 = inf{s > s∗

∣∣r(Ls) < 1} and usually
r(Ls0) = 1. The problem thus becomes one of efficient and rigorous estima-
tion of the value of s0 such that r(Ls0) = 1; but despite this explicit formula,
high order, rigorous approximation of s0 is, in general, a nontrivial problem.

Typically, one can consider the linear maps Ls as bounded linear maps
from a real Banach space X to itself; but many choices of X are possible, and
in general, σ(Ls) (by which we mean the spectrum of the complexification
of Ls) depends sensitively on the choice of X, although our later theorems
will usually imply that r(Ls) is independent of X. In certain special cases X
can be taken as a real Banach space of analytic functions (see our remarks
below) and then the map Ls : X → X is almost always compact and possibly
(see [19]) of trace class. In general, however, one cannot hope to find a real
Banach space X of analytic functions such that Ls maps X to X; and this
motivates the theme of this paper, which is to study linear Perron–Frobenius
operator or “transfer operators” in real Banach spaces of Cm functions.

Before proceeding further, it may be useful to give the reader some
motivating examples. Let J ⊂ R be a closed, bounded interval, B a finite
index set and, for b ∈ B, let θb : J → J be a Cm map. Assume that there
exists a constant c < 1 such that, for all b ∈ B,

sup
x∈J

|θ′
b(x)| ≤ c.

Suppose, also, that θ′
b(x) ̸= 0∀x ∈ J and ∀b ∈ B. Define, for s ≥ 0, a

bounded linear map Lm,s : Ym := Cm(J) → Ym

(Lm,sf)(x) =
∑

b∈B

|θ′
b(x)|sf(θb(x)).

Then there exists a unique, compact, nonempty setK such thatK =
⋃

b∈B θb
(K); and Theorem 6.5 below implies that there exists a unique (to within
scalar multiples) strictly positive eigenvector vs ∈ Ym\{0} of Lm,s with eigen-
value r(Lm,s) > 0. If, for example, θb(K) ∩ θb′(K) = ∅ for all b, b′ ∈ B with
b ̸= b′, then s0, the Hausdorff dimension of K, equals the unique value of s
for which r(Lm,s) = 1.

If there exists an open neighborhood U ⊂ C of K such that each map
θb : K → K extends to an analytic map

∼
θb : U → C, then one can find a real
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Banach space Z of analytic functions and a bounded linear map Λs : Z → Z
such that r(Λs) = r(Lm,s). However, in general, this is not possible, and one
is forced to work with Ls : Ym → Ym.

Our next motivating example concerns an invariant set for a finite col-
lection of analytic maps. Let G ⊂ C be a bounded, open connected set; we
identify C with R2 and (x+ iy) with (x, y). Let B be a finite index set and
for b ∈ B let ϕb : G → G be an analytic map such that ϕb(G) ⊂ G and
( d
dz )ϕb(z) ̸= 0 for all z ∈ G and for all b ∈ B. Let H be a bounded, open

connected set such that ϕb(G) ⊂ H and H̄ ⊂ G for all b ∈ B. For each
integer m ≥ 0, let Ym := Cm(H̄) denote the real Banach space of continuous
real-valued functions f : H → R which have continuous partial derivatives
of all orders less than or equal to m and all of whose partial derivatives of
order less than or equal to m extend continuously to H̄. For s ≥ 0, define a
Perron–Frobenius operator Lm,s : Ym → Ym by

(Lm,sf)(z) =
∑

b∈B

∣∣∣∣

(
d

dz

)
ϕb(z)

∣∣∣∣
s

f(ϕb(z)).

It is a consequence of Theorem 6.5 of this paper and the Caratheodory–
Reiffen–Finsler metric (see §6 of [40]) that for m ≥ 1, Lm,s has a unique (to
within scalar multiples), strictly positive eigenvector vs with an algebraically
simple eigenvalue r(Lm,s) > 0. Furthermore, if σ(Lm,s) denotes the spectrum
σ(L̂m,s) of the complexification L̂m,s of Lm,s, then there exits a number
ρm,s < r(Lm,s) such that |z| ≤ ρm,s for all z ∈ σ(L̂m,s) := σ(Lm,s) with
z ̸= r(Lm,s).

Several points should be made about the above result. The spectral
radius r(Lm,s) is independent of m for m ≥ 0, but σ(L̂m,s) varies with
m. The eigenvector vs is C∞, but despite the analyticity of the functions
ϕb : G → G, it is not in general possible to study the operator Lm,s in a real
Banach space of analytic functions. There is a unique compact, nonempty
set K ⊂ H such that K =

⋃
b∈B θb(K); and under further assumptions, the

Hausdorff dimension of K equals s0, where s0 is the unique value of s for
which r(Lm,s) = 1.

If I1 := {m+ni|m ∈ N, n ∈ Z, i =
√

−1}, and if B is a subset of I1, for
b ∈ B define θb(z) = ( 1

z+b ). In this generality one can easily find a bounded,
open connected set G and a compact set D ⊂ G such that θb(G) ⊂ D for all
b ∈ B. IfB is a subset of N, the positive integers, Jenkinson and Pollicott [19]
have shown that Ls can be considered as a bounded linear map Ls : X → X,
where X is a real Banach space of analytic functions. Exploiting this fact
and trace class arguments they obtain, at least if |B| is not large, very high
order approximations to the unique value s0 for which r(Ls0) = 1. However,
such an approach is not applicable if B is not a subset of N; and if B ⊂ N
but |B| is large, the Jenkinson–Pollicott approach may not be optimal.

In ongoing joint work [14] with Professor Richard Falk we have taken
a different viewpoint. We consider a general class of parametrized Perron–
Frobenius linear operators Ls : Y → Y , where Y is a Banach space of Cm

real valued functions f : H̄ → R and H is a bounded, open subset of Rn.
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Starting from the fact, which will be proved here, that Ls has a strictly
positive Cm eigenvector vs, we prove in [14] that one can obtain explicit
bounds on certain partial derivatives of vs and that this information can be
used to improve greatly the accuracy of estimates for r(Ls) and for s0, where
s0 is the unique value of s such that r(Ls) = 1.

We mention an example which is given in [30] and which illustrates the
power of the approach outlined above. Let B = {m + ni

∣∣m ∈ N, n ∈ Z, i =√
−1} and for b = m+ ni ∈ B, let ϕb(z) = 1

z+b . If G = {z ∈ C
∣∣|z − 1

2 | ≤ 1
2}

it is easy to show that ϕb(Ḡ) ⊂ Ḡ.
There is a naturally defined “invariant set” J ⊂ Ḡ such that J =⋃

b∈J ϕb(J). Associated to the iterated function system {ϕb

∣∣b ∈ B} there
is, for s > 1, a bounded linear operator Ls : Y := C(Ḡ) → Y , but we take
X = C2(Ḡ) and view Ls as a bonded linear map Λs : X := C2(Ḡ) → X
and note that Ls has a strictly positive eigenvector in X. The operator Ls is
defined in this case by

(Ls(f))(z) =
∑

b∈B

∣∣∣∣

(
1

z + b

)∣∣∣∣
2s

f(ϕb(z)).

If dimH(J) denotes the Hausdorff dimension of J , it is proved in [14] that
1.854 < dimH(J) < 1.857. Mauldin and Urbanski proved in [30] that 1.2484
< dimH(J) and claimed (no details were given) that dimH(J) < 1.9. In his
2011 Rutgers University Ph.D. dissertation, Amit Priyadarshi proved that
1.787 < dimH(J).

We shall actually consider a class of “Perron–Frobenius operators” or
“transfer operators”, Λs, more general than those which arise in the formulas
for Hausdorff dimension. See Eq. (4.3) in Sect. 3 below. No simplification in
the proofs is achieved by considering the less general case; and the general
case has independent interest.

Indeed, there is a very large literature concerning “transfer operators”;
see, for example, Baladi’s book [4] and the references there. We believe that
the results in this paper may prove useful in contexts other than computa-
tion of Hausdorff dimension. We should also mention that the problem of
analyzing {s|r(Ls) = 1}, where {Ls|s > 0} is a parametrized family of linear
operators, arises naturally in studying bifurcation of solutions of Fs(x) = x,
where {Fs : s > 0} is a parametrized family of nonlinear cone mappings. See
[36].

The basic goal in this paper is (a) to prove the existence of a nonnegative
Cm eigenvector vs of Λs with eigenvalue rs equal to the spectral radius of
Λs, (b) to establish, under further assumptions, the existence of a strictly
positive Cm eigenvector vs and (c) to establish some basic facts about σ(Λs),
the spectrum of the complexification of Λs. Unlike most of the literature, e.g.
[19], we use generalizations of the Krein–Rutman theorem [23] rather than
thermodynamic formalism to study the problem.

A brief outline of this paper may be in order.
Section 2 reviews notation from [40] and proves some elementary results.
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Section 3 has been included in an effort to make the paper self-contained.
The reader who is familiar with basic facts about measures of noncompact-
ness, the essential spectrum and the radius of the essential spectrum can skip
most of Sect. 3. Note, however, Theorem 3.1, which generalizes the Krein–
Rutman theorem and appears not to be well known.

In Sect. 4 the class of operators Λ of interest is introduced, and it is
proved in Theorem 4.6 that Λ has a nonnegative Cm eigenvector with eigen-
value r equal to the spectral radius of Λ. Here Λ : X → X, where X is a real
Banach space of Cm functions as in Eq. (2.17). The key tool is Lemma 4.5,
which proves that ρ(Λ), the essential spectral radius of Λ, satisfies ρ(Λ) < r.
This implies that σ(Λ) ∩ {z ∈ C

∣∣|z| > ρ(Λ)} comprises only eigenvalues and
that these eigenvalues are isolated points in σ(Λ) and have finite algebraic
multiplicity. (Here σ(L) denotes the spectrum of Λ̄, the complexification of
Λ.)

In Sect. 5 it is proved (see Theorem 5.7) that if the assumptions in
Sect. 4 are strengthened, Λ has a strictly positive Cm eigenvector v with
eigenvalue r.

In Sect. 6, under a further strengthening of hypotheses in Sect. 4, it is
proved in Theorem 6.5 that r is an algebraically simple eigenvalue of Λ with
a strictly positive Cm eigenvector v and that there exists r∗ < r such that
σ(Λ)\{r} ⊆ {ζ ∈ C

∣∣|ζ| ≤ r∗}. Furthermore, for every u ∈ X, there exists
su ∈ R such that limk→∞( 1rΛ)k(u) = suv in the Cm norm topology on the
Banach space X; and necessarily su > 0 for a large subset of X.

Theorem 4.6 in Sect. 4, Theorem 5.7 in Sect. 5 and Theorem 6.5 in
Sect. 6 are the main results of this paper; and, as we have noted, they play
a crucial role in a sequel paper [14] which treats the rigorous approximation
of the Hausdorff dimension of certain fractal sets.

With regard to eventual applications, we have included the case of graph
directed iterated function systems. However, it must be admitted that the
graph directed case leads to a considerable increase in notational complexity,
although the underlying conceptual framework of the proof is the same as
in the ordinary iterated function system case. For this reason, we have also
included, immediately after the statements of the major theorems, corollaries
which state these same theorems in the iterated function system case. Readers
wishing to appreciate the flavor of our results may wish to start with these
corollaries.

2. Notation, Definitions and Some Elementary Results

For the reader’s convenience, we begin by recalling some definitions and no-
tations from [40]. Throughout this paper V := {i ∈ N : 1 ≤ i ≤ p} and E will
denote finite sets. In the original construction of Mauldin and Williams [30]
of a “graph-directed iterated function system”, V is the set of vertices and E
the set of edges of a directed multigraph. We shall consistently denote by Γ
a given subset of V × E and by α : Γ → V a given map. For i ∈ V , we shall
consistently denote sets Γi and Ei by
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Γi := {(j, e) ∈ Γ
∣∣α(j, e) = i} and (2.1)

Ei := {e ∈ E
∣∣(i, e) ∈ Γ}. (2.2)

We shall usually assume
(H1.1) For all i ∈ V,Γi is nonempty and Ei is nonempty.

As in [40], for a positive integer µ ≥ 1 and i ∈ V , we define

Γ(µ) = {[(i1, e1), (i2, e2), . . . , (iµ, eµ)] : (ij , ej) ∈ Γ for 1 ≤ j ≤ µ

and α(ij+1, ej+1) = ij for 1 ≤ j ≤ µ − 1} (2.3)

and

Γ(µ)
i = {[(i1, e1), (i2, e2), . . . , (iµ, eµ)] ∈ Γ(µ) : α(i1, e1) = i}. (2.4)

Later, we shall need close “relatives” of the sets Γ(µ) and Γ(µ)
i . If µ is a

positive integer and k ∈ V , we define sets Γ̄(µ) and Γ̄(µ)
k by

Γ̄(µ) = {[(k1, e1), (k2, e2), . . . , (kµ, eµ)] : (kj , ej) ∈ Γ, 1 ≤ j ≤ µ

and kj+1 = α(kj , ej) for 1 ≤ j ≤ µ − 1} (2.5)

and

Γ̄(µ)
k = {[(k1, e1), (k2, e2), . . . , (kµ, eµ)] ∈ Γ̄(µ) : k1 = k}. (2.6)

If one is only interested in “iterated function systems” as opposed to
“graph-directed iterated function systems”, most of the above notational
complexity vanishes. In the iterated function system case, V = {1},Γ =
{1} × E and α(1, e) = 1 for all e ∈ E . In essence, V no longer plays
any role, and one can identify Γ with E . With this identification, Γ(µ) =
{[e1, e2, . . . , eµ] : ej ∈ E for 1 ≤ j ≤ µ} and Γ(µ) = Γ(µ)

1 = Γ̄(µ) = Γ̄(µ)
1 . In

our later work the reader should keep this simpler case in mind: the essential
difficulties remain, but some of the notational complexities vanish.

