1. Show that geometric lattices are coatomic (i.e. have the property that every element is a meet of coatoms).

2. For \(\mathcal{H} \) as in the EFL Conjecture and \(n \geq 3 \), show \(\chi'(\mathcal{H}) \leq 2n - 3 \).
 [Familiar pseudohint: easy once found.]

3. Use Motzkin’s Lemma to prove:
 (a) If \(\mathcal{H} \) is a hypergraph such that \(|A \cap B| = 1 \) for all distinct \(A, B \in \mathcal{H} \), then \(|\mathcal{H}| \leq \Delta(\mathcal{H}) \), where
 \[
 \Delta(\mathcal{H}) = \max\{ |\cup_{x \in A \in \mathcal{H}} A| : x \in V(\mathcal{H}) \}.
 \]
 [Let’s say \(N(x) = \bigcup\{ A : x \in A \in \mathcal{H} \} \ (x \in V(\mathcal{H})) \). Cryptic hint: the most natural way to start this one doesn’t work (as far as I know).]
 [The coloring version is also conjectured: if intersection sizes in \(\mathcal{H} \) are at most 1, then \(\chi'(\mathcal{H}) \leq \Delta(\mathcal{H}) \); note that this strengthening of the EFL Conjecture would also generalize Vizing’s Theorem.]
 (b) If \(L \) is a geometric lattice of rank \(r \), then \(W_1 \leq W_{r-1} \).

 [You may use without proof (though you should see why it’s true) the fact that intervals of geometric lattices are geometric, an interval of a poset \(P \) being \([x, y] = \{ z : x \leq z \leq y \} \) for some \(x, y \in P \) with \(x \leq y \) (more precisely, this set equipped with the relations inherited from \(P \)). Please use copoint and coline for lattice elements of ranks \(r-1 \) and \(r-2 \), \(a(x) \) for the number of copoints above \(x \in L \), and \(h \) for the number of points (atoms) below \(h \). You can skip fiddling with the pathological exceptions in Motzkin’s lemma.]

4. For a lattice \(L \) with set of atoms \(A \),
 \[
 \mu_L(\hat{0}, \hat{1}) = \sum\{ (-1)^{|S|} : S \subseteq A, \forall S = \hat{1} \}.
 \]

5. For \(L = \Pi_n \) (the partition lattice), find \(\mu_L(\hat{0}, \hat{1}) \) using:
 (a) Weisner,
 (b) dual Weisner.
6. Let \(L \) be a geometric lattice of rank \(r \), \(k < r = 2 \), and

\[B_k = \{ x : r(x) \leq k \}, \quad T_k = \{ x : r(x) \geq r - k \}. \]

Show that there is an injection \(f : B_k \to T_k \) with \(f(x) \geq x \) for all \(x \in B_k \).

[Hint: Take \(\{ e_x : x \in L \} \) to be the standard basis for \(\mathbb{R}^L \), and for \(y \in T_k \) set \(w_y = \sum \{ e_x : x \in B_k, x \leq y \} \). Let \(M \) be the \(B_k \times T_k \) matrix whose columns are the vectors \(w_y \), i.e.

\[M(x, y) = \begin{cases} 1 & x \leq y \\ 0 & \text{otherwise} \end{cases} \]

(a piece of the \(\zeta \)-matrix.) Show that \(\text{rank}(M) = |B_k| \), i.e. that the vectors \(w_y \) span \(\mathbb{R}^{B_k} \) (and explain why this gives the statement in the problem). It may help to also consider the vectors \(v_y = \sum \{ e_x : x \in B_k, x \& y = 1 \} \) (again, for \(y \in T_k \)). This one can be tricky, though it’s not hard once you find it.]

7. Suppose \(X \subseteq \mathbb{Z}_3^n \) has the property that for all distinct \(x, y \in X \) there is some \(i \) for which \(y_i = x_i + 1 \) (addition in \(\mathbb{Z}_3 \) of course). Then \(|X| \leq 2^n \).

[More general (not required but you could try): Let \(q \) be a prime power and \(D \) a \(d \)-subset of \(\mathbb{F}^n_q \), and suppose \(X \subseteq \mathbb{F}^n_q \) satisfies: for all distinct \(x, y \in X \) there is some \(i \) for which \(y_i - x_i \in D \). Then \(|X| \leq (d + 1)^n \).]

8. For \(X \subseteq \mathbb{Z}_n \) and \(i \in \mathbb{Z}_n \), let \(X + i = \{ x + i : x \in X \} \), where addition is modulo \(n \). Here are two old conjectures (the first reminiscent of EKR and the Simonovits-Sós conjecture mentioned in class):

Conjecture 1. Let \(X \) be a \(k \)-subset of \(\mathbb{Z}_n \) and suppose \(\mathcal{F} \subseteq 2^{\mathbb{Z}_n} \) satisfies

\[\forall A, B \in \mathcal{F}, \quad A \cap B \supseteq X + i \quad \text{for some } i \in \mathbb{Z}_n. \]

Then \(|\mathcal{F}| \leq 2^{n-k} \).

Conjecture 2. For any \(k \)-subset \(X \) of \(\mathbb{Z}_n \), there is a \(k \times n \) \(\{0,1\} \)-matrix \(M \) such that for each \(i \in \mathbb{Z}_n \) the columns of \(M \) indexed by \(X + i \) are linearly independent over \(\mathbb{Z}_2 \).

Show Conjecture 2 implies Conjecture 1. (Full credit, and some additional benefits, for proving Conjecture 1 (with or without using Conjecture 2).)