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Abstract

The main contribution of this paper is a the analysis of HOD below the
theory AD+ + “The largest Suslin cardinal is a member of the Solovay se-
quence”. It is shown that below the aforementioned theory, HOD of models
of AD+ are fine structural models and hence, satisfy GCH. We also show that
the aforementioned theory is consistent relative to a Woodin cardinal which is
a limit of Woodin cardinals. This was stated as an open problem in [6]. The
paper is a continuation of [4].

In this paper, we continue the work that has started in [4]. Here our goal is
to carry out the analysis of HOD of models of AD+ + SMC + V = L(℘(R)) un-
der the following minimality assumption. Given α such that θα is defined, we let
Γα = {A ⊆ R : w(A) < θα}. We say Γ is a Solovay pointclass if Γ = Γα for some α.

∗2000 Mathematics Subject Classifications: 03E15, 03E45, 03E60.
†Keywords: Mouse, inner model theory, descriptive set theory, hod mouse.
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Recall from [4] that LSA stands for the theory AD+ + “the largest Suslin cardinal
is a member of the Solovay sequence”. We let

#lsa: There is α such that θα+2 ≤ Θ and L(Γα+1) � LSA.

Minimality Assumption: ¬#lsa holds.

Recall from [3] that SMC stands for Strong Mouse Capturing, i.e., Mouse Cap-
turing relative to any strategy of a hod pair. It is known that SMC is not needed
for the computation of HOD as it follows from AD+ + V = L(℘(R)) and our Min-
imality Assumption. However, this is a subject of another paper. This paper is a
continuation of [4], and we assume that the reader is familiar with [4].

Our computation of HOD follows the general outline of the computation of HOD
that can be found in [5]. The proof is by induction on the Solovay pointclasses.
Suppose we have shown that for all β < α, there is a hod pair (P ,Σ) such that

Γ(P ,Σ) = {A ⊆ R : w(A) < θβ} (*).

Then we show that if θα < Θ then there is a hod pair (P ,Σ) such that Γ(P ,Σ) =
{A ⊆ R : w(A) < θα}. We then use this fact to show thatM∞(P ,Σ)|θα has V HOD

θα
as

its universe, and then using this, we complete induction by showing that if θα+1 < θ
then there is (P ,Σ) such that Γ(P ,Σ) = {A ⊆ R : w(A) < θα+1}.

Recall from [3] or from [5] that (*) is known as Generation of Pointclasses. To
prove it, we need to introduce hod pair constructions that produce hod pairs whose
strategies are Γ-fullness preserving. However, for technical reasons, it is convenient
to introduce such constructions for arbitrary pointclasses.

1 Γ-hod pair constructions

Fix a pointclass Γ closed under continuous preimages and images. Below if Λ is an
iteration strategy then we let MΛ be the structure that Λ iterates. We use Code(Λ)
for the set of reals coding Λ � HC. Also, recall that we say that a is self-wellordered
if there is a well ordering of a in Jω(a).

Fix a pointclass Γ. Let

HP Γ = {(P ,Λ) : (P ,Λ) is a hod pair and Code(Λ) ∈ Γ}

and
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MiceΓ = {(a,Λ,M) : a ∈ HC, a is self-wellordered transitive set, Λ is an iteration
strategy such that (MΛ,Λ) ∈ HP Γ, MΛ ∈ a, and M E LpΓ,Λ(a)}.

Suppose (P ,Σ) ∈ HP Γ. We then let

MiceΓ
Σ = {(a,M) : (a,Σ,M) ∈MiceΓ}.

Suppose now A ⊆ R is such that w(A) ≥ w(Γ). We let AΓ be the set of reals
σ that code a pair (σ0, σ1) of continuous functions such that σ−1

0 [A] codes some
(P ,Λ) ∈ HP Γ and σ−1

1 [A] codes some (a,M,Ψ) such that (a,Λ,M) ∈MiceΓ and Ψ
is the unique strategy ofM. If Γ = ℘(R) then we let HP = HP Γ and Mice = MiceΓ.