Our work here will sometimes involve choosing a norm on Rn, although
the final theorems will be independent of the particular norm chosen. Recall
that any two norms ∥ · ∥ and | · | on Rn are equivalent, in the sense that there
are positive constants a and b such that

a∥x∥ ≤ |x| ≤ b∥x∥ ∀x ∈ Rn.

Nevertheless, it will sometimes be convenient to use norms ∥ · ∥∞ and ∥ · ∥1,
where

∥x∥∞ := max{|xi| : 1 ≤ i ≤ n}, x = (x1, x2, . . . , xn) (2.7)

and

∥x∥1 :=
n∑

i=1

|xi|, x = (x1, x2, . . . , xn). (2.8)

If A = (aij) is an n × n matrix with real entries, A defines a bounded linear
map of Rn to Rn by x → Ax, where x ∈ Rn is an n × 1 column vector. It is
known that
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∥A∥1 := max{∥Ax∥1 : ∥x∥1 ≤ 1} = max
1≤j≤n

n∑

i=1

|aij | (2.9)

and

∥A∥∞ := max{∥Ax∥∞ : ∥x∥∞ ≤ 1} = max
1≤i≤n

n∑

j=1

|aij | (2.10)

For i ∈ V,Gi will always denote a bounded open subset of Rn for 1 ≤
i ≤ p := |V |. As usual, C(Ḡi) := Yi will denote the real Banach space of
continuous maps fi : Ḡi → R, with ∥fi∥ := max{|fi(x)| : x ∈ Ḡi}. We shall
always denote by Y the real Banach space

∏p
j=1 Yj , so

Y := {(f1, f2, . . . , fp) : fj ∈ C(Ḡj) = Yj for 1 ≤ j ≤ p}. (2.11)

We shall define ∥(f1, f2, . . . , fp)∥Y by

∥(f1, f2, . . . , fp)∥Y := max{∥fj∥ : 1 ≤ j ≤ p}. (2.12)

We define K ⊂ Y by

K := {(f1, f2, . . . , fp) ∈ Y
∣∣fj(x) ≥ 0∀x ∈ Gj , 1 ≤ j ≤ p}. (2.13)

Note thatK is a “closed cone in Y ”, i.e.,K is closed and convex in Y,λK ⊂ K
for all λ ≥ 0 and K ∩ (−K) = {0}, where −K := {−f : f ∈ K}.

If Z is a real Banach and A : Z → Z is a bounded linear operator, recall
that standard functional analysis [10] tells us that r(A), the spectral radius
of A, is given by

r(A) := lim
n→∞

∥An∥ 1
n = inf

n≥1
(∥An∥ 1

n ). (2.14)

If we define Ẑ = {(u, v) : u, v ∈ Z} and identify (u, v) with u+iv, i =
√

−1, Ẑ
becomes a complex vector space. If we define

∥(u, v)∥ := max{∥u cos θ + v sin θ∥ : 0 ≤ θ ≤ 2π}. (2.15)

Ẑ becomes a complex Banach space with norm given by (2.15). The complex
Banach space Ẑ is called the “complexification of Z”. The map A extends to
a complex linear map Â : Ẑ → Ẑ if we define Â(u+ iv) = Au+ iAv; and one
can check that ∥Â∥ = ∥A∥ and ∥(Â)n∥ = ∥(Ân)∥ = ∥An∥, so r(Â) = r(A). It
now follows from standard functional analysis that

r(A) = r(Â) = max{|λ|
∣∣λ ∈ σ(Â)},

where σ(Â) := {λ ∈ C
∣∣λI − Â is not one-one and onto Ẑ} is the “spectrum

of Â” and I is the identity operator on Ẑ.
We shall need the following elementary lemma

Lemma 2.1. Let Y and K be given by Eqs. (2.11) and (2.13) respectively and
define u = (u1, u2, . . . , up) ∈ K by uj(x) = 1 for all x̄ ∈ Ḡj , 1 ≤ j ≤ p.
Suppose that A : Y → Y is a bounded linear map such that A(K) ⊂ K. Then
r(A), the spectral radius of A satisfies r(A) = limk→∞ ∥Ak(u)∥ 1

k .
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Proof. We know that r(A) = limk→∞ ∥Ak∥ 1
k . Thus it suffices to prove that

∥Ak∥ = ∥Ak(u)∥. Since ∥u∥ = 1, we certainly have that

∥Ak(u)∥ ≤ ∥Ak∥∥u∥ = ∥Ak∥.

On the other hand, if f = (f1, f2, . . . , fp) ∈ Y and ∥f∥ ≤ 1,−uj(x) ≤
fj(x) ≤ uj(x) for all x ∈ Ḡj , 1 ≤ j ≤ p, so u − f ∈ K and u+ f ∈ K. Since
Ak(K) ⊂ K,Ak(u− f) = Aku−Akf ∈ K and Ak(u+ f) = Aku+Akf ∈ K.
If g, h ∈ Y , we write g ≤ h if h − g ∈ K. If −h ≤ g and g ≤ h, one can see
that h ∈ K and ∥g∥ ≤ ∥h∥. In our case, writing g = Ak(f) and h = Ak(u)
we see that −h ≤ g and g ≤ h, so ∥Ak(u)∥ ≥ ∥Ak(f)∥. It follows that
∥Ak(u)∥ ≥ sup{∥Ak(f)∥ : ∥f∥ ≤ 1} = ∥Ak∥, so ∥Ak∥ = ∥Ak(u)∥. !

For a fixed positive integer m, suppose that ψ : Gj → R is m times
continuously differentiable. More precisely, if β = (β1,β2, . . . ,βn) is any n-
tuple of nonnegative integers (a “multi-index”) with

∑n
i=1 βi := ∥β∥1, we

write

(Dβψ)(x) = (Dβ1
1 Dβ2

2 · · ·Dβn
n ψ)(x),

where Dj := ∂
∂xj

. We assume that x → (Dβψ)(x) is defined, continuous and
bounded on Gj for all multi-indices β with ∥β∥1 ≤ m. We shall say that
ψ ∈ Cm(Ḡj) if and only if x → Dβψ(x) is defined, continuous and bounded
on Gj and x → Dβψ(x) extends to a continuous function on Ḡj for every
multi-index β with ∥β∥1 ≤ m. We shall always write Xj := Cm(Ḡj). If
ψ ∈ Xj , we define ∥ψ∥Xj by

∥ψ∥Xj := sup{|Dβψ(x)| : x ∈ Gj , ∥β∥1 ≤ m,β a multi-index}. (2.16)

It is known (and not hard to prove) that Cm(Ḡj) := Xj is a real Banach
space.

For p = |V |, we shall always denote by X the real Banach space∏p
j=1 Xj , so

X := {(f1, f2, . . . , fp)
∣∣fj ∈ Cm(Ḡj) := Xj , 1 ≤ j ≤ p}. (2.17)

For f = (f1, f2, . . . , fp) ∈ X, we define

∥f∥X = max{∥fj∥Xj : 1 ≤ j ≤ p}. (2.18)

If A : Y → Y is a bounded linear operator, where Y is given by Eq. (2.11),
it may happen that A(f) ∈ X for all f ∈ X, where X is given by Eq. (2.17).
In this case one can define B : X → X by B(f) = A(f) for f ∈ X, and
the closed graph theorem implies that B : X → X is a bounded linear map
of the Banach space X to X. In this situation, it is natural to ask whether
r(B) ≥ r(A), where r(B) (respectively, r(A)) denotes the spectral radius of
B (respectively, A).

Lemma 2.2. Let assumptions and notation be as in Lemma 2.1, so A : Y → Y
is a bounded linear map and A(K) ⊂ K. Assume in addition that A(f) ∈ X
for all f ∈ X. Then A defines a bounded linear operator B : X → X by
B(f) = A(f) for f ∈ X and r(B) ≥ r(A).
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Proof. As noted above, the closed graph theorem implies that B : X → X is
a bounded linear operator. Lemma 2.1 implies that

r(A) = lim
k→∞

∥Ak(u)∥ 1
k ,

where u is defined as in Lemma 2.1. Notice that ∥u∥Y = ∥u∥X = 1, while
∥f∥X ≥ ∥f∥Y for all f ∈ X. Thus we obtain

∥Bk∥ ≥ ∥Bk(u)∥X ≥ ∥Bk(u)∥Y = ∥Ak(u)∥Y .

It follows that

r(B) = lim
k→∞

∥Bk∥ 1
k ≥ lim

k→∞
∥Ak(u)∥

1
k
Y = r(A),

which completes the proof. !

It will be convenient to assume that the boundaries of the bounded open
sets Gj ⊂ Rn, 1 ≤ j ≤ p, satisfy a mild regularity condition.

Definition 2.3. Let H be a bounded open subset of Rn. We shall say that H is
“mildly regular” if there exist numbers η > 0 and M > 0 such that whenever
x, y ∈ H and ∥x − y∥1 < η, there exists a Lipschitz map ψ : [0, 1] → H with
ψ(0) = x and ψ(1) = y such that

∫ 1

0
∥ψ′(t)∥1dt ≤ M∥x − y∥1. (2.19)

Note that elementary real variables implies that each component of
ψ in Eq. (2.19) is absolutely continuous, so ψ′(t) exists Lebesgue almost
everywhere in Eq. (2.19) and

∫ 1

0
ψ′(t)dt = ψ(1) − ψ(0) = y − x.

Furthermore, if ψ can always be chosen in Definition 2.3 such that |ψ(t1) −
ψ(t2)

∣∣
1

≤ M |t1 − t2| for all t1, t2 ∈ [0, 1], then Eq. (2.19) will automatically
be satisfied.

If H̄ is a manifold with boundary and the coordinate charts are bi-
Lipschitz, one can prove that H is mildly regular. We omit the simple proof,
since usually for our examples of bounded open sets mild regularity will be
obvious. Note, however, that mild regularity excludes simple examples like
H = {(x, y)

∣∣− 1 < x < 1,−1 < y <
√
|x|}. With greater care we could allow

such examples but at the cost of technical complications which we prefer to
avoid.

We shall almost always assume
(H1.2) For all i ∈ V, |V | = p,Gi is a mildly regular, bounded open subset of
Rn.
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Lemma 2.4. Assume that H is a bounded, mildly regular open subset of Rn

and m is a positive integer. If S is a bounded subset of the Banach space
Cm(H̄) and β is a multi-index with ∥β∥1 < m, then {Dβh|h ∈ S} is a
bounded, equicontinuous family of functions in C(H̄), so {Dβh|h ∈ S} has
compact closure in C(H̄).

Proof. Let η and M be as in Definition 2.3; and if x, y ∈ H and ∥x−y∥1 < η,
let ψ : [0, 1] → H as in Definition 2.3. If h ∈ S and β is a multi-index with
∥β∥1 < m, we have

|Dβh(y) − Dβh(x)| =
∣∣∣∣
∫ 1

0

d

dt
(Dβh)(ψ(t))dt

∣∣∣∣

=

∣∣∣∣∣∣

∫ 1

0

n∑

j=1

(
∂

∂xj
(Dβh)

)
(ψ(t))ψ′

j(t)dt

∣∣∣∣∣∣
,

where ψ(t) = (ψ1(t),ψ2(t), . . . ,ψn(t)) and for 1 ≤ j ≤ n,ψ′
j(t) exists on

[0, 1]\E, where E has Lebesgue measure 0. Since S is bounded in Cm(H̄)
and ∥β∥1 < m, there exists a constant C such that for all u ∈ H and for
1 ≤ j ≤ n,

∣∣∣∣

(
∂

∂xj
Dβh

)
(u)

∣∣∣∣ ≤ C,

so we obtain

|Dβh(y) − (Dβh)(x)| ≤ C

∫ 1

0

n∑

j=1

|ψ′
j(t)|dt

= C

∫ 1

0
∥ψ′(t)∥1dt ≤ MC∥x − y∥1.

Because u → (Dβh)(u) has a continuous extension to H̄, the same estimate
holds for all x, y ∈ H̄. This proves that {Dβh|h ∈ S} is a bounded, equicon-
tinuous set in C(H̄), which completes the proof. !

3. Measures of Noncompactness, the Essential Spectrum and
Positive Linear Operators

Our purpose here is to review for the reader’s convenience concepts and basic
theorems which will play an essential role in the later sections of this paper.

If (Z, d) is a metric space with metric d and S is a bounded subset, K.
Kuratowski [24] has defined α(S), the Kuratowski measure of noncompact-
ness (or MNC) of S, by

α(S) = inf

{
δ > 0

∣∣S =
n⋃

i=1

Si for some Si

with diam(Si) ≤ δ for 1 ≤ i ≤ n < ∞
}
. (3.1)
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As usual, the diameter of a bounded set T ⊂ Z is defined by

diam(T ) = sup{d(x, y)
∣∣x, y ∈ T}. (3.2)

and, by definition, T ⊂ (Z, d) is bounded if diam(T ) < ∞.
Kuratowski observed that:

(A1) if (Z, d) is a complete metric space and S ⊂ Z is bounded, α(S) = 0 if
and only if S̄ is compact.

