Please see the homework guidelines on the course page.
If something seems wrong, please ask before wasting a lot of time on it.
All problem parts have equal weight.

1. Find (with justification) the number of sequences \(\Pi_1, \ldots, \Pi_n \) satisfying
 (i) for each \(i \), \(\Pi_i \) is an unordered partition of \([n] \) into \(i \) nonempty blocks (so \(\Pi_1 = \{[n]\} \) and \(\Pi_n \) is the partition into singletons), and
 (ii) for \(i = 2, \ldots, n \), \(\Pi_i \) is gotten from \(\Pi_{i-1} \) by splitting some block (necessarily of size at least 2) into two nonempty blocks.

2. Find a closed form for \(\sum_{i=0}^{k} (-1)^i \binom{n}{i} \binom{n}{k-i} \).

3. Assume \(n \sim k^2 \). For fixed \(X \in \mathcal{K} := \binom{[n]}{k} \) and \(Y \) chosen uniformly from \(\mathcal{K} \), give (and justify) asymptotics for \(\Pr(Y \cap X = \emptyset) \).

4. For fixed \(k \) and \(n \to \infty \), give an asymptotic expression for \(|s(n,k)| \) (and justify, of course).

5.(a) Give a simple (one sentence?) combinatorial explanation of the identity

 \[\sum_{k=0}^{n} \binom{k}{s} = \binom{n+1}{s+1}. \]

 (b) Use (a) to express \(\sum_{k=0}^{n} k^4 \) as a linear combination of a small number (not depending on \(n \)) of binomial coefficients.

6. Show (via bijection) that the Bell number \(B_n \) is equal to the number of permutations \(a_1, \ldots, a_n \) of \([n] \) with the property that for no \(1 \leq i < j \leq n - 1 \) do we have \(a_i < a_j < a_{j+1} \).

 [Here I’m mainly interested in the correspondence: you don’t need to justify at great length.]