It is convenient to introduce the notion of Γ-hod pair construction while working
inside self-capturing background triples (see Definition 2.24 of [3]).

Definition 1.1 (Self-capturing background triples) Suppose (M, δ,Σ) is a back-
ground triple. We say (M, δ,Σ) is self-capturing if for every M-inaccessible cardinal
λ < δ and for any g ⊆ Coll(ω, λ), there is a set X ∈ M such that for every M [g]-
cardinal η which is countable in V , (M [g],Σ) Suslin, co-Suslin captures Code(ΣVMλ

)

at η as witnessed by a pair (T, S) ∈ ODM [g]
X .

Suppose now that (M, δ,Σ) is a self-capturing background triple such that (M,Σ)
Suslin, co-Suslin captures the pair (AΓ, A). Suppose B ⊆ R and suppose λ < δ is
an M -inaccessible cardinal such that whenever g ⊆ Coll(ω, λ), (M [g],Σ) Suslin, co-
Suslin captures B. We then write (M,λ,Σ) � B ∈ Γ if whenever g ⊆ Coll(ω, λ)
is M -generic, there is σ ∈ M [g] ∩ AΓ such that if h is M [g]-generic and (σ0, σ1)
is the pair coded by σ then, letting B∗ = B ∩M [g ∗ h] and A∗ = A ∩M [g ∗ h],
M [g ∗ h] � B∗ = σ−1

0 [A∗]. Notice that the definition of (M,λ,Σ) � B ∈ Γ depends
on the pair (AΓ, A). In our exposition the pair (AΓ, A) will always be clear. The
following lemma isn’t difficult to show.

Lemma 1.2 (Lemma 2.29 of [3]) Suppose (M, δ,Σ) is a self-capturing background
triple such that (M,Σ) Suslin, co-Suslin captures the pair (AΓ, A). Suppose B ⊆ R
and suppose λ < δ is an M-inaccessible cardinal such that whenever g ⊆ Coll(ω, λ),
(M [g],Σ) Suslin, co-Suslin captures B. Then (M,λ,Σ) � B ∈ Γ if and only if
B ∈ HP Γ.

The next lemma shows that mouse operators are definable over self-capturing
triples.
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Lemma 1.3 (Lemma 2.30 of [3]) Suppose that (M, δ,Σ) is a self-capturing back-
ground triple such that (M,Σ) Suslin, co-Suslin captures (AΓ, A). Suppose further
that (P ,Λ) ∈ HP Γ and λ < δ is an M-inaccessible cardinal such that (M,λ,Σ) �
Code(Λ) ∈ Γ. Let F : HC → HC be given by F (a) = LpΓ,Σ(a). Suppose g ⊆
Coll(ω, λ) is M-generic and h ∈ HC is V M

δ [g]-generic. Then F � V M
δ [g][h] is defin-

able over M [g][h] from the pair (AΓ ∩M [g], A ∩M [g]) uniformly in h.

Lemma 1.4 (Lemma 2.31 of [3]) Assume the hypothesis of Lemma 1.3. Suppose
further that the function η → Λ � V M

η is definable over M (from parameters) and

that there is some set X ∈ M such that there is an invariant τ ∈ MColl(ω,λ) such
that τ ∈ ODM

X and whenever g ⊆ Coll(ω, λ) is M-generic then τg = {(x, y) ∈ R2 : x
codes P and y ∈ Code(Λ)}. Then F � V M

δ is definable over V M
δ .

We can now introduce Γ-hod pair constructions. Such constructions are modi-
fications of the hod pair constructions introduced in [4] (see Definition 16.2 of [4]).
Below we write M � B ∈ Γ if for some λ < δ, (M,λ,Σ) � B ∈ Γ.