Property (A1) explains the terminology “measure of noncompactness”.
It is easy to verify the following properties, which are valid for general

metric spaces (Z, d):

(A2) α(S) ≤ α(T ) for all bounded sets S ⊂ T ⊂ Z

(A3) α(S ∪ {x0}) = α(S) for all bounded sets S ⊂ Z and for all x0 ∈ Z

(A4) α(S̄) = α(S) for all bounded sets S ⊂ Z.

If (Z, ∥ · ∥) is a normed linear space (over R or C) and S and T are bounded
subsets of Z, we shall denote by co(S) the convex hull of S, i.e., the smallest
convex set containing S, and we shall write

S + T = {s+ t
∣∣s ∈ S, t ∈ T} and λS = {λs

∣∣s ∈ S},

where λ is an arbitrary scalar. If the metric d on the normed linear space Z
is given by d(x, y) = ∥x − y∥, G. Darbo [11] observed that the Kuratowski
MNC satisfies the following extremely useful properties:

(A5) α(co(S)) = α(S) for all bounded sets in Z

(A6) α(S + T ) ≤ α(S) + α(T ) for all bounded sets S, T ⊂ Z

(A7) α(λS) = |λ|α(S) for all bounded sets S ⊂ Z and all scalars λ.
Properties (A1)−(A7) (but particularly (A5)−(A7)) make the Kura-

towski MNC a useful tool in functional analysis and in fixed point theory,
and fixed point theory was Darbo’s original application in [11]. Note, for ex-
ample, that an application of (A1), (A4) and (A5) yields a classical theorem
of Mazur (see [33] or [10], pg.180): if S is a compact subset of a Banach space
Z, then the closure of co(S), is compact.

Although we shall not exploit it, the Kuratowski MNC also satisfies the
so-called “set-additivity property”, namely

(A8) α(S ∪ T ) = max(α(S),α(T )) for all bounded sets S, T ⊂ Z.

Property (A8) is true in general metric spaces (Z, d) and gives (A2) and (A3)
as special cases.

If (Z, ∥·∥) is a Banach space (real or complex), letB(Z) denote the set of
all bounded subsets of Z. A map β : B(Z) → [0,∞) is called a homogeneous
measure of noncompactness or homogeneous MNC in [28,29] if β satisfies
properties (A1)−(A7), with β replacing α in those formulas. If β and γ are
homogeneous MNC’s on a Banach space Z, we call β and γ equivalent if there
exist positive constants a and b such that

aβ(S) ≤ γ(S) ≤ bβ(S) for all bounded S ⊂ Z. (3.4)
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It is proved in [28,29] that there exist inequivalent homogeneous MNC’s
on many Banach spaces Z. We refer the reader to [1–3,5,27] for further
information about general measures of noncompactness.

If Z is a Banach space (over R or C) and B : Z → Z is a bounded
linear map, we define N(B) = {x ∈ Z|B(x) = 0}, the null space of B,
and R(B) = {B(x)|x ∈ Z}, the range of B. We also consider Z/R(B),
the vector space of equivalence classes [x], where x ∼ y iff x − y ∈ R(B).
The operator B is called “Fredholm” if dim(N(B)) < ∞,dim(Z/R(B)) :=
codim(R(B)) < ∞ and R(B) is closed; and by definition i(B) = dim(N(B))−
codim(R(B)) is the index of the Fredholm operator B. If R(B) is closed and
either (a) dim(N(B)) < ∞ or (b) codim(R(B)) < ∞, B is called “semi-
Fredholm”. These concepts are actually defined for closed, densely defined
linear operators T : D(T ) ⊂ Z → Z. We refer to Kato’s book [20] for
a detailed discussion of Fredholm and semi-Fredholm operators and their
properties.

If Z is an infinite dimensional, complex Banach space and A : Z → Z
is a bounded linear operator there are several inequivalent definitions of the
so-called “essential spectrum of A”. (These definitions also apply when A :
D(A) ⊂ Z → Z is closed and densely defined, but we shall only consider the
case that A is a bounded operator.) F. E. Browder [8] defines ess(A) to be
the set of complex λ such that (a) λ is an accumulation point of σ(A) or (b)
R(λI − A) is not closed or (c)

⋃
j≥1 N((λI − A)j) is not finite dimensional.

Recall that λ ∈ C is called an eigenvalue of A if N(λI−A) ̸= {0} and λ is said
to be of finite algebraic multiplicity m if m = dim(

⋃
j≥1 N((λI −A)j)) < ∞,

so case (c) above amounts to saying that λ is an eigenvalue of A which does
not have finite algebraic multiplicity. One can also define

ess(A) = {λ ∈ C
∣∣λI − A is not Fredholm of index 0}.

F. Wolf [46] defines ess(A) = {λ ∈ C
∣∣λI − A is not Fredholm} and T. Kato

defines ess(A) = {λ ∈ C
∣∣λI − A is not semi-Fredholm}.

By using classical results of Gohberg and Krein [15] and theorems in [20]
concerning semi-Fredholm operators, one can prove that, if Z is an infinite
dimensional, complex Banach space, ess(A) is a nonempty subset of σ(A), the
spectrum of A. Furthermore, even though the various definitions of ess(A)
are inequivalent,

ρ(A) := sup{|λ| : λ ∈ ess(A)}. (3.5)

gives the same number for any of the previous definitions of ess(A). The
number ρ(A) is called the “radius of the essential spectrum of A”. Note that
ess(A) is empty if dim(Z) < ∞, and in this case we define ρ(A) = 0.

If λ ∈ σ(A) and |λ| > ρ(A), it is known that λI − A is Fredholm of
index 0, λ is an isolated point of σ(A) and λ is an eigenvalue of A of finite al-
gebraic multiplicity. Thus, if ρ(A) < r(A) one obtains nontrivial information
concerning σ(A) ∩ {λ ∈ C

∣∣ρ(A) < |λ| ≤ r(A)}.
If Z is a infinite dimensional complex Banach space, A : Z → Z is a

bounded linear map and α denotes the Kuratowski MNC, it follows from



Vol. 84 (2016) Cm Positive Eigenvectors 369

results in [34] that

ρ(A) = lim sup
k→∞

(α(Ak(B1)))
1
k , (3.6)

where, B1 := {x ∈ Z
∣∣∥x∥ ≤ 1}. If β is a homogeneous MNC equivalent to α,

one easily obtains from (3.6) that

ρ(A) = lim sup
k→∞

(β(Ak(B1)))
1
k . (3.7)

It is proved in [29] that Eq. (3.7) is valid for any homogeneous MNC β on
X, even if β is not equivalent to α. However, it is also proved in [29] that
various other formulas in [34] do not generalize in a straightforward manner
to homogeneous MNC’s β which are not equivalent to α. Note that Eqs. (3.6)
and (3.7) give ρ(A) = 0 when Z is finite dimensional.

In our applications, Z will be a real Banach space and A : Z → Z a
bounded linear map. Recall that Ẑ := {(u, v)

∣∣u, v ∈ Z} is the complexifica-
tion of Z, that we identify (u, v) with u+ iv, i =

√
−1 and that Â(u+ iv) :=

Au + iAv defines a bounded, complex linear map of Ẑ → Ẑ. If u + iv ∈ Z,
we define ℜ(u+ iv) = u and if Ŝ ⊂ Ẑ we define ℜ(Ŝ) = {ℜ(ẑ)

∣∣ẑ ∈ Ŝ}; and if
∥ · ∥ denotes the norm on Ẑ and | · | denotes the norm on Z

∥ẑ∥ := sup
0≤θ≤2π

|ℜ(e−iθ ẑ)|. (3.8)

If β is a homogeneous MNC on Z, it is observed in [29] that one can
define a homogeneous MNC β̂ on Ẑ by defining, for Ŝ a bounded subset of
Ẑ,

β̂(Ŝ) = sup
0≤θ≤2π

β(ℜ(e−iθŜ)). (3.9)

If α is the Kuratowski MNC on Z, it is proved in Proposition 11 of [29] that
α̂ given by Eq. (3.9) gives the Kuratowski MNC on Ẑ. By using Eq. (3.9) it
is not hard to show that

β̂(Âm(B̂1)) = β(Am(B1)), (3.10)

where B̂1 := {ẑ ∈ Ẑ
∣∣∥|ẑ∥| ≤ 1} and B1 := {z ∈ Z

∣∣|z| ≤ 1}. It follows that

ρ(Â) = lim sup
m→∞

(β(Am(B1)))
1
m = lim sup

m→∞
(α(Am(B1)))

1
m . (3.11)

We shall write ρ(A) := ρ(Â) and call ρ(A) the essential spectral radius of A.
We also need to recall an old generalization [37] of the classical Krein–

Rutman theorem [23]. We refer the reader to [7,27,37–39,42,43,45] for some
of the many related results. If Z is a real Banach space, C ⊂ Z is called a
closed cone (with vertex at 0) if C is a closed convex set, {tx

∣∣x ∈ C} ⊂ C
for all t ≥ 0 and C ∩ (−C) = {0}, where −C := {−x

∣∣x ∈ C}. A closed cone
C induces a partial order ≤ on Z by x ≤ y iff y − x ∈ C.

The cone C is called “normal” if there exists a constant M such that
∥x∥ ≤ M∥y∥ whenever x, y ∈ C and x ≤ y. The cone C is “reproducing”
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if Z = {x − y
∣∣x, y ∈ C} and C is “total” if Z = closure{x − y

∣∣x, y ∈ C}.
If Z is infinite dimensional, it may easily happen that C is total but not
reproducing. If Z∗ is the dual Banach space of Z and C is a closed, total
cone in Z, then C∗ := {θ ∈ C∗

∣∣θ(u) ≥ 0∀u ∈ C} is a closed cone in Z∗.
If C is a total, closed cone in a real Banach space Z and A : Z → Z

is bounded, compact linear map such that A(C) ⊂ C and r(A) > 0, where
r(A) denotes the spectral radius of A, the classical Krein–Rutman theorem
(see [23]) implies that there exists u ∈ C\{0} with

A(u) = r(A)u.

Furthermore, if C∗ = {θ ∈ Z∗
∣∣θ(u) ≥ 0∀u ∈ C} and A∗ : Z∗ → Z∗ denotes

the Banach space adjoint of A,A∗(C∗) ⊂ C∗ and there exists θ ∈ C∗\{0}
with

A∗(θ) = r(A)θ.

Notice that because A is assumed compact with r(A) > 0, ρ(A) = 0 < r(A),
where ρ(A) denotes the essential spectral radius of A.

The following theorem is proved in Corollary 2.2 of [37] and is a direct
generalization of the Krein–Rutman theorem.

Theorem 3.1. (See Corollary 2.2. in [37]). Let Z be a real Banach space and
let A : Z → Z be a bounded linear map such that ρ(A) < r(A), where ρ(A)
denotes the essential spectral radius of A (see Eq. (3.11)) and r(A) denotes
the spectral radius of A. Assume that C is a closed, total cone in Z and
A(C) ⊂ C. Then there exist v ∈ C\{0} and θ ∈ C∗\{0} such that

A(v) = r(A)v and A∗(θ) = r(A)θ. (3.12)

4. The Existence of Cm Nonnegative Eigenvectors

In this section we shall use the notation of Sect. 2, so Gj , 1 ≤ j ≤ p = |V | will
denote bounded open subsets of Rn,m is a fixed positive integer and Y and X
are real Banach spaces as in Eqs. (2.11) and (2.17) andK ⊂ Y is a closed cone
as in Eq. (2.13). We shall define a bounded linear operator Λ : X → X such
that Λ(K∩X) ⊂ K∩X;Λ is of a type sometimes called a “Perron–Frobenius
operator”. The key difficulty will be to prove that ρ(Λ) < r(Λ).

For the reader’s convenience we list here hypotheses and notation which
we shall use in this section.

We continue to use the notation of Sect. 2.
We assume that H1.1 and H1.2 are satisfied. We shall also need the

following additional assumptions.

(H4.1) For each (j, e) ∈ Γ, b(j,e) ∈ Cm(Ḡj) := Xj where m ≥ 1. For all
x ∈ Ḡj , b(j,e)(x) ≥ 0 and for all x ∈ Ḡj ,

∑

e∈Ej

b(j,e)(x) > 0,

where Ej is as in Eq. (2.2).
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If H is a bounded open subset of Rn and θ : H → Rn,

θ(x) = (θ1(x), θ2(x), . . . , θn(x)),

we shall say that θ ∈ Cm(H̄) if θj ∈ Cm(H̄) for 1 ≤ j ≤ n.

(H4.2) For each (j, e) ∈ Γ, θ(j,e) : Gj → Rn and θ(j,e) ∈ Cm(Ḡj), where
m ≥ 1. Furthermore, θ(j,e)(Gj) ⊂ Gα(j,e), where α : Γ → V is as in Sect. 2.

Assuming (H1.1), (H1.2), (H3.1) and (H3.2) we define a bounded linear
map L : Y → Y (Y as in Eq. (2.11)) by L(f2, f2, . . . , fn)) = (g1, g2, . . . , gn),
where

gj(x) := (L(f)(x))j :=
∑

(j,e)∈Γ

b(j,e)(x)fα(j,e)(θ(j,e)(x)). (4.1)

If f = (f1, f2, . . . , fn) ∈ X (X as in Eq. (2.17)), then L(f) ∈ X. Since
L : Y → Y is a bounded linear operator, as previously noted, L defines a
bounded linear map Λ : X → X by Λ(f) = L(f) for f ∈ X.

