1 Preliminarics

1.1 A review of linear algebra

Vector Space Let \(\mathbb{R} \) be the scalar field of real numbers. We consider only real vector spaces. Let \(V_n \) be a set. \(V_n \) is a vector space (also called a linear space) if it is equipped with two operations:

- **scalar product** \(\mathbb{R} \times V_n \to V_n \),
- **vector addition** \(V_n \times V_n \to V_n \),

and it is closed under these two operations. That is, \(V_n \) is a vector space if \(\forall \alpha, \beta \in \mathbb{R} \) and \(\forall a, b \in V_n \),

\[\alpha a + \beta b \in V_n. \]

The vector space \(V_n \) is \(n \)-dimensional if we can find a basis \(\{ e_1, \ldots, e_n \} \subset V_n \) such that for any \(a \in V_n \), we have a unique decomposition

\[a = \sum_{i=1}^{n} a_i e_i, \]

where \(a_i \in \mathbb{R} \) (\(i = 1, \ldots, n \)) are the components (coordinates) of vector \(a \) under the basis \(\{ e_1, \ldots, e_n \} \).

Tensor Space Let \(V_n \) (\(V_m \)) be \(n \)-dimensional (\(m \)-dimensional) vector space. A mapping \(A : V_n \to V_m \) is a tensor if \(A \) is linear. That is, \(\forall \alpha, \beta \in \mathbb{R} \) and \(\forall a, b \in V_n \),

\[A(\alpha a + \beta b) = \alpha A(a) + \beta A(b). \quad (1) \]

Let \(\text{Lin}(V_n, V_m) \) be the collection of all linear mappings (i.e., tensors) with domain \(V_n \) and range \(V_m \). For any \(\alpha \in \mathbb{R} \) and any \(A_1, A_2 \in \text{Lin}(V_n, V_m) \), define two operations

- **scalar product** \((\alpha A_1)(a) = \alpha A_1(a) \quad \forall a \in V_n \),
- **vector addition** \((A_1 + A_2)(a) = A_1(a) + A_2(a) \quad \forall a \in V_n \).

\[\blacklozenge \text{Claim:} \text{ For any } \alpha, \beta \in \mathbb{R} \text{ and any } A_1, A_2 \in \text{Lin}(V_n, V_m), \alpha A_1 + \beta A_2 \text{ is a linear mapping (from } V_n \text{ to } V_m). \]

The above claim implies that the set \(\text{Lin}(V_n, V_m) \) is also a vector space.

Inner Product We equip a \(n \)-dimensional vector space \(V_n \) with a mapping \(V_n \times V_n \to \mathbb{R} \), called inner product such that for any \(\alpha, \beta \in \mathbb{R} \) and any \(a, b, c \in V_n \), the inner product is

1. **Positive-definite**: \(a \cdot a \geq 0; \ a \cdot a = 0 \iff a = 0 \),
2. **Linear**: \(a \cdot (\alpha b + \beta c) = \alpha a \cdot b + \beta a \cdot c \),
3. **Symmetric**: \(a \cdot b = b \cdot a \).

Geometric interpretations:

- **Length of a vector**: \(|a| = \sqrt{a \cdot a} \),
- **Angle between two vectors**: \(\cos(\theta) = \frac{a \cdot b}{|a||b|} \).
Euclidean Space \mathbb{R}^n. For a n-dimensional vector space V_n equipped with an inner product, we can find an orthonormal basis $\{e_i : i = 1, \cdots, n\}$ such that for all $i, j = 1, \cdots, n$,

$$e_i \cdot e_j = \delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j, \end{cases}$$

where δ_{ij} is called kronecker delta. With respect to this basis, for any vector $a \in V_n$, we find its components (a_1, \cdots, a_n) (or coordinates if a is a point in space)

$$a = \sum_{i=1}^{n} a_i e_i, \quad a_i = a \cdot e_i \in \mathbb{R} \quad \forall i = 1, \cdots, n.$$

We can further identify the space V_n with the familiar Euclidean space \mathbb{R}^n. However, one shall keep in mind, \mathbb{R}^n, as a vector space equipped with an inner product, is more than a collection of arrays of real numbers. One should not think of a vector in \mathbb{R}^n as an array of real numbers unless we specify a basis or a frame.