Definition 1.5 (Γ-hod pair constructions) Suppose Γ is a pointclass closed un-
der continuous preimages and images and suppose that A ⊆ R is such that w(A) =
w(Γ). Suppose further (M, δ,Σ) is a self-capturing background triple such that M
locally Suslin, co-Suslin captures (AΓ, A). Then

(Nα,ξ,γ,Pα,ξ,γ,P∗α,ξ,γ, Fα,ξ,γ,Σα,ξ,γ,Σ
∗
α,ξ,γ : α ≤ λ, ξ ≤ ςα, γ ≤ ζα,ξ)

is the output of the Γ-hod pair construction of M if it satisfies the following properties
(in M).

1. For all (α, ξ, γ) ∈ (λ+1)×(ςα+1)×(ζα,ξ+1), (Pα,ξ,γ,Σα,ξ,γ) and (P∗α,ξ,γ,Σ∗α,ξ,γ)
are hod pairs with the property that

λPα,ξ,γ = λP
∗
α,ξ,γ =

{
α + 1 : ςPα > 0

α : ςPα = 0,

and

(a) M � (Pα,ξ,γ,Σα,ξ,γ) ∈ Γ and M � (P∗α,ξ,γ,Σ∗α,ξ,γ) ∈ Γ,

(b) Pα,ξ,γ(α, 0, 0) = P∗α,ξ,γ(α, 0, 0),

(c) if (α, ξ, γ) <lex (λ, ςα, ζα,ςα) then ρ(P∗α,ξ,γ) > δ
P∗α,ξ,γ
α , and
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(d) Pα,ξ,γ = C(P∗α,ξ,γ) and if π : Pα,ξ,γ → P∗α,ξ,γ is the uncollapse map then
Σα,ξ,γ = π-pullback of Σ∗α,ξ,γ.

2. The construction of (Nα,0,0,Pα,0,0,P∗α,0,0). We let η0 < η1 be the first two
M-cardinals such that for each i ∈ {0, 1}, LpΓ(V M

ηi
) � “ηi is a Woodin cardi-

nal”, and N0,0,0 = (J ~E)V
M
η1 .

(a) We let η0 < η1 be the first two M-cardinals such that for each i ∈ {0, 1},
LpΓ(V M

ηi
) � “ηi is a Woodin cardinal”. We then let N0,0,0 = (J ~E)V

M
η1 .

Next suppose α = θ + 1. If Pθ,ςθ,ζθ,ςθ is of lsa type then stop the construc-
tion. Otherwise let

ν =

{
δ
Pθ,ςθ,ζθ,ςθ : α 6= 0

0 : otherwise
.

Then if

i. no level of Nα,0,0 projects across δ
Pθ,ςθ,ζθ,ςθ
θ ,

ii. Nα,0,0 has at least two Woodin cardinals > δ
Pθ,ςθ,ζθ,ςθ ,

iii. if α = θ + 1 and Pθ,ςθ,ζθ,ςθ � “δ
Pθ,ςθ,ζθ,ςθ is a Woodin cardinal” then

Nα,0,0 � “δ
Pθ,ςθ,ζθ,ςθ is a Woodin cardinal”

then P∗α,0,0 = Pα,0,0 = Nα,0,0|(µ+ω)Nα,0,0 where µ is the least Woodin car-

dinal of Nα,0,0 bigger than δ
Pθ,ςθ,ζθ,ςθ .

(b) Assume α is a limit ordinal. Let Qα = ∪θ<αPθ+1,0,0 and let Λ be the strat-
egy of Qα induced by Σ. Let η0 < η1 be the first two Woodin cardinals of
M such that for every i ∈ {0, 1}, LpΓ,Λ(V M

ηi
) � “ηi is a Woodin cardinal”.