We shall need to consider the µ-th iterates Lµ and Λµ of L and Λ. Fol-
lowing notation in Section 3 of [40], let Γ̄(µ) and Γ̄(µ)

j be given by Eqs. (2.5)
and (2.6). Given [(j1, e1), (j2, e2), . . . , (jµ, eµ)] ∈ Γ̄(µ), we shall write J :=
(j1, j2, . . . , jµ), E := (e1, e2, . . . , eµ); and we shall use (J,E) to denote [(j1, e1),
(j2, e2), . . . , (jµ, eµ)]. We have already defined b(J,E)(x) := b(j1,e1)(x) and
θ(J,E)(x) = θ(j1,e1)(x) for µ = 1, x ∈ Gj1 . Arguing inductively, if for some
µ > 1 we have defined b(J ′,E′) and θ(J ′,E′) for J ′ = (j′

1, j
′
2, . . . , j

′
µ−1), E′ =

(e′
1, e

′
2, . . . , e

′
µ−1) and (J ′, E′) ∈ Γ̄(µ−1), then for jµ = α(j′

µ−1, e
′
µ−1) and eµ

such that (jµ, eµ) ∈ Γ, J := (J ′, jµ) and E := (E′, eµ), define for x ∈ Ḡj′
1

b(J,E)(x) = b(J ′,E′)(x)b(jµ,eµ)(θ(J ′,E′)(x)) (4.2)

and

θ(J,E)(x) = θ(jµ,eµ)(θ(J ′,E′)(x)). (4.3)

This defines b(J,E) and θ(J,E) inductively for all (J,E) ∈ Γ̄(µ).
It is proved in Section 3 of [40] that for f ∈ Y and x ∈ Ḡj ,

(Lµ(f))j(x) =
∑

b(J,E)(x)fα(jµ,eµ)(θ(J,E)(x)), (4.4)

where the summation in Eq. (4.6) is taken over all J = (j1, j2, . . . , jµ), E =

(e1, e2, . . . , eµ) with (J,E) ∈ Γ̄(µ)
j and j = j1. Obviously, if f ∈ X, Eq. (4.4)

holds if we substitute Λ for L.
It remains to make a crucial assumption on the maps θ(J,E) for (J,E) ∈

Γ̄µ. Assume that Rn is given the norm ∥ · ∥1. If j1 denotes the first co-
ordinate of J and x ∈ Gj1 , let Dθ(J,E)(x) denote the Jacobian matrix of
θ(J,E), so Dθ(J,E)(x) defines a linear map of (Rn, ∥ · ∥1) to (Rn, ∥ · ∥1). We let
∥Dθ(J,E)(x)∥1 denote the norm of this linear map, so using Eq. (2.9) we see
that

∥Dθ(J,E)(x)∥1 = max
1≤j≤n

(
n∑

i=1

∣∣∣∣
∂θ(J,E)i(x)

∂xj

∣∣∣∣

)
, (4.5)
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where θ(J,E)(x) = (θ(J,E)1(x), θ(J,E)2(x), . . . , θ(J,E)n(x)).

We assume

(H4.3) There exists a constant M1 > 0 and a constant c, 0 ≤ c < 1, such that
for all (J,E) ∈ Γ̄µ, all µ ≥ 1 and all x in the domain of θ(J,E),

∥Dθ(J,E)(x)∥1 ≤ M1c
µ, (4.6)

where ∥Dθ(J,E)(x)∥1 is given by Eq. (4.5).

Remark 4.1. We could have taken a different norm | · | on Rn. Then the norm
of the linear map Dθ(J,E)(x) : (Rn, | · |) → (Rn, | · |), |Dθ(J,E)(x)| would not
be given by Eq. (4.5). However, since all norms on finite dimensional vector
spaces are equivalent, one can prove that there is a constant M2 such that
for all µ ≥ 1, all (J,E) ∈ Γ̄µ and all x in the domain of θ(J,E), |Dθ(J,E)(x)| ≤
M2cµ.

In other words, assumption (H4.3) is actually independent of the norm
on Rn, after modification of the constant M1.

We begin with an elementary lemma.

Lemma 4.2. Let (Zj , ∥ · ∥j), 1 ≤ j ≤ p, be Banach spaces over the same
scalar field (R or C) and let Z =

∏p
j=1 Zj = {(f1, f2, . . . , fp) : fj ∈ Zj for

1 ≤ j ≤ p}. For f = (f1, f2, . . . , fp) ∈ Z, define ∥f∥ = max{∥fj∥j : 1 ≤ j ≤
p} and note that Z is a Banach space. Define projections Qj : Z → Zj by
Qj((f1, f2, . . . , fp)) = fj for 1 ≤ j ≤ p. Let α denote the Kuratowski MNC
on (Z, ∥ · ∥) and let αj denote the Kuratowski MNC on (Zj , ∥ · ∥j).

If S is a bounded subset of Z

α(S) = max{αj(Qj(S)) : 1 ≤ j ≤ p}. (4.7)

Proof. The reader can verify that ∥Qj∥ = 1, so αj(Qj(S)) ≤ α(S) for 1 ≤
j ≤ p and the right hand side of Eq. (4.7) is less than or equal to the left
hand side.

Conversely, let d = max1≤j≤p αj(Qj(S)). If ε > 0 and 1 ≤ j ≤ p it
follows from the definition of αj that Qj(S) =

⋃kj

i=1 Ti,j , where kj < ∞ and
∥fj − gj∥j ≤ d + ε whenever fj , gj ∈ Ti,j , 1 ≤ i ≤ kj . Consider all p-tuples
I = (i1, i2, . . . , ip) with 1 ≤ ij ≤ kj for 1 ≤ j ≤ p. For each such p-tuple I,
define

SI = {f = (f1, f2, . . . , fp)
∣∣fj ∈ Tij ,j for 1 ≤ j ≤ p}.

If f ∈ SI and g ∈ SI , ∥fj − gj∥j ≤ d+ ε for 1 ≤ j ≤ p, so ∥f − g∥ ≤ d+ ε. It
follows that the diameter of SI in (Z, ∥ · ∥) is less than or equal to d+ ε. If I
denotes the finite collection of such p-tuples I, our construction shows that

S =
⋃

I∈I

SI ,

So α(S) ≤ d+ε. Since ε > 0 was arbitrary, α(S) ≤ d and Eq. (4.7) holds. !
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We shall apply Lemma 4.2 to X in Eq. (2.17) and Xj := Cm(Ḡj), 1 ≤
j ≤ p. For the remainder of this section, α will denote the Kuratowski
MNC on X and αj will denote the Kuratowski MNC on Xj = Cm(Ḡj).
As in Lemma 4.2, if f = (f1, f2, . . . , fp) ∈ X and Qj(f) := fj ∈ Xj , then
Lemma 4.2 implies that for any bounded subset of X,

α(S) = max{αj(Qj(S)) : 1 ≤ j ≤ p}.

If Y and Yj := C(Ḡj), 1 ≤ j ≤ p, are as in Eq. (2.11), ν will denote the Kura-
towski MNC on Y and νj the Kuratowski MNC on Yj . If f = (f1, f2, . . . , fp) ∈
Y , we shall abuse notation slightly and write Qj(f) = fj . If T is a bounded
subset of Y , Lemma 4.2 implies that

ν(T ) = max{νj(Qj(T )) : 1 ≤ j ≤ p}.

Lemma 4.3. Let Gj , 1 ≤ j ≤ p, be bounded, open subsets of Rn and assume
that H1.2 holds. If S is a bounded set in Xj := Cm(Ḡj), then

αj(S) = max
∥β∥1≤m

νj({Dβf : f ∈ S}) = max
∥β∥1=m

νj({Dβf : f ∈ S}) (4.8)

where β in Eq. (4.8) denotes a multi-index.

Proof. By Lemma 2.4 and Property (A1) of νj (see Sect. 3), if ∥β∥1 <
m, νj({Dβf : f ∈ S}) = 0. The remainder of the proof follows by the same
argument used in Lemma 4.2, but we provide the details for completeness. For
each multi-index β with ∥β∥1 ≤ m, define πβ : Cm(Ḡj) := Xj → C(Ḡj) := Yj

by f → Dβf . By definition of the norms on Xj and Yj , ∥πβ∥ ≤ 1, and it fol-
lows that

αj(S) ≥ max
∥β∥1≤m

νj(πβ(S)) := d.

Select ε > 0. By definition of νj , for each β with ∥β∥1 ≤ m, there exists a
positive integer kβ and sets Ti,β , 1 ≤ i ≤ kβ , with

πβ(S) =
kβ⋃

i=1

Ti,β

and diameter (Ti,β) < d + ε, where the diameter is taken in the metric on
Yj . There are N multi-indices β with ∥β∥1 ≤ m,N < ∞; and we label
these multi-indices β1,β2, . . . ,βj , . . . ,βN and write kj := kβj . Let I denote
the finite collection of all N -tuples I = (i1, i2, . . . , iN ), where 1 ≤ ij ≤ kj
for 1 ≤ j ≤ N . If I ∈ I , define TI = {f ∈ S

∣∣πβj (f) ∈ Tij ,βj}, where
I = (i1, i2, . . . , iN ). One can check that

S =
⋃

I∈I

TI

and that the diameter of TI in the metric on Xj is less than d+ε. Since ε > 0
was arbitrary, this shows that αj(S) ≤ d and completes the proof. !



374 R. D. Nussbaum IEOT

Lemma 4.4. Assume Hypotheses (H1.1), (H1.2), (H4.1) and (H4.2).
Then we have that r(Λ) ≥ r(L) > 0 and

∥Lµ∥ = max
1≤j1≤p

⎛

⎜⎝ sup
x∈Gj1

⎛

⎜⎝
∑

(J,E)∈Γ̄(µ)
j1

b(J,E)(x)

⎞

⎟⎠

⎞

⎟⎠ . (4.9)

Proof. Equation (4.9) follows from Lemma 2.1, Eq. (4.4) and the assumption
in (H4.1) that b(j,e)(x) ≥ 0 for all x ∈ Gj . The inequality r(Λ) ≥ r(L) follows
from Lemma 2.1.

To prove that r(Λ) > 0, it suffices to prove that r(L) > 0. (H3.1) implies
that there is a positive constant δ > 0 such that, for all x ∈ Gj and 1 ≤ j ≤ p

∑

e∈Ej

b(j,e)(x) ≥ δ.

In the notation of Lemma 2.1, this implies that

L(u) ≥ δu,

which implies that for all µ ≥ 1

Lµ(u) ≥ δµu,

so ∥Lµ∥ ≥ δµ and r(L) = lim
µ→∞

∥Lµ∥(
1
µ ) ≥ δ. !

Our next lemma provides a crucial tool for all our subsequent results.

Lemma 4.5. Assume that hypotheses (H1.1), (H1.2) and (H4.1)–(H4.3) are
satisfied and that L and Λ are given by Eq. (4.1). If B is the unit ball in X,µ
is a positive integer and M1 and c are as in (H4.3), α denotes the Kuratowski
MNC on X and m is as in (H4.1),

α(Λµ(B)) ≤ 2(nM1)m cmµ∥Lµ∥. (4.10)

Proof. Fix µ ≥ 1. By Lemma 4.2 and Eq. (4.4), there exists j, 1 ≤ j ≤ p,
such that

α(Λµ(B)) = αj

⎛

⎜⎝

⎧
⎪⎨

⎪⎩

∑

(J,E)∈Γ̄(µ)
j

b(J,E)(·)fα(jµ,eµ)(θ(J,E)(·))
∣∣f ∈ B

⎫
⎪⎬

⎪⎭

⎞

⎟⎠ ,

where f = (f1, f2, . . . , fp), J = (j1, j2, . . . , jµ) and E = (e1, e2, . . . , eµ) and
j1 = j.

By Lemma 4.2, we obtain

α(Λµ(B)) = max
∥β∥1=m

νj

⎛

⎜⎝

⎧
⎪⎨

⎪⎩
Dβ

⎛

⎜⎝
∑

(J,E)∈Γ̄(µ)
j

b(J,E)(·)fα(jµ,eµ)(θ(J,E)(·))

⎞

⎟⎠
∣∣f ∈ B

⎫
⎪⎬

⎪⎭

⎞

⎟⎠,

where β is a multi-index. If γ = (γ1, γ2, . . . , γn) is a multi-index, we shall

write γ ≤ β if γi ≤ βi for 1 ≤ i ≤ n, and a calculation gives for f ∈ B that
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Dβ

⎛

⎜⎝
∑

(J,E)∈Γ̄(µ)
j

b(J,E)(x)fα(jµ,eµ)(θ(J,E)(x))

⎞

⎟⎠

=
∑

γ≤β,γ ̸=0

cβ,γ

⎛

⎜⎝
∑

(J,E)∈Γ̄(µ)
j

(Dγb(J,E))(x)(Dβ−γfα(jµ,eµ) ◦ θ(J,E))(x)

⎞

⎟⎠

+
∑

(J,E)∈Γ̄(µ)
j

b(J,E)(x)(Dβfα(jµ,eµ) ◦ θ(J,E))(x)

where cβ,γ = β!/(γ!(β − γ)!).

