1. Use the generating function \(\prod_{j \geq 0} (1 + x^{2^j})^{-1} \) to show that for \(n \geq 2 \), the number of partitions of \(n \) into powers of 2 is even.

[E.g. for \(n = 4 \), the relevant partitions are 4, 22, 211 and 1111.]

2. Let \(p'(n) \) (resp. \(p''(n) \)) be the number of partitions of \(n \) into an even (resp. odd) number of parts, and \(t(n) \) the number of partitions of \(n \) into distinct odd parts. Show \(|p'(n) - p''(n)| = t(n) \).

3. Let \(a_n \) be the number of involutions (permutations \(\sigma \) with \(\sigma^2 = \text{id} \)) of \([n] \) (with \(a_0 := 1 \)).

 (a) Use inclusion-exclusion to find a closed form for the sum
 \[
 \sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} a_i.
 \]

 (b) Find a closed form for the exponential generating function, say \(f(x) \), of the sequence \(\{a_n\} \). [Preferred solution: get this from (a).]

4. For a partition \(\lambda \), let \(u(\lambda) \) and \(v(\lambda) \) be (respectively) the number of times \(1 \) appears as a part of \(\lambda \) and the number of different integers that appear as parts of \(\lambda \). Use 2-variable generating functions to show that (for any \(n \))
 \[
 \sum_{\lambda \vdash n} u(\lambda) = \sum_{\lambda \vdash n} v(\lambda).
 \]

 [It can also be done “combinatorially,” but that’s not what’s asked for here.]

5. Suppose \(2n \) people, named \(X_1, Y_1, \ldots, X_n, Y_n \), are seated (uniformly) at random around a circular table. Give (and justify) asymptotics for the probability that no \(X_i, Y_i \) are seated next to each other.

 [You can think of a random cyclic ordering, instead of a random assignment to fixed seats; this is equivalent of course, but may be easier to work with.]

6. Let \(V = V_1 \cup \cdots \cup V_k \) be a partition with \(|V_i| = n \ \forall i \), and say \(T \in \binom{V}{k} \) is a transversal if it meets every \(V_i \). Show that if \(h : \binom{V}{k} \to \mathbb{R} \) satisfies \(h(T) = 1 \) for each transversal \(T \), then there is some \(S \subseteq V \) with
 \[
 |h(S)| \geq c_k n^k,
 \]
where $c_k > 0$ depends only on k and $\overline{h}(S) = \sum \{h(T) : T \subseteq S, |T| = k\}$.

[For $X \subseteq \binom{V}{k}$ please use $h(X) = \sum_{E \subseteq X} h(E)$.

7. (a) Suppose $A_1, \ldots, A_m, B_1, \ldots, B_m \subseteq X$ satisfy

$$|A_I| = |B_I| \quad \forall I \subset [m] \quad \text{and} \quad |A_m| \neq |B_m|$$

(where $A_I = \cap_{i \in I} A_i$ and similarly for B_I). Show that $|X| \geq 2^{m-1}$.

(b) The bound in (a) is best possible (for every m).

[It may help to think of the Venn diagrams associated with the A’s and B’s.]

8. Let $A(P)$ be the poset whose elements are the antichains of the poset P, with $A \leq B$ iff for each $a \in A$ there’s some $b \in B$ with $b \geq a$. Show that $A(P)$ is (isomorphic to) a subposet of 2^P.

9. Show that there is a fixed $C > 1$ such that $|\text{End}(P)| > C^n$ for each $n > 1$ and poset P of size n (i.e. with ground set of size n).

[For simplicity let’s restrict to P’s in which each element is comparable to at least one other. (Of course “isolated” elements just make it easier, right?)]