Let Mα = (J ~E,Λ)V
M
η1 . Then the following holds.

i. If no initial segment of Mα projects across o(Qα) then letting κ =
o(Qα), P∗α,0,0 = Pα,0,0 = (κ+ω)Mα and Σα,0,0 be the strategy of Pα,0,0
induced by Σ.

ii. Provided the above clause holds, let ν0 < ν1 be the first two cardinals
of M such that for every i ∈ {0, 1}, LpΓ,Σα,0,0(V M

νi
) � “νi is a Woodin

cardinal”. Let Nα = (J ~E,Σα,0,0)V
M
ν1 . If

(κ+)Nα = (κ+)Pα,0,0 and Nα|(κ+)Nα = Pα,0,0|(κ+)Pα,0,0

then Nα = Nα,0,0.
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(c) The terminating condition. Below we make a list of the conditions
described above that will force the construction to stop. Stop the construc-
tion if any of the following happens.

i. α is a successor ordinal and there is a level of Nα,0,0 projecting across

δ
Pθ,ςθ,ζθ,ςθ
θ where θ = α− 1.

ii. α = 0 or α = θ + 1 is a successor ordinal and Nα,0,0 doesn’t have
at least two Woodin cardinals > ν where ν = 0 if α = 0 and ν =

δ
Pθ,ςθ,ζθ,ςθ otherwise.

iii. α = θ + 1, Pθ,ςθ,ζθ,ςθ � “δ
Pθ,ςθ,ζθ,ςθ is a Woodin cardinal” and Nα,0,0 �

“δ
Pθ,ςθ,ζθ,ςθ is not a Woodin cardinal”.

iv. α is a limit ordinal and some initial segment of Mα projects across
o(Qα) where Mα and Qα are as in clause 2.b.i.

v. α is a limit ordinal and the above clause fails, but either (κ+)Nα 6=
(κ+)Pα,0,0 or Nα|(κ+)Nα 6= Pα,0,0|(κ+)Pα,0,0 where κ and Nα are as in
clause 2.b.i and 2.b.ii.

3. The construction of (Nα,ξ,0,Pα,ξ,0,P∗α,ξ,0) for fixed α and ξ > 0. Suppose
α ∈ Ord is fixed. We define (Nα,ξ,0,Pα,ξ,0,P∗α,ξ,0 : ξ > 0) by induction on ξ.
Suppose (α, ξ) ∈ Ord2 and

(Nα∗,ξ∗,γ∗ ,Pα∗,ξ∗,γ∗ ,P∗α∗,ξ∗,γ∗ , Fα∗,ξ∗,γ∗ ,Σα∗,ξ∗,γ∗ ,Σ
∗
α∗,ξ∗,γ∗ : (α∗, ξ∗) <lex

(α, ξ) ∧ γ∗ ≤ ζα∗,ξ∗)

has been defined.

(a) Suppose ξ is limit. Let (Qα,ξ,i,Q∗α,ξ,i : i ≤ να,ξ) be a sequence defined as
follows.

i. Q∗α,ξ,0 = limξ∗→ξPα,ξ∗,ζα,ξ∗ ,
ii. for all i ≤ να,ξ, Qα,ξ,i = C(Q∗α,ξ,i),

iii. for all i < να,ξ, Q∗α,ξ,i+1 is the least initial segment M of J (Qα,ξ,i), if
it exists, such that ρ(M) < o(Qα,ξ,i),

iv. for all limit i ≤ να,ξ, Qα,ξ,i = limj→iQα,ξ,j,
v. να,ξ is the least ordinal β such that either

A. J (Qα,ξ,β) has no level projecting across Qα,ξ,β or

B. there is M / J (Qα,ξ,β) such that ρ(M) ≤ δPα,0,0.
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Suppose that clause B doesn’t hold. Let then P∗α,ξ,0 = (Qα,ξ,να,ξ)#, i.e.

P∗α,ξ,0 is the least active level of J ~E[Qα,ξ,να,ξ ]. We also let Σ∗α,ξ,0 be the
strategy of P∗α,ξ,0 induced by Σ. Suppose ρ(P∗α,ξ,0) > δPα,0,0. Then let
η0 < η1 be the first two cardinals of M such that for i ∈ {0, 1}, if Pα,ξ,0
is not of lsa type then LpΓ,Σα,ξ,0(V M

ηi
) � “ηi is a Woodin cardinal”, and if

Pα,ξ,0 is of lsa type then LpΓ,Σstcα,ξ,0(V M
ηi

) � “ηi is a Woodin cardinal”. Let
then

Nα,ξ,0 =

{
(J ~E,Σα,ξ,0)V

M
η1 : Pα,ξ,0 is not of lsa type

(J ~E,Σstcα,ξ,0)V
M
η1 : Pα,ξ,0 is of lsa type.