For notational convenience, for a fixed multi-index β with ∥β∥1 = m,
we write

S =

⎧
⎪⎨

⎪⎩
Dβ

⎛

⎜⎝
∑

(J,E)∈Γ̄(µ)
j

b(J,E)(·)fα(jµ,eµ)(θ(J,E)(·))

⎞

⎟⎠
∣∣f ∈ B

⎫
⎪⎬

⎪⎭
,

T =

⎧
⎪⎨

⎪⎩

∑

γ≤β,γ ̸=0

cβ,γ

⎛

⎜⎝
∑

(J,E)∈Γ̄(µ)
j

Dγb(J,E)

⎞

⎟⎠(·)(Dβ−γfα(jµ,eµ) ◦ θ(J,E))(·)
∣∣f ∈ B

⎫
⎪⎬

⎪⎭
,

and

S1 =

⎧
⎪⎨

⎪⎩

∑

(J,E)∈Γ̄(µ)
j

b(J,E)(·)(Dβfα(jµ,eµ) ◦ θ(J,E))(·)
∣∣f ∈ B

⎫
⎪⎬

⎪⎭
. (4.11)

Lemma 2.4 implies that {Dδ(fα(jµ,eµ) ◦ θ(J,E))
∣∣∥δ∥ < m, (J,E) ∈ Γ̄µ

j , f ∈ B}
is bounded and equicontinuous, and it follows that T is a bounded, equicon-
tinuous family of functions in Yj = C(Ḡj), so T has compact closure in
Yj . Property (A1) of the Kuratowski MNC implies that νj(T ) = 0. Because
S ⊂ S1 + T , property (A6) implies that νj(S) ≤ νj(S1 + T ) ≤ νj(S1); and
since S1 ⊂ S, we must have that νj(S) = νj(S1).

For a fixed (J,E) ∈ Γ̄(µ)
j , write u(x) = u = θ(J,E)(x), so uk(x) =

θ(J,E)k(x). We need to evaluate Dβfα(jµ,eµ)(u) by repeated applications of
the chain rule. For notational convenience, write g = fα(jµ,eµ). The first
application of the chain rule gives

n∑

k1=1

∂g

∂uk1

∂uk1

∂xp1

=
∂

∂xp1

g(u), (4.12)

where p1, 1 ≤ p1 ≤ n, is the smallest positive integer p such that βp > 0.

In general, let pj , 1 ≤ pj ≤ n, be the integers p for which βp > 0. Assume
that p1 ≤ p2 ≤ · · · ≤ pm and pj is repeated with multiplicity βj . Thus, we
shall write p1 = p2 = p3 if βp1 = 3. By using Lemma 2.4 one can see that in
repeated applications of the chain rule, starting with (4.12), the only terms
which will affect the value of νj(S1) are terms in which partial differentiation
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has been applied to g(u)m times. Other terms will lead to sets with com-
pact closure in Yj , like the set T before. After m applications of the chain
rule (corresponding to |β| = m) and after only the terms in which partial
differentiation has been applied to g m times are retained, we obtain

Φ(f ; (J,E))(x) :=
n∑

km=1

n∑

km−1=1

. . .
n∑

k1=1

(
∂mg

∂ukm∂ukm−1 . . . ∂uk1

)
(u)

(
∂ukm(x)

∂xpm

)(
∂ukm−1(x)

∂xpm−1

)
. . .

(
∂uk1(x)

∂xp1

)
. (4.13)

This gives

νj(S1) = νj

⎛

⎜⎝

⎧
⎪⎨

⎪⎩

∑

(J,E)∈Γ̄(µ)
j

b(J,E)(·)Φ(f ; (J,E))(·) : f ∈ B

⎫
⎪⎬

⎪⎭

⎞

⎟⎠ . (4.14)

Because f ∈ B, we have, for the term ( ∂mg
∂ukm∂ukm−1 ...∂uk1

)(u) in Eq. (4.13)
the estimate ∣∣∣∣

(
∂mg

∂ukm∂ukm−1 . . . ∂uk1

)
(u)

∣∣∣∣ ≤ 1. (4.15)

By using (H3.3) and Eqs. (4.5) and (4.6), we obtain the estimate
∣∣∣∣
∂uki(x)

∂xpi

(x)
∣∣∣∣ ≤ M1c

µ (4.16)

for the terms ∂uki
(x)

∂xpi
in Eq. (4.13). Since there are nm terms in the summation

in Eq. (4.13), we conclude that for all x ∈ Gj

|Φ(f ; (J,E))(x)| ≤ nm(M1c
µ)m = (nM1)mcµm. (4.17)

It follows that the set {
∑

(J,E)∈Γ̄(µ)
j

b(J,E)(·)Φ(f ; (J,E))(·) : f ∈ B} is con-
tained in a ball of radius Cj(nM1)mcµm, where Cj := sup{x ∈ Gj |

∑
(J,E)∈Γ̄(µ)

j

b(J,E)(x)}. By Lemma 4.3, Cj ≤ ∥Lµ∥, so the diameter of the ball is less than
or equal to 2∥Lµ∥(nM1)mcµm and

νj(S) = νj(S1) ≤ 2∥Lµ∥(nM1)mcµm. (4.18)

Using Eqs. (4.18) and (4.11), we obtain Eq. (4.10). !
With these preliminaries we can easily obtain a theorem which will play a
crucial role in our further work.

Theorem 4.6. Assume that hypotheses and notation are as Sect. 2. In addition
assume that hypotheses (H4.1)–(H4.3), which are stated at the beginning of
this section, are satisfied and that m is a positive integer as in (H4.1). Let
Y,K and X be as defined in Eqs. (2.11), (2.13) and (2.17) and let L : Y → Y
and Λ : X → X be the bounded linear operators defined by Eq. (4.1) at
the beginning of this section. If ρ(Λ) denotes the essential spectral radius of
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Λ, r(Λ) the spectral radius of Λ and r(L) the spectral radius of L, we have for
0 ≤ c < 1 as in (H4.3) (see Eq. (4.6)) that

ρ(Λ) ≤ cmr(L) < r(L) = r(Λ). (4.19)

Furthermore, there exists v ∈ (K ∩ X)\{0} such that

Λ(v) = r(Λ)v.

If C is any closed, total cone in X such that Λ(C) ⊂ C, there exists w ∈
C\{0} such that Λ(w) = r(Λ)w.

Proof. Let B := {f ∈ X|∥f∥ ≤ 1}. By Eq. (3.11) in Sect. 3 we have

ρ(Λ) = lim sup
µ→∞

(α(Λµ(B)))
1
µ ,

where α denotes the Kuratowski MNC on X. However, Lemma 4.5 implies

that

lim sup
µ→∞

(α(Λµ(B)))
1
µ ≤ lim sup

µ→∞
(2(nM1)mcmµ∥Lµ∥)

1
µ

= cmr(L).

Since Lemma 4.4 implies that r(L) > 0 and r(L) ≤ r(Λ), ρ(Λ) < r(L) ≤ r(Λ).
It is easy to check that C1 := K ∩ X is a closed, reproducing cone in X and
Λ(C1) ⊂ C1, so Theorem 3.1 in Sect. 3 implies that there exists v ∈ C1\{0}
with Λ(v) = r(Λ)v. Since v ∈ K\{0} ⊂ Y,L(v) = r(Λ)v, which implies that
r(Λ) = r(L). The final statement of Theorem 4.6 follows immediately from
Theorem 3.1. !
Remark 4.7. If Λ̂ : X̂ → X̂ denotes the complexification of Λ and X̂ the
complexification of X, the results described in Sect. 3 imply that ρ(Λ̂) = ρ(Λ)
and r(Λ̂) = r(Λ). In particular if λ ∈ σ(Λ̂) and |λ| > ρ(Λ),λ is an isolated
point in σ(Λ̂) and λ is an eigenvalue of finite algebraic multiplicity. It follows
that, writing r := r(Λ),dim(

⋃
p≥1 N((rI − Λ)p)) < ∞.

Remark 4.8. Suppose in Theorem 4.6 we replace (H4.1) by a weakened ver-
sion: (H4.1)′: for each (j, e) ∈ Γ, b(j,e) ∈ Cm(Ḡj) := Xj and b(j,e)(x) ≥ 0 for
all x ∈ Ḡj .

The argument in Lemma 4.4 shows that if (H1.1), (H1.2) and (H4.1)′
hold, then Eq. (4.9) is satisfied and r(Λ) ≥ r(L) ≥ 0. If (H1.1), (H1.2),
(H4.1)′, (H4.2) and (H4.3) are satisfied, the proof of Lemma 4.5 still is valid
and proves Eq. (4.10). If (H1.1), (H1.2), (H4.1)′, (H4.2) and (H4.3) are satis-
fied and if, in addition r(L) > 0, the proof of Theorem 4.6 remains valid and
the conclusions of Theorem 4.6 still hold. If, however, r(L) = 0, it must be
true that r(Λ) = 0. For if r(Λ) > 0, we would find that ρ(Λ) < r(Λ), which
would imply that Λ has an eigenvector inK∩X with eigenvalue r(Λ) > 0. But
this would imply that L has an eigenvalue r(Λ) > 0, which would contradict
r(L) = 0.

Our next result is an immediate consequence of Theorem 4.6, but it
takes a simpler form because we are working in the iterated function case.
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Corollary 4.9. Let G be a bounded, open, mildly regular subset of Rn. Let E
be a finite index set and m a positive integer.

In addition make the following assumptions:
(A1) For each e ∈ E , be : G → R is a nonnegative function, be ∈ Cm(Ḡ) and∑

e∈E be(x) > 0 for all x ∈ Ḡ.
(A2) For each e ∈ E and for 1 ≤ j ≤ n, θe : G → G and θe,j ∈ Cm(Ḡ),

where θe(x) = (θe,1(x), θe,2(x), . . . , θe,n(x)).
(A3) For each positive integer µ ≥ 1, define Eµ := {ω = (e1, e2, . . . , eµ)|ej ∈

E , 1 ≤ j ≤ µ}. For ω := (e1, e2, . . . , eµ) ∈ Eµ, define θω = θeµ ·
θeµ−1 . . . θe1 . Assume that there exists constants M1 and c, with c < 1,
such that or all x ∈ Ḡ, for all ω ∈ Eµ and for all µ ≥ 1,

∥Dθω(x)∥ ≤ M1c
µ.

Let Y denote the Banach space C(Ḡ) and X the Banach space Cm(Ḡ). Define
a bounded linear operator L : Y → Y by

(Lf)(x) =
∑

e∈E

be(x)f(θe(x)) (4.20)

and define a bounded linear operator Λ : X → X by the same formula. If

ρ(Λ) denotes the essential spectral radius of Λ and r(Λ) (respectively, r(L))
denotes the spectral radius of Λ (respectively of L), then

ρ(Λ) ≤ cmr(Λ) and 0 < r(Λ) = r(L) := r. (4.21)

If K denotes the set of nonnegative functions in Y, there exists v ∈ (K ∩
X)\{0} with Λ(v) = rv; and if C is any closed, total cone in X with Λ(C) ⊂
C, there exists w ∈ C\{0} with Λ(w) = rw. If σ(Λ) ⊆ C denotes the spec-
trum of the complexification Λ̂ of Λ and if z ∈ σ(Λ) and |z| > ρ(Λ), then z
is an isolated point of σ(Λ) and z is an eigenvalue of Λ̂ of finite algebraic
multiplicity.

5. The Existence of Cm Strictly Positive Eigenvectors

If v = (v1, v2, . . . , vp) ∈ K ∩ X is the eigenvector ensured by Theorem 4.6,
we know that v ̸= 0 and that vj(x) ≥ 0 for all x ∈ Gj . In the application
to the computation of Hausdorff dimension (see [14,40]) we need to know
that vj(x) > 0 for all x ∈ Ḡj and for 1 ≤ j ≤ p. However, to obtain this
strict positivity we shall need stronger assumptions on b(j,e) and θ(j,e) for
(j, e) ∈ Γ. We shall gather below several hypotheses which, together with
our earlier assumptions, are sufficient to imply the strict positivity of the
eigenvector v in Theorem 4.6. We shall always assume the hypotheses (see
(H1.1) and (H1.2)) and notation of Sect. 2. In addition, we list here, for the
reader’s convenience, additional hypotheses which will be used in this section.
Recall that hypotheses (H4.1)–(H4.3) are stated at the beginning of Sect. 4.

(H5.1) For all (j, e) ∈ Γ, b(j,e) ∈ Cm(Ḡj) = Xj and b(j,e)(x) > 0 for all
x ∈ Ḡj .
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(H5.2) For 1 ≤ j ≤ p = |V |, let Gj ⊂ Rn be bounded open sets as in Sect. 2.
Assume that there exists a constant M such that if 1 ≤ j ≤ p and if x, y ∈ Gj ,
there exists a Lipschitz map ψ : [0, 1] → Gj with ψ(0) = x,ψ(1) = y and∫ 1
0 ∥ψ′(t)∥dt ≤ M∥x − y∥, where ∥ · ∥ is some fixed norm on Rn.

(H5.3) Assume that (H1.1), (H1.2) and (H4.2) hold. In addition, assume that
there exists an integer µ ≥ 1 and a constant κ with 0 ≤ κ < 1, such that for
1 ≤ j ≤ p = |V |, for all (J,E) ∈ Γ̄(µ)

j and all x, y ∈ Ḡj

∥θ(J,E)(x) − θ(J,E)(y)∥ ≤ κ∥x − y∥.