Tensor Product. For vectors $a \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$, the tensor product $b \otimes a$ is a linear mapping:

$$b \otimes a : V_n \to V_m$$

$$(b \otimes a)(c) = (a \cdot c)b \quad \forall c \in \mathbb{R}^n.$$

♦ Claim: For any $a \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$, the mapping $b \otimes a$ (from V_n to V_m) defined above is linear.

♦ Claim: Let $\{e_i : i = 1, \cdots n\}$ be an orthonormal basis of \mathbb{R}^n and $\{\hat{e}_p : p = 1, \cdots m\}$ be an orthonormal basis of \mathbb{R}^m. Show that

$$\{\hat{e}_p \otimes e_i : i = 1, \cdots, n, p = 1, \cdots m\} \subset \text{Lin}(\mathbb{R}^n, \mathbb{R}^m)$$

forms a basis of the linear space Lin($\mathbb{R}^n, \mathbb{R}^m$).

Subspace of \mathbb{R}^n, Orthogonal Subspace. A subset $M \subset \mathbb{R}^n$ is a subspace if $\forall \alpha, \beta \in \mathbb{R} \& \forall a, b \in M$, $\alpha a + \beta b \in M$.

Let $M^\perp = \{b : b \cdot a = 0 \forall a \in M\}$.

♦ Claim: Show that M^\perp is a subspace of \mathbb{R}^n if M is a subspace.

Projection Theorem. Let M be a subspace of \mathbb{R}^n. For any $x \in \mathbb{R}^n$, we have

$$x = y + z$$

where $y \in M$, $z \in M^\perp$.

The vector y, z are uniquely determined by x.

♦ Proof:
Transpose of a Tensor Let $A \in \text{Lin}(\mathbb{R}^n, \mathbb{R}^m)$, $\{e_i : i = 1, \cdots, n\}$ be an orthonormal basis of \mathbb{R}^n and $\{\hat{e}_p : p = 1, \cdots, m\}$ be an orthonormal basis of \mathbb{R}^m. Then A admits the following decomposition

$$A = \sum_{p,i} A_{pi} \hat{e}_p \otimes e_i$$

where $A_{pi} = \hat{e}_p \cdot A(e_i) \quad \forall \; i = 1, \cdots, n, p = 1, \cdots, m$.

Define

$$A^T : \mathbb{R}_m^m \rightarrow \mathbb{R}^n,$$

$$A^T = \sum_{p,i} A_{pi} e_i \otimes \hat{e}_p \in \text{Lin}(\mathbb{R}^m, \mathbb{R}^n).$$

♦ Claim: For any $a \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$,

$$b \cdot A(a) = a \cdot A^T(b).$$

Symmetric and Skew-symmetric Tensor Let $A \in \text{Lin}(\mathbb{R}^n, \mathbb{R}^n)$. A is symmetric if $A = A^T$; A is skew-symmetric if $A^T = -A$.

Let $\{e_i : i = 1, \cdots, n\}$, $\{\hat{e}_p : p = 1, \cdots, n\}$ be two orthonormal bases of \mathbb{R}^n. We have shown

$$A = \sum_{p,i} A_{pi} \hat{e}_p \otimes e_i$$

where $A_{pi} = \hat{e}_p \cdot A(e_i) \quad \forall \; p,i = 1, \cdots, n$.

♦ Claims:

1. For any $A \in \text{Lin}(\mathbb{R}^n, \mathbb{R}^n)$, we have a unique decomposition $A = E + W$, where $E = E^T$ and $W = -W^T$.