(b) Suppose ξ = ξ∗ + 1.

i. Suppose there is an extender F that coheres Σ and

(Nα∗,ξ∗,γ∗ ,Pα∗,ξ∗,γ∗ ,P∗α∗,ξ∗,γ∗ , Fα∗,ξ∗,γ∗ ,Σα∗,ξ∗,γ∗ ,Σ
∗
α∗,ξ∗,γ∗ : (α∗, ξ∗) <lex

(α, ξ) ∧ γ∗ ≤ ζα∗,ξ∗)

such that letting E = F ∩ Pα,ξ,ςα,ξ , (Pα,ξ,ςα,ξ , Ẽ,∈) is a hod premouse

where Ẽ is the amenable code of E. Then P∗α,ξ,0 = (Pα,ξ,ςα,ξ , Ẽ,∈).

ii. Suppose there is no such F . Then stop the construction of Pα,ξ,0 and
let ςα = ξ∗.

(c) The terminating condition. Below we make a list of the conditions
described above that will force the construction to stop. Stop the construc-
tion if any of the following happens.

i. Clause 3.a.v.B holds, i.e., there is M / J (Qα,ξ,β) such that ρ(M) ≤
δPα,0,0.

ii. P∗α,ξ,0 is defined but ρ(P∗α,ξ,0) ≤ δPα,0,0.

4. The description of (Nα,ξ,γ,Pα,ξ,γ,P∗α,ξ,γ) for fixed (α, ξ). Fix (α, ξ) ∈
Ord2. We define (Nα,ξ,γ,Pα,ξ,γ,P∗α,ξ,γ) by induction. Suppose (α, ξ, γ) ∈ Ord3

and

(Nα∗,ξ∗,γ∗ ,Pα∗,ξ∗,γ∗ ,P∗α∗,ξ∗,γ∗ , Fα∗,ξ∗,γ∗ ,Σα∗,ξ∗,γ∗ ,Σ
∗
α∗,ξ∗,γ∗ : (α∗, ξ∗, γ∗) <lex

(α, ξ, γ))

has been defined.

(a) Suppose γ is a limit ordinal or is 0. Then we let P∗α,ξ,γ = limγ∗→γPα,ξ,γ∗.
Also, let Σ∗α,ξ,γ be the strategy of P∗α,ξ,γ induced by Σ. Let η0 < η1 be the
first two cardinals of M such that for i ∈ {0, 1}, if Pα,ξ,0 is not of lsa type
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then LpΓ,Σα,ξ,0(V M
ηi

) � “ηi is a Woodin cardinal”, and if Pα,ξ,0 is of lsa type

then LpΓ,Σstcα,ξ,0(V M
ηi

) � “ηi is a Woodin cardinal”. Then

Nα,ξ,γ =

{
(J ~E,Σα,ξ,γ )V

M
η1 : Pα,ξ,γ is not of lsa type

(J ~E,Σstcα,ξ,γ )V
M
η1 : Pα,ξ,γ is of lsa type.

We then let P∗α,ξ,γ+1 be the first level of Nα,ξ,γ, if exists, that projects across
o(Pα,ξ,γ). If there isn’t such a level then stop the construction.

(b) Suppose γ = γ∗ + 1. Let η0 < η1 be the first two cardinals of M such that
for i ∈ {0, 1}, if Pα,ξ,0 is not of lsa type then LpΓ,Σα,ξ,0(V M

ηi
) � “ηi is a

Woodin cardinal”, and if Pα,ξ,0 is of lsa type then LpΓ,Σstcα,ξ,0(V M
ηi

) � “ηi is
a Woodin cardinal”. Then

Nα,ξ,γ =

{
(J ~E,Σα,ξ,γ∗ )V

M
η1 : Pα,ξ,γ∗ is not of lsa type

(J ~E,Σstc
α,ξ,γ∗ )V

M
η1 : Pα,ξ,γ∗ is of lsa type.