We shall also need a condition which is directly analogous to the assumption
of irreducibility for a p × p matrix M with nonnegative entries.

(H5.4) Let notation be as in Sect. 2. For any pair of integers i, k ∈ V , assume
that there exists an integer ν = ν(i, k) ≥ 1 and a sequence (js, es) ∈ Γ for
1 ≤ s ≤ ν with α(js, es) = js+1 for 1 ≤ s < ν, j1 = i and α(jν , eν) = k.

Remark 5.1. Recall that a p × p matrix M with nonnegative entries mij is
called “irreducible” if p = 1 or if p > 1 and for each pair of integers (i, k)
with 1 ≤ i ≤ p and 1 ≤ k ≤ p there exists a positive integer ν = ν(i, k) such
that the (i, k) entry of Mν is positive. The matrix M is called “primitive” if
there exists a positive integer ν such that all entries of Mν are positive.

If V,E ,Γ and α are as in §1 and (H1.1) is satisfied, define a nonnegative,
p × p matrix A = (aik) by aik > 0 if there exists e ∈ E with (i, e) ∈ Γ and
α(i, e) = k and aik = 0 if there does not exist e ∈ E with (i, e) ∈ Γ and
α(i, e) = k. We shall call A a “p × p nonnegative matrix associated with
(Γ,α, V )”.

The reader can verify that (H5.4) is satisfied if and only if a p × p
nonnegative matrix A associated with (Γ,α, V ) is irreducible. The integer
ν(i, k) in (H4.4) can be chosen to be independent of (i, k) if and only if A
is primitive. If A is primitive, the graph directed iterated function system is
called “strongly connected” in Definition 4.7 in [40].

Lemma 5.2. Assume that (H1.1), (H1.2) and (H5.1) hold, where as usual we
assume that m ≥ 1 in (H4.1). Then for all (j, e) ∈ Γ, x → log(b(j,e)(x)) is a
Lipschitz map from Ḡj to R.

Proof. By the argument used in Lemma 2.4, there is a constant M2 such that
for all x, y ∈ Ḡj with ∥x−y∥1 ≤ η, |b(j,e)(x)− b(j,e)(y)| ≤ M2∥x−y∥1. (H5.1)
and the continuity of b(j,e) on Ḡj imply that there is a positive number δ
such that b(j,e)(x) ≥ δ for all (j, e) ∈ Γ and all x ∈ Gj . By the mean value
theorem, for all x, y ∈ Ḡj with ∥x− y∥1 < η, | log(b(j,e)(x))− log(b(j,e)(y))| ≤
M2( 1δ )∥x − y∥1.

If M3 is chosen so that | log(b(j,e)(x)| ≤ M3 for all Ḡj , then if x, y ∈ Ḡj

and ∥x − y∥1 ≥ η,

| log(b(j,e)(x)) − log(b(j,e)(y))| ≤ M3 ≤
(
M3

η

)
∥x − y∥1.
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It follows that for all x, y ∈ Ḡj ,

| log(b(j,e)(x)) − log(b(j,ε)(y))| ≤ max
(
M3

η
,
M2

δ

)
∥x − y∥1.

!

Note that since all norms on Rn are equivalent, under the hypotheses
of Lemma 5.2 the map x ∈ Gj → log(b(j,e)(x)) is Lipschitz with respect to
any norm on Rn.

An argument similar to that in Lemma 5.2 shows that for all (j, e) ∈
Γ, the map θ(j,e) : Gj → Gα(j,e) is Lipschitz. Since all norms on Rn are
equivalent, this statement is independent of which particular norm on Rn is
chosen.

Lemma 5.3. Assume that (H1.1), (H1.2) and (H4.2) hold. Then for all (j, e) ∈
Γ, the map x ∈ Gj → θ(j,e)(x) ∈ Gα(j,e) is Lipschitz.

Proof. By assumption H4.2, there exists a constantM1 such that ∥Dθ(j,e)(x)∥1
≤ M1 for all x ∈ Gj . By (H1.2), Gj is mildly regular, so there exist positive
constants η and M as in Definition 2.3. If x, y ∈ Gj and ∥x − y∥1 < η, there
exists a Lipschitz map ψ : [0, 1] → Gj with ψ(0) = x and ψ(1) = y such that

∫ 1

0
∥ψ′(t)∥1dt ≤ M∥x − y∥1.

We can assume that ψ is written as a column vector.
We have

∥θ(j,e)(y) − θ(j,e)(x)∥1 =
∥∥∥∥
∫ 1

0

d

dt
θ(j,e)(ψ(t))dt

∥∥∥∥
1

≤
∫ 1

0
∥Dθ(j,e)(ψ(t))∥1 ∥ψ′(t)∥1dt

≤ M1

∫ 1

0
∥ψ′(t)∥1dt ≤ M1 M∥x − y∥1.

This gives the desired estimate if ∥x − y∥1 < η. If ∥x − y∥1 ≥ η, the desired
estimate follows by the same sort of argument used in Lemma 5.2. !

Remark 5.4. Before proceeding further it will be useful to make a few obser-
vations about (H3.3). By (H3.3) and Remark 4.1, (H3.3) is equivalent to the
assumption that there exists M > 0 and c, 0 < c < 1, such that

∥Dθ(J,E)(x)∥ ≤ Mcµ

for all (J,E) ∈ Γ̄(µ)
j , all µ ≥ 1 and all x ∈ Gj , 1 ≤ j ≤ p = |V |. Here ∥ · ∥ is a

norm on Rn and

∥Dθ(J,E)(x)∥ := sup{∥(Dθ(J,E)(x))y∥ : y ∈ Rn, ∥y∥ ≤ 1}.

Choosing a different norm on Rn only changes the constant M .
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If, for a given norm, there exists µ0 ≥ 1 such that

∥Dθ(J,E)(x)∥ ≤ κ < 1 (5.1)

for all (J,E) ∈ Γ̄(µ0)
j , all x ∈ Gj and all j with 1 ≤ j ≤ p = |V |, define

c = κ( 1
µ0

) < 1, so ∥Dθ(J,E)(x)∥ ≤ cµ0 . It follows by the chain rule that for all
positive integers t, ∥Dθ(J,E)(x)∥ ≤ c(tµ0) for all (J,E) ∈ Γ̄(tµ0)

j , all x ∈ Gj and
all j with 1 ≤ j ≤ p = |V |. With the help of Lemma 5.3 it then follows easily
that there exists a constant M2 such that for all (J,E) ∈ Γ̄(µ)

j , all µ ≥ 1, all
j with 1 ≤ j ≤ p = |V | and all x ∈ Gj , ∥Dθ(j,E)(x)∥ ≤ M2cµ.

Thus, assuming (H1.1), (H1.2) and (H4.2), assumption (H4.3) is equiv-
alent to the assumption that Eq. (5.1) is satisfied for some positive integer
µ0 and some κ with 0 ≤ κ < 1.

If, for a given ∥ · ∥ on Rn, there exists a positive integer µ0 and κ, 0 ≤
κ < 1, such that

∥θ(J,E)(x) − θ(J,E)(y)∥ ≤ κ∥x − y∥ (5.2)

for all (J,E) ∈ Γ̄(µ0)
j , 1 ≤ j ≤ p = |V | and all x, y ∈ Gj , it is easy to see that

Eq. (5.1) is satisfied, so, with the aid of (H1.1), (H1.2) and (H4.2), we obtain
(H4.3).

We are interested in the converse: if we assume (H1.1), (H1.2), (H4.2)
and (H4.3), can we obtain Eq. (5.2) for some µ0 ≥ 1 and some κ with 0 ≤
κ < 1? This is not true, but if we strengthen (H1.2), we shall see that we can
obtain Eq. (5.2) from (H1.1), (H4.2), (H4.3) and the strengthened version of
(H1.2).

Lemma 5.5. Let notation be as in Sect. 2 and assume that hypotheses (H1.1),
(H4.2), (H4.3) and (H5.2) are satisfied. Then there exists a positive integer
µ and a constant κ with 0 ≤ κ < 1, such that for 1 ≤ j ≤ p = |V |, Eq. (5.2)
is satisfied for all (J,E) ∈ Γ̄(µ)

j and all x, y ∈ Gj.

Proof. If x, y ∈ Gj select a Lipschitz map ψ : [0, 1] → Gj such that ψ(0) =
x,ψ(1) = y and

∫ 1
0 ∥ψ′(t)∥dt ≤ M∥x−y∥, where M is a constant as in (H5.2).

If ν is a positive integer and (J,E) ∈ Γ̄(ν)
j ,

∥θ(J,E)(y) − θ(J,E)(x)∥ =
∥∥∥∥
∫ 1

0
Dθ(J,E)(ψ(t))ψ′(t)dt

∥∥∥∥

≤
∫ 1

0
∥Dθ(J,E)(ψ(t))(ψ′(t))∥dt.

By (H4.3) we see that there exist constants M1 > 0 and c1, 0 ≤ c1 < 1, such
that ∥Dθ(J,E)(u)∥ ≤ M1cν

1 for all (J,E) ∈ Γ̄(ν)
j , u ∈ Gj , 1 ≤ j ≤ p and ν ≥ 1.

It follows from (H5.2) that

∥θ(J,E)(y) − θ(J,E)(x)∥ ≤ M1c
ν

∫ 1

0
∥ψ′(t)∥dt ≤ M1Mcν

1∥y − x∥.
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Choose ν := µ so large that M1Mcν
1 := κ < 1 to obtain the conclusion of

Lemma 5.5. !

The reader can check that (H5.2) remains true, but with a different M ,
if the norm ∥ ·∥ is replaced by a different norm. Similarly, Lemma 5.5 remains
true, but with a different µ and a different κ, if the norm in Lemma 5.5 is
replaced by a different norm.

Henceforth we shall always need to know that Eq. (5.2) is satisfied, so,
rather than using Lemma 4.4, we shall directly make the assumption that
Eq. (5.2) holds.

The key idea now will be to define a special subcone of the closed cone
Kj ∩ Xj in Xj , where Kj is the set of nonnegative functions in C(Ḡj) and
Xj = Cm(Ḡj), 1 ≤ j ≤ p = |V |. Variants of the subcone we shall consider
have already been used in [9], in Sections 5 and 6 of [38], in [40] and in
Section 2.2 of [25].

If M is a positive real, H is a bounded, open, mildly regular subset of
Rn and m is a nonnegative integer, we define a closed cone K(H;M,m) ⊂
Cm(H̄) by

K(H;M,m) = {h ∈ Cm(H̄) : h(x) ≤ h(y)exp(M∥x − y∥)∀x, y ∈ H̄}(5.3)

The definition of K(H;M,m) depends on the particular norm ∥ · ∥ on Rn

which is used, but we do not indicate this dependence in the notation. The
reader can easily verify that if h ∈ K(H;M,m), then h(x) ≥ 0∀x ∈ H̄; and
if h ∈ K(H,M,m) is not identically zero, then h(x) > 0 for all x ∈ H̄.

Lemma 5.6. Assume that H is a bounded, open, mildly regular subset of Rn,
that M > 0 and that m is a nonnegative integer. If K(H;M,m) is defined
by Eq. (5.3) and m ≥ 1, then K(H;M,m) is a closed, reproducing cone in
Cm(H̄). If m = 0,K(H;M, 0) is a closed, total cone in C(H̄), but it is not
reproducing.

Proof. We leave to the reader the exercise of proving that K(H;M,m) is a
closed cone in Cm(H̄). Note also that if h ∈ Cm(H̄), h ∈ K(H;M,m) if and
only if h(x) = 0 for all x ∈ H̄ or h(x) > 0 for all x ∈ H̄ and, for all x, y ∈ H̄,

| log(h(x)) − log(h(y))| ≤ M∥x − y∥, (5.4)

where log denotes the natural logarithm.
To prove that K(H;M,m) is reproducing in Cm(H̄) if m ≥ 1, observe

that if g ∈ Cm(H̄) and C is any positive constant, then g(x) = (g(x)+C)−C.
Since any positive constant is an element of K(H;M,m), it suffices to prove
that x → g(x) + C defines an element of K(H;M,m) for C large. Thus, it
suffices to prove that if h(x) := g(x) +C is large, Eq. (5.4) is satisfied for all
x, y ∈ H̄.

Because m ≥ 1, the argument used in Lemma 2.4 shows that there
exists a constant M1 such that, for all x, y ∈ H̄,

|g(x) − g(y)| ≤ M1∥x − y∥.
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If N is any positive integer, we can choose C > 0 such that C + g(x) ≥ N
for all x ∈ H̄. It follows by the mean value theorem that

| log(C + g(x)) − log(C + g(y))| ≤
(

1
N

)
|g(x) − g(y)| ≤

(
M1

N

)
∥x − y∥.

If N is chosen so that M1
N ≤ M , it follows that the map x → C + g(x) is an

element of K(H;M,m), so K(H;M,m) is reproducing in Cm(H̄).
It remains to consider the case m = 0. For any f ∈ C(H̄) and any

ε > 0, it is known that there exists h ∈ C1(H̄) with |f(x) − h(x)| < ε
for all ε > 0. Since K(H;M, 1) is reproducing in C1(H̄), it follows that
K(H;M, 0) ⊃ K(H;M, 1) is total in C(H̄).