2. $A = A^T$ if and only if for any $a, b \in \mathbb{R}^n$,

$$b \cdot A(a) = a \cdot A(b).$$

3. If $A = A^T$ and $a \cdot A(a) = 0$ for any $a \in \mathbb{R}^n$, then $A = 0$.

4. There exists a nonzero tensor A such that

$$a \cdot Aa = 0 \quad \forall \; a \in \mathbb{R}^n, \; n \geq 2.$$

5. Assume that $(\hat{e}_1, \cdots, \hat{e}_n) = (e_1, \cdots, e_n)$. If $A = A^T$, then $A_{pi} = A_{ip}$ for all $p, i = 1, \cdots, n$; if $A = -A^T$, then $A_{pi} = -A_{ip}$.

Product of tensors Let $A \in \text{Lin}(\mathbb{R}^n, \mathbb{R}^m)$, $B \in \text{Lin}(\mathbb{R}^m, \mathbb{R}^k)$. Then

$$BA : \mathbb{R}^n \rightarrow \mathbb{R}^k,$$

$$BA(a) = B(A(a)).$$

Orthogonal Tensor Let $Q \in \text{Lin}(\mathbb{R}^n, \mathbb{R}^n)$. The tensor Q is orthogonal if $Qa \cdot Qb = a \cdot b$ for all $a, b \in \mathbb{R}^n$. From the definition we see that orthogonal tensor operating on vectors preserves the length of a vector and the angle between two vectors since
1. \(|a| = |Qa| \), and
2. \(a \cdot b = Qa \cdot Qb \).

\textbf{CLAIM:} A tensor \(Q : \mathbb{R}^n \to \mathbb{R}^n \) is orthogonal if and only if \(Q^TQ = QQ^T = I \), where \(I \) is the identity mapping from \(\mathbb{R}^n \) to \(\mathbb{R}^n \).

Trace and determinant of a tensor Let \(A \in \text{Lin}(\mathbb{R}^n, \mathbb{R}^n) \) and \(\{e_i : i = 1, \ldots, n\} \) be an orthonormal basis. Then we have \(A = \sum_{p,i} A_{pi} e_p \otimes e_i \) and refer to \(\text{Tr}(A) = \sum_{p=1}^n A_{pp} \) as the trace of \(A \), \(\det A = \det[A_{pi}] \) as the determinant of \(A \).

\textbf{CLAIM} \(\text{Tr}, \det : \text{Lin}(\mathbb{R}^n, \mathbb{R}^n) \to \mathbb{R} \) is independent of the choice of basis.

Rigid Rotation Tensor An orthogonal tensor \(R \in \text{Lin}(\mathbb{R}^n, \mathbb{R}^n) \) is a rigid rotation if \(\det R = +1 \).

Representation theorem: For any \(A \in \text{Lin}(\mathbb{R}^n, \mathbb{R}^n) \), there is an \(a \in \mathbb{R}^n \) such that Explicitly, if we have \(A = \sum_i A_{1i} \hat{e}_1 \otimes e_i \), \(\hat{e}_1 = 1 \),

then

\[a = \sum_{i=1}^n A_{1i} e_i. \]

Cross product in \(\mathbb{R}^3 \) For \(a, b \in \mathbb{R}^3 \),

\[a \wedge b = \begin{vmatrix} e_1 & e_2 & e_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = W(b), \]

where \(W = \sum_{p,i} W_{pi} e_p \otimes e_i \),

\[[W_{pi}] = \begin{pmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{pmatrix}. \]

\textbf{CLAIM:} The following properties of cross products holds:

1. \(b \wedge a = -a \wedge b \), \(a \cdot (a \wedge b) = 0 \), \(b \cdot (a \wedge b) = 0 \).
2. \((a \wedge b) \cdot c = (b \wedge c) \cdot a = (c \wedge a) \cdot b \).
3. Geometric interpretation: show that \(|a \wedge b| = \text{area of the parallelogram formed by } a \text{ and } b \); \(|c \cdot (a \wedge b)| = \text{volume of the parallelepiped formed by } a, b, c \).