(c) The terminating condition. Terminate the construction if

i. there is a M E Nα,ξ,γ such that ρ(M) ≤ δP
b
α,ξ,0 or

ii. o(P∗α,ξ,γ) = δ.

(d) If γ is a limit ordinal and Nα,ξ,γ is defined but there is no M E Nα,ξ,γ
such that ρ(M) ≤ δPα,ξ,γ . Set ζα,ξ = γ.

(e) If γ = γ∗ + 1 and Nα,ξ,γ is defined but there is no M E Nα,ξ,γ such that
ρ(M) ≤ δPα,ξ,γ∗ . Set ζα,ξ = γ∗.

5. The main termination condition If the construction reaches (α, ξ) such
that Pα,ξ,ζα,ξ is of lsa type then stop the construction.

The next theorem, which is the generalization of the equivalent theorem in [4],
shows that Γ-hod pair constructions produce winning strategies for II in the un-
dropping game (see Definition 7.1 of [4]).

Theorem 1.6 (Theorem 17.3 of [4]) Suppose Γ is a pointclass closed under con-
tinuous preimages and images and suppose that A ⊆ R is such that w(A) = w(Γ).
Suppose further (M, δ,Σ) is a self-capturing background triple such that M locally
Suslin, co-Suslin captures (AΓ, A). Let

(Nα,ξ,γ,Pα,ξ,γ,P∗α,ξ,γ, Fα,ξ,γ,Σα,ξ,γ,Σ
∗
α,ξ,γ : α ≤ λ, ξ ≤ ςα, γ ≤ ζα,ξ)

be the output of the Γ-hod pair construction of M . Then for every (α, ξ, γ) such that
Σα,ξ,γ is defined, Σα,ξ,γ is a winning strategy for II in Gu(Pα,ξ,γ, ω1, ω1, ω1).
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Just like in [4], the notion of Γ-hod pair construction leads to comparison of two
Γ-fullness preserving hod pairs. We state the result without the proof as it can be
proved using the same proof as the corresponding result from [4] (see Theorem 18.11
and Corollary 18.12 of [4]).

Corollary 1.7 (Comparison) Assume AD+ and suppose Γ is a pointclass closed
under continuous images and preimages. Suppose (P ,Σ) and (Q,Λ) are two hod pairs
such that both Σ and Λ are Γ-fullness preserving and have branch condensation. Then
the normal comparison1 for (P ,Σ) and (Q,Λ) holds.

Recall that the proof of Corollary 1.7 is by first choosing a self-capturing back-
ground triple (M, δ,Σ) that Suslin, co-Suslin captures some pair (A,AΓ) and then
showing that the Γ-hod pair construction of M produces a common iterate of (P ,Σ)
and (Q,Λ).

2 The internal theory of hod mice

In this section we generalize the result of Section 3.1 of [3] to our current context.
As in [3], these results lead towards showing that given a hod pair (P ,Σ), Γ(P ,Σ)
is an OD-full pointclass (see Definition 3.16 of [3]).

2.1 The uniqueness of the internal strategy

The first theorem, Theorem 2.2, is just a direct generalization of Theorem 3.3 of [3].
It says that the internal strategies are unique. First we prove a useful lemma.

Lemma 2.1 Suppose P is a hod premouse and (α, ξ, γ) ∈ λP × (ςPα + 1)× (ζPα,ξ + 1).

Suppose further that if α + 1 = λP then (ξ, γ) ∈ ςPα × (ζPα,ξ + 1). Suppose ~U ∈ P is
a stack on P(α, ξ, γ) and suppose R is its last model. Then for all ν + 1 ≤ λR such
that R � “δRν+1 is a Woodin cardinal”, cfP(δRν+1) > ω.