If h ∈ K(H;M, 0) and h is not identically zero, h satisfies Eq. (5.4)
and h(x) > 0 for all x ∈ H̄. It follows that x → h(x) is Lipschitzian if h ∈
K(H;M, 0). This implies that if f = h1 − h2, where h1, h2 ∈ K(H;M, 0), f
is Lipschitzian. Since not all elements of C(H̄) are Lipschitzian, K(H;M, 0)
is not reproducing in C(H̄). !

We shall use the notation of Sect. 2, so for 1 ≤ j ≤ p = |V |, Gj is
a bounded, mildly regular open subset of Rn, Yj = C(Ḡj),m is a positive
integer, Xj = Cm(Ḡj) and Y,K and X are given by Eqs. (2.11), (2.13) and
(2.17) respectively. If M is a positive constant and m is a positive integer as
above, we shall write for 1 ≤ j ≤ p = |V | (compare Eq. (5.3))

Kj(M,m) := K(Gj ;M,m). (5.5)

We define K(M,m) ⊂ X by

K(M,m) = {f = (f1, f2, . . . , fp) ∈ X
∣∣fj ∈ Kj(M,m) for 1 ≤ j ≤ p}. (5.6)

It follows from Lemma 5.6 that K(M,m) is a closed, reproducing cone in X.

Theorem 5.7. Assume that hypotheses H5.1 and H5.3 are satisfied, that X
is defined by Eq. (2.17), that L : Y → Y and Λ : X → X are defined by
Eq. (4.3) and that K(M,m) is given by Eq. (5.6). Then there exists M >
0, a positive integer µ and v := (v1, v2, . . . , vp) ∈ K(M,m)\{0} such that
Λµ(K(M,m)) ⊂ K(M,m) and Λµ(v) = rµv, where r = r(Λ) = r(L) denotes
the spectral radius of Λ. There exists w := (w1, w2, . . . , wp) ∈ (K ∩ X)\{0}
with Λ(w) = rw. If (H5.4) is also satisfied, wj(x) > 0 for all x ∈ Ḡj and for
1 ≤ j ≤ p = |V |, and there exists M ′ > 0 with w ∈ K(M ′,m)\{0}.

Proof. Let κ, 0 < κ < 1, and µ ≥ 1 be as in (H5.3). By using (H5.1) and
(H5.3) and Lemmas 5.2 and 5.3, one can show that there exists a constant
M0 > 0 such that b(J,E) ∈ Kj(M0,m) for all (J,E) ∈ Γ̄(µ)

j , 1 ≤ j ≤ p. If
M ≥ ( M0

1−κ ), we claim that Λµ(K(M,m)) ⊂ K(M,m). To see this, suppose
that f = (f1, f2, . . . , fp) ∈ K(M,m). For j ∈ V and x ∈ Gj we have

(Λµ(f))j(x) =
∑

(J,E)∈Γ̄(µ)
j

b(J,E)(x)fα(jµ,eµ)(θ(J,E)(x)).



384 R. D. Nussbaum IEOT

BecauseKj(M,m) is a cone, it suffices to prove that b(J,E)(·)fα(jµ,eµ)(θ(J,E)(·))
∈ Kj(M,m) for all (J,E) ∈ Γ̄(µ)

j . For x, y ∈ Ḡj we have

b(J,E)(x)fα(jµ,eµ)(θ(J,E)(x)) ≤ Ψ1Ψ2

where we define Ψ1 and Ψ2 by

Ψ1 := [b(J,E)(y) exp(M0(∥x − y∥)]
and

Ψ2 := fα(jµ,eµ)(θ(J,E)(y)) exp(M∥θ(J,E)(x) − θ(J,E)(y)∥).

If we define Φ(z) for z ∈ Gj1 by

Φ(z) := b(J,E)(z)fα(jµ,eµ)(θ(J,E)(z)).

we conclude that

Φ(x) ≤ Φ(y) exp(M0 + κM∥x − y∥).

Since we assume that M ≥ ( M0
1−κ ), M0+κM ≤ M , and the above calculation

shows that (Λµ)(K(M,m)) ⊂ K(M,m).
Since (H5.1) and (H5.3) imply the hypotheses of Theorem 4.6, r(L) =

r(Λ) and ρ(Λ) ≤ cmr(Λ) < ν(Λ), where c = κ( 1
µ ) < 1. The formula for the

spectral radius implies that r(Λµ) = r(Lµ) = (r(Λ))µ. Using formulas in
[34] or results from [35], one can prove that ρ(Λµ) = (ρ(Λ))µ; and in any
event, Eq. (3.7) implies that ρ(Λµ) ≤ (ρ(Λ))µ. Thus ρ(Λµ) < r(Λµ) = r(Lµ)
and Lµ(K(M,m)) ⊂ K(M,m). Since K(M,m) is a closed, total cone in X,
Theorem 3.1 implies that there exists v = (v1, v2, . . . , vp) ∈ K(M,m)\{0}
with Λµ(v) = rµv and r = r(Λ).

If we define Λr : X → X by Λr(f) = (1r )Λ(f), we find that Λµ
r (v) = v;

and if we define w = (w1, w2, . . . , wp) ∈ X by

w =
µ−1∑

s=0

(Λr)s(v), (5.7)

it is easy to check that Λr(w) = w. Also, if t is a positive integer, one can
check that

tw =
tµ−1∑

s=0

(Λr)s(v). (5.8)

If w is defined by Eq. (5.7) and if we assume that (H5.4) also holds, we claim
that wj(x) > 0 for all x ∈ Ḡj and 1 ≤ j ≤ p. Because v ∈ K(M,m)\{0},
there exists k, 1 ≤ k ≤ p, with vk(x) > 0 for all x ∈ Ḡk. By (H5.4), for each
j with 1 ≤ j ≤ p, j ̸= k, there exists a positive integer ν = ν(j, k) and a
sequence (ji, ei) ∈ Γ, 1 ≤ i ≤ ν, with j1 = j,α(ji, ei) = ji+1 for 1 ≤ i < ν
and α(jν , eν) = k. If ν = ν(j, k), then for all x ∈ Ḡj we have

((Λν
r )(v))j(x) =

(
1
r

)ν ∑

(J,E)∈Γ̄(ν)
j

b(J,E)(x)vα(jν ,eν)(θ(J,E)(x)).
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By assumption, there exists (J,E) ∈ Γ̄(ν)
j with α(jν , eν) = k and vk(θ(J,E)(x))

> 0 for all x ∈ Ḡj . It follows that for all x ∈ Ḡj ,

((Λν
r )(v))j(x) > 0.

If we take an integer t ≥ 1 such that tµ − 1 ≥ ν(j, k) for all j ∈ V \{k}, it
follows from Eq. (5.8) that wj(x) > 0 for all x ∈ Ḡj and for all j ∈ V .

Because wj(x) > 0 for all x ∈ Ḡj and wj ∈ Xj , the same argument used
in Lemma 5.2 shows that x → log(wj(x)) is Lipschitz on Ḡj , which implies
that there exists M ′ ≥ M such that wj ∈ Kj(M ′,m) for 1 ≤ j ≤ p. !

Our next result is an immediate corollary of Theorem 5.7.

Corollary 5.8. Let G be a bounded, open mildly regular subset of Rn. Let E
be a finite index set and m a positive integer and for positive integers µ,
let Eµ be as defined in Corollary 4.9. Assume hypotheses (A1) and (A2) in
Corollary 4.9 but strengthen (A1) by assuming that be(x) > 0 for all e ∈ E
and all x ∈ Ḡ. Assume also that there exists an integer µ ≥ 1 and κ with
κ < 1 such that

∥θω(x) − θω(y)∥ ≤ κ∥x − y∥
for all x, y ∈ Ḡ and all ω ∈ Eµ.

Then all conclusions of Corollary 4.9 are satisfied. In addition there
exists v ∈ (K ∩ X)\{0} such that Λ(v) = rv, where r = r(Λ) > 0 and
v(x) > 0 for all x ∈ Ḡ.

6. r(Λ) is an Algebraically Simple Eigenvalue

In this section we shall need some results concerning “u0-positivity” for “pos-
itive linear operators”. Theorem 6.1 below gives the information which we
shall need. A proof of Theorem 6.1 can be found in [21] or [22].

It is worth remarking that Theorem 6.1 can also be derived in a few
pages from the so-called Birkhoff–Hopf theorem for positive linear operators,
although we shall not give a derivation here. An exposition and generalization
of the results of Birkhoff [6] and Hopf [16,17] (see also Samelson [41]) can be
found in the articles [12] and [13] and the appendix of [26], and the latter
sources give further references to the literature.

Theorem 6.1. (See [21] and [22]). Let C be a closed, reproducing cone in a
real Banach space Z. Let A : Z → Z be a bounded linear operator such that
A(C) ⊂ C and assume that there exists v ∈ C\{0} and r > 0 with A(v) = rv.
Let ≤ denote the partial ordering on Z induced by C, so x ≤ y ⇔ y − x ∈ C.
Assume (this is the u0-positivity of A) that there exists u0 ∈ C\{0} with the
following property: For every x ∈ C\{0} there exists an integer m(x) ≥ 1 and
positive reals a(x) and b(x) such that either (i) Am(x)(x) = 0 or (ii) a(x)u0 ≤
Am(x)(x) ≤ b(x)u0. Then r is algebraically simple as an eigenvalue of A; and
if ζ ∈ C is an eigenvalue of Â where Â denotes the complexification of A,
and ζ ̸= r, then |ζ| < r. If A(w) = λw for some w ∈ C\{0}, then λ = r and
w is a scalar multiple of v.
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Remark 6.2. If A and Z are as in Theorem 6.1, let Ẑ denote the complexifi-
cation of Z and Â : Ẑ → Ẑ the complexification of A. Note that Theorem 6.1
only applies to eigenvalues of Â. If σ(Â) denotes the spectrum of Â, it is a
priori possible that there exists ζ ∈ σ(Â) with |ζ| = r and ζ ̸= r or that there
exists ζ ∈ σ(Â) with |ζ| > r. However, if C in Theorem 6.1, is also normal,
one can prove that |ζ| ≤ r for all ζ ∈ σ(Â).

Corollary 6.3. Let C be a closed, reproducing cone in a real Banach space
Z. Let A : Z → Z be a bounded linear operator such that A(C) ⊂ C and
let Â denote the complexification of A and σ(Â) the spectrum of Â. Assume
that ρ(A) < r(A), where r(A) denotes the spectral radius of A and ρ(A) the
essential spectral radius of A. Assume that there exists u0 ∈ C\{0} which
satisfies the u0-positivity property in Theorem 6.1. Then there exists v ∈
C\{0} such that A(v) = rv, r := r(A); and r is algebraically simple as an
eigenvalue of A and r is an isolated point of σ(Â). There exists r1 < r such
that if ζ ∈ σ(Â)\{r} we have |ζ| ≤ r1.

Proof. By Theorem 3.1, there exists v ∈ C\{0} with A(v) = rv and r = r(A).
By the properties of the essential spectral radius and the assumption that
ρ(A) < r(A), we know that for each ζ ∈ σ(Â) with |ζ| > ρ(A), ζ is an isolated
point of σ(Â), ζ is an eigenvalue of Â and ζ has finite algebraic multiplicity
as an eigenvalue of Â. The conclusions of Corollary 6.3 now follow from
Theorem 6.1. !

Corollary 6.4. Let hypotheses and notation be as in Corollary 6.3 and define
B(z) = (1r )A(z) for z ∈ Z. Then for every z ∈ Z, there exists sz ∈ R such
that

lim
k→∞

Bk(z) = szv, (6.1)

where Av = rv, r = r(A), v ∈ C\{0} and convergence is in the norm topology

on Z. If z ∈ C and there exist an integer N ≥ 0 and positive reals a = az
and b = bz such that av ≤ AN (z) ≤ bv, then sz > 0.

Proof. Corollary 6.3 implies that there exists r1 < r such that |ζ| ≤ r1 for
all ζ ∈ σ(Â)\{r}, where Â denotes the complexification of A. Furthermore,
r is an eigenvalue of A of algebraic multiplicity one. Under these conditions,
Eq. (6.1) is a standard result which can be obtained by using spectral pro-
jections for Â. If z ∈ C and a > 0, b > 0 and N are as in the statement of
Corollary 6.4, a′v ≤ BNz ≤ b′v, where a′ = r−Na and b′ = r−Nb. Because
B(v) = v and B(C) ⊂ C, it follows that a′v ≤ Bk(z) ≤ b′v for all k ≥ N ,
which implies that a′ ≤ sz ≤ b′. !

It remains to add an assumption which will allow us to verify the hy-
potheses of Corollaries 6.3 and 6.4. We shall show that the following strength-
ening of (H5.4) is sufficient. As usual, notation is as in Sect. 2. Note that
(H5.1)–(H5.4) are stated at the beginning of Sect. 5, as is Remark 5.1.
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(H6.1) There exists a positive integer ν such that for any pair of integers
i, k ∈ V , there exists a sequence (ij , ej) ∈ Γ, 1 ≤ j ≤ ν with α(ij , ej) = ij+1

for 1 ≤ j < ν, i1 = i and α(iν , eν) = k.
Note (see Remark 5.1) that (H6.1) is trivially true if p = |V | = 1; and

if p > 1, (H5.1) is true if and only if a p× p nonnegative matrix A associated
with (Γ,α, V ) is primitive.

Theorem 6.5. Assume that hypotheses (H5.1), (H5.3) and (H6.1) are satisfied,
that X and Λ are defined by Eqs. (2.17) and (4.3) respectively, that σ(Λ) :=
σ(Λ̂) denotes the spectrum of Λ̂, the complexification of Λ, and that, for M >
0 and m ≥ 1 as in Eq. (2.17), K(M,m) is given by Eq. (5.3). If ρ(Λ), r(Λ)
and r(L) denote, respectively, the essential spectral radius of Λ, the spectral
radius of Λ and the spectral radius of L and µ and κ < 1 are as in (H5.3),
we have

ρ(Λ) ≤ κ(m
µ )r(Λ) < r(Λ) = r(L) := r.

There exist M ′ > 0 and w = (w1, w2, . . . , wp) ∈ K(M ′,m)\{0} such that
wj(x) > 0 for all x ∈ Ḡj , 1 ≤ j ≤ p = |V |, and

Λ(w) = rw.

There exists r1 < r such that if ζ ∈ σ(Λ̂)\{r}, then |ζ| ≤ r1; and r is an
isolated point of σ(Λ̂) and an eigenvalue of algebraic multiplicity 1. If u ∈ X,
there exists a real number su such that

lim
k→∞

((
1
r

)
Λ
)k

(u) = suw.

If u ∈ K(M,m)\{0} for some M > 0, then su > 0.

Proof. The first part of Theorem 6.5, up to the existence of w, follows directly
from Theorems 4.6 and 5.7.

Let ν be as in (H6.1) and let A be a p×p nonnegative matrix associated
with (Γ,α, V ). It follows (see Remark 5.1) that all entries of Aν are positive.
(H1.1) implies that no row of A is the zero vector, so Aν1 has all positive
entries for all integers ν1 ≥ ν; and (H6.1) is satisfied for any ν1 ≥ ν.

If µ and κ, 0 ≤ κ < 1, are as in hypothesis (H5.3) and t is a positive
integer, θ(J,E) is a Lipschitz map (with respect to the norm ∥ ·∥ in (H5.3)) on
Ḡj with Lipschitz constant lip(θ(J,E)) ≤ κt for all (J,E) ∈ Γ̄(tµ)

j , 1 ≤ j ≤ p.
By Lemma 5.2 there exists a constant C1 ≥ 1 such that lip(θ(j,e)) ≤ C1 for
all (j, e) ∈ Γ. If tµ ≤ ν1 < (t + 1)µ, it follows that for all (J,E) ∈ Γ̄(ν1)

j and
1 ≤ j ≤ p we have the estimate

lip(θ(J,E)) ≤ Cµ−1
1 κt.

Using this estimate, one can see that there is an integer µ0 such that for all
ν1 ≥ µ0 and all (J,E) ∈ Γ̄(ν1),

lip(θ(J,E)) ≤ κ < 1.
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For µ0, ν and κ as above, take ν1 ≥ max(ν, µ0). We already know that
there exists M ′ > 0 and w = (w1, w2, . . . , wp) ∈ K(M ′,m) with Λ(w) = rw
and wj(x) > 0 for all x ∈ Ḡj . As in the proof of Theorem 5.7, there exists a
constant M0 > 0 such that b(J,E) ∈ Kj(M0,m) for all (J,E) ∈ Γ̄(ν1)

j , 1 ≤ j ≤
p. If M > κM +M0 := M1, the argument in the proof of Theorem 5.7 shows
that Λν1(K(M,m)) ⊂ K(M1,m). By increasing M , we can also arrange that
M1 := κM +M0 > M ′. By using (H6.1) we see that if u = (u1, u2, . . . , up) ∈
K(M,m)\{0}, then Λν1(u) := y = (y1, y2, . . . , yp) satisfies y ∈ K(M1,m)
and yj(x) > 0 for all x ∈ Ḡj and for all j, 1 ≤ j ≤ p.

At this point we want to apply Corollaries 6.3 and 6.4 to the operator
Λν1 : K(M,m) → K(M,m). Here w will take the place of u0 in Theorem 6.1.
For u ∈ K(M,m)\{0} and y := Λν1(u), we have to prove that there exist
positive constants a = au and b = bu with

aw ≤ y ≤ bw. (6.2)

There is a subtlety, however. In the notation of Theorem 6.1, Z = X
and the closed, reproducing cone C = K(M,m). Thus the partial ordering
≤ in Eq. (6.2) is the partial ordering induced by K(M,m), and the positive
constants a and b in Eq. (6.2) must satisfy bw − y ∈ K(M,m) and y − aw ∈
K(M,m). The fact that Λν1(K(M,m)) ⊆ K(M1,m), where M ′ ≤ M1 < M
will play a crucial role in the argument. Similar issues arise in Section 2.2 of
[25].

To prove Eq. (6.2), first select positive numbers σ and τ such that
σ ≤ wj(x) ≤ τ and σ ≤ yj(x) ≤ τ for all x ∈ Ḡj , 1 ≤ j ≤ p. It suffices
to prove that there exists b > 0 such that y ≤ bw. The argument that
w ≤ a−1y for some a > 0 is completely symmetrical, with the roles of w
and y reversed and a−1 taking the role of b. As a first step to proving the
existence of b, we choose b so that bσ > τ , which implies that bwj(x) > yj(x)
for all x ∈ Ḡj , 1 ≤ j ≤ p. We know that bw − y ∈ K(M,m) if and only
if the map x → log(bwj(x) − yj(x)) := ϕj(x), x ∈ Ḡj , is Lipschitzian with
lip(ϕj) ≤ M for 1 ≤ j ≤ p. If we define ψj(x) = log(b) + log(wj(x)) for
x ∈ Ḡj , lip(ψj) ≤ M1 for 1 ≤ j ≤ p; and we can write, for x ∈ Ḡj ,

ϕj(x) = ψj(x) + log
(
1 − yj(x)

bwj(x)

)
:= ψj(x) + gj(x).

Thus it suffices to prove that for b large enough and 1 ≤ j ≤ p, lip(gj) ≤
M − M1. Since 1 − yj(x)

bwj(x)
≥ (1 − τ

bσ ) for x ∈ Ḡj , we obtain from the mean
value theorem that for x, z ∈ Ḡj ,

|gj(x) − gj(z)| =
∣∣∣∣log

(
1 − yj(x)

bwj(x)

)
− log

(
1 − yj(z)

bwj(z)

)∣∣∣∣

≤
(
1 − τ

bσ

)−1
(
1
b

)
|
∣∣∣∣
yj(x)
wj(x)

− yj(z)
wj(z)

∣∣∣∣ .

Because x → log(yj(x)) and x → log(wj(x)) are Lipschitzian with Lipschitz
constant M1 and because log(yj(x)) ≤ log(τ) and log(wj(x)) ≤ log(τ) for
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x ∈ Ḡj , we obtain from the mean value theorem that lip(yj) ≤ τM1 and
lip(wj) ≤ τM1 for 1 ≤ j ≤ p. It follows that

∣∣∣∣
yj(x)
wj(x)

− yj(z)
wj(z)

∣∣∣∣ ≤ |yj(x) − yj(z)|wj(z) + yj(z)|wj(z) − wj(x)|
wj(x)wj(z)

≤ (τM1)
[
1
σ
+

τ

σ2

]
∥x − z∥1,

which implies that

lip(gj) ≤
(

1
b − (τ/σ)

)
(τM1)

[
1
σ
+

τ

σ2

]
.

It follows that for all b sufficiently large, lip(gj) ≤ M − M1 and bw − y ∈
K(M,m).

Applying Corollaries 6.3 and 6.4 to the operator Λν1 , we conclude that
for r = r(Λ), there exists r1 < r such that if z ∈ σ(Λ̂ν1)\{rν1}, then |z| ≤ rν1

1

and rν1 is an eigenvalue of Λν1 of algebraic multiplicity one. Furthermore, for
every u ∈ X there exists a number su ∈ R such that

lim
k→∞

Bk(u) = suw, (6.3)

where B := ( 1
rν1 )Λν1 and su > 0 if u ∈ K(M,m) for some M > 0. Applying

(1rΛ)j to Eq. (6.3) for 0 ≤ j < ν1 and noting that ((1r )Λ)(w) = w, we conclude
that for every u ∈ X,

lim
k→∞

((
1
r

)
Λ
)k

(u) = suw, (6.4)

and su > 0 if u ∈ K(M,m) for some M > 0.
Because σ(Λ̂ν1) = {ζν1 |ζ ∈ σ(Λ̂)}, for ζ ∈ σ(Λ̂) we must have |ζ| ≤ r1

unless ζν1 = rν1 . However, if ζν1 = rν1 and ζ ̸= r, then because ρ(Λ) < r(Λ), ζ
is an eigenvalue of Λ̂ and Λ̂v = ζv for some v ∈ X̂, the complexification of X.
It follows that Λ̂ν1(v) = rν1v and v is not a scalar multiple of w. However, this
contradicts the fact that rν1 is an eigenvalue of Λ̂ν1 of algebraic multiplicity
one. Thus, if ζ ∈ σ(Λ) and |ζ| = r, ζ = r.

It remains to prove that r is an eigenvalue of Λ of algebraic multiplicity
one. Any eigenvector of Λ with eigenvalue r must be a multiple of w, for
otherwise we contradict the fact that rν1 is an eigenvalue of Λν1 of algebraic
multiplicity one. Therefore, to prove that r is an eigenvalue of Λ of algebraic
multiplicity one, it suffices to prove that there does not exist u ∈ X with

ru − Λu = w.

However, if such a u exists, one can see that
((

1
r

)
Λ
)k

(u) = u −
(
k

r

)
w,

which contradicts Eq. (6.4). Thus such a u does not exist and r has algebraic
multiplicity one. !
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The following result is an immediate corollary of Theorem 6.5.

Corollary 6.6. Let G be a bounded, open mildly regular subset of Rn. Let E
be a finite index set and let m be a positive integer. Assume
(B1) For each e ∈ E , be ∈ Cm(Ḡ) and be(x) > 0 for all x ∈ Ḡ.
(B2) For each e ∈ E , θe : G → G and θe ∈ Cm(Ḡ).
(B3) For each positive integer µ,Eµ := {ω = (e1, e2, . . . , eµ)|ej ∈ E for 1 ≤

j ≤ µ}, and if ω = (e1, e2, . . . , eµ) ∈ Eµ, θω(x) := (θeµ · θeµ−1 . . . θe1)(x).
There exists a positive integer µ and a constant κ < 1 such that for all
ω ∈ Eµ and all x, y ∈ Ḡ,

∥θω(x) − θω(y)∥ ≤ κ∥x − y∥.

Let Y = CR(Ḡ) and X = Cm
R (Ḡ) and define a bounded linear map L : Y → Y

by

(Lf)(x) =
∑

e∈E

be(x)f(θe(x))

a bounded linear map Λ : X → X by Λ(f) = L(f) for f ∈ X. If r(L)

(respectively, r(Λ)) denotes the spectral radius of L (respectively, Λ) and ρ(Λ)
denotes the essential spectral radius of Λ

ρ(Λ) ≤ (κ
m
µ )r(Λ) < r(Λ) and r(Λ) = r(L) := r.

There exists v ∈ X\{0} such that v(x) > 0∀x ∈ Ḡ and Λ(v) = rv. If Λ̂
denotes the complexification of Λ and σ(Λ) := σ(Λ̂) denotes the spectrum of
Λ̂, there exists r1 < r such that

σ(Λ̂)\{r} ⊆ {z ∈ C
∣∣|z| ≤ r1}

and r is an algebraically simple eigenvalue of Λ̂. If u ∈ X and u(x) > 0 for

all x ∈ Ḡ, there exists s = sµ > 0 such that

lim
k→∞

(
1
r

)k

Λk(u) = suv,

where the convergence is in the norm topology on X = Cm
R (Ḡ).
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[21] Krasnoseĺskii, M.A.: Positive Solutions of Operator Equations. P. Noordhoff
Ltd., Groningen (1964)
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inhält. Stud. Math. 2, 7–9 (1930)

[34] Nussbaum, R.D.: The radius of the essential spectrum. Duke J. Math. 38, 473–
478 (1970)

[35] Nussbaum, R.D.: Spectral mapping theorems and perturbation theorems for
Browder’s essential spectrum. Trans. Am. Math. Soc. 150, 445–455 (1970)

[36] Nussbaum, R.D.: A periodicity threshold theorem for some nonlinear integral
equations. SIAM J. Math. Anal. 9, 356–376 (1978)

[37] Nussbaum, R.D.: Eigenvectors of Nonlinear Positive Operators and the Linear
Krein–Rutman Theorem, Fixed Point Theory. Lectures Notes in Mathematics,
vol. 886, pp. 309–330. Springer, Berlin (1981)

[38] Nussbaum, R.D.: Periodic points of positive linear operators and Perron–
Frobenius operators. Integral Equ. Oper. Theory 39, 41–97 (2001)

[39] Nussbaum, R.D., Walsh, B.J.: Approximation by polynomials with nonnegative
coefficients and the spectral theory of positive linear operators. Trans. Am.
Math. Soc. 350, 2367–2391 (1998)

[40] Nussbaum, R.D., Priyadarshi, A., Verduyn Lunel, S.: Positive operators and
Hausdorff dimension of invariant sets. Trans. Am. Math. Soc. 364, 1029–
1066 (2012)

[41] Samelson, H.: On the Perron–Frobenius theorem. Mich. Math. J. 4, 57–
59 (1957)

[42] Schaefer, H.H.: Halbgeordnete Lokal Konvexe Vektorräume II. Math.
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