Proof. Towards a contradiction, assume not. Let (Nα, ~Uα, Eα : α ≤ η) be the

components of ~U . Without loss of generality we can assume that for every cutpoint
S of ~U , ~U≤S is not a counterexample to our claim.

Let S be the least model in ~U such that π
~U
S,R exists and δRν+1 ∈ rng(π

~U
S,R). It

follows that there is N in ~U such that for some extender F in ~U , F is applied toM
1Recall that this means that the comparison can be achieved via a normal tree.
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and S = Ult(N , F ). Let µ be such that π
~U
S,R(µ) = ν. Since π

~U
S,R is cofinal at δSµ+1,

we have that cfP(δSµ+1) = ω.

Let E be the undropping extender of ~U≤M and let M+ = Ult(P , E). Hence,
there is a sequence (hi : i < ω) ∈ P such that for some (ai : i < ω) ∈ (ν<ωF )ω,

supi<ω π
M
F (πE(hi))(ai) = δSµ+1.

But (πM
+

F (πE(hi)) : i < ω) ∈ Ult(M, F ). Hence,

Ult(M+, F ) � δSµ+1 = supa∈ν<ωF ,i<ω π
M+

F (πE(hi))(a)

implying that Ult(M+, F ) � cf(δSµ+1) ≤ νF contradicting the fact that Ult(M+, F ) �
“δSµ+1 is a Woodin cardinal”. �

Theorem 2.2 (Uniqueness of internal strategies) Suppose P is a hod premouse
and (α, ξ, γ) ∈ λP × (ςPα + 1) × (ζPα,ξ + 1). Suppose further that if α + 1 = λP then
(ξ, γ) ∈ ςPα × (ζPα,ξ + 1). Then P � “P(α, ξ, γ) has a unique iteration strategy”.

Proof. It follows from the proof of Lemma 2.1 that whenever ~U ∈ P is a stack on
P(α, ξ, γ) with last model R and β + 1 ≤ λR then cfP(δRβ+1) > ω. Uniqueness of the
strategy is an easy consequence of this fact. To show it, we start working in P .

Suppose Λ 6= Σα,ξ,γ is another iteration strategy for Pα,ξ,γ. Since P(α, ξ, γ) is not

of lsa type, it follows from Lemma 18.5 of [4] that we can fix ~T on P(α, ξ, γ) which

constitutes a minimal low-level disagreement between Λ and Σα,ξ,γ. Let b = Σα,ξ,γ(~T )

and c = Λ(~T ). Let Q be a cutpoint of ~T such that ~T≤Q is a continuable stack on

P(α, ξ, γ) (see Definition 5.4 of [4]) and U =def
~T≥Q is an irreducible normal tree

onQ. Let ν+1 ≤ λQ be least such that U is based onQ(ν+1, 0, 0). We then have that

(1) (Σα,ξ,γ)Q(ν),~T≤Q = ΛQ(ν),~T≤Q and that U is above δQν .

It then follows that cf(δ(T )) = ω. Notice that because of (1) it cannot be the
case that

δ(T ) < min(πUb (δQν+1), πUc (δQν+1))

as in that case, both Q(β,U) and Q(c,U) exist and are fully iterable, and hence the
same, implying that b = c. It then follows from (1) that cf(δQν+1) = ω contradicting
Lemma 2.1. �

The proof of Theorem 2.2 can be used in the context of lsa hod premice as
well. We will state this result after proving the fullness preservation of the internal
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strategies. Essentially the internal short tree strategy is the unique short tree strategy
which is internally fullness preserving. For now, we state the following corollary of
the proof of Theorem 2.2.

Corollary 2.3 Suppose P is an lsa type hod premouse and Λ is its internal short
tree strategy. Suppose (~T ,Q) ∈ I(P ,Λ) and β+ 1 < λQ. Then P � “ΛQ(β+1),~T is the

unique strategy of Q(β + 1)”.

2.2 Generic interpretability

We now move to generic interpretability. We start by recalling and generalizing the
definition of a pre-hod pair.

Definition 2.4 (Prehod pair) (P ,Σ) is a prehod pair if

1. P is a countable hod premouse,

2. λP is a successor but P is not of lsa type,

3. Σ is an (ω1, ω1, ω1)-strategy for P acting on stacks based on P(λP − 1) such
that (P(λP − 1),Σ) is a hod pair and that whenever i : P → Q comes from an
iteration according to Σ, ΣQQ(λQ−1)

= Σ � Q,

4. P is a Σ-mouse over P(λP − 1),

5. for any P-cardinal η ∈ (δPλP−1, δ
P
λ ), considering P|η as a Σ-mouse over P(λP−

1), there is an ω1-strategy Λ for P|η.

Notice that there must be a unique strategy Λ as in 5 of Definition 2.4. Also,
recall the definition of Generic Interpretability from [3] (Definition 3.8). In our
current context it takes the following form.

Definition 2.5 (Generic Interpretability) Suppose (P ,Σ) is a pre-hod pair or a
hod pair such that λP is a limit ordinal. We say generic interpretability holds for
(P ,Σ) if there is a function F such that

1. F is definable over P with no parameters,

2. dom(F ) consists of triples (α, ξ, κ) such that α < λP , ξ < ςPα , µP
α,ξ,ζPα,ξ

< δP

and κ ∈ (µP
α,ξ,ζPα,ξ

, δP) is a P-cardinal,
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3. for (α, ξ, κ) ∈ dom(F ), F (α, ξ, κ) = (Ṫ , Ṡ) such that letting µ = µP
α,ξ,ζPα,ξ

,

(a) Ṫ , Ṡ ∈ PColl(ω,µ),

(b) P � “ 
Coll(ω,µ) Ṫ and Ṡ are κ-complementing”,

(c) for any ν ∈ (µ, κ) and any P-generic g ⊆ Coll(ω, ν),

P [g] � “p[Ṫg] is an (ω1, ω1, ω1)-iteration strategy for P(α, ξ) which
extends ΣPP(α,ξ)”

and

(p[Ṫg])
P[g] = ΣP(α,ξ) � HCP[g].

The proof that the generic interpretability holds is just like the proof of Theorem
3.10 of [3] using Theorem 18.3 of [4] and Theorem 2.2 instead of Theorem 3.3 and
Lemma 2.15 of [3]. First the proof of Lemma 3.9 of [3] can be used with no changes
to establish the following useful lemma.

Lemma 2.6 Suppose (P ,Σ) is a prehod pair and α + 1 = λP . Let κ < δP be a P-
cardinal such that P has no extenders with critical point δPα and index greater than
κ. Let Λ∗ be the iteration strategy of P|κ as in 5 of Definition 2.4. Let Λ be the
fragment of Λ∗ that acts on non-dropping stacks. Let g ⊆ Coll(ω, κ) be P-generic.
Then P [g] locally Suslin captures Code(Λ) and its complement at any cardinal of P
greater than κ.

Fix now a prehod pair (P ,Σ) and let α + 1 ≤ λP . Let κ < δP be a P-cardinal
such that P has no extenders with critical point δPα and index greater than κ. Fix
ξ ≤ ςPα and let

(Nβ,ν,ζ ,Pβ,ν,ζ ,P∗β,ν,ζ , Fβ,ν,ζ ,Φα,ν,ζ ,Φ
∗
α,ν,ζ : β ≤ λ, ν ≤ ςα, ζ ≤ ςα,ν)

be the output of hod pair construction of P|δP in which extenders used have critical
point > κ. It follows from Theorem 18.11 of [4], Lemma 2.2 and Lemma 2.6 that for
some (α, ν, ζ), (Nβ,ν,ζ ,Φβ,ν,ζ) is a tail of (P(α, ξ),Σα,ξ). We then set

NPκ,α,ξ = Nβ,ν,ζ and Λκ,α,ξ = Φβ,ν,ζ .

Also let πPκ,α,ξ : P(α, ξ)→ NPκ,α,ξ be the iteration embedding according to Σα,ξ and let
Tκ,α,ξ be the tree on P(α, ξ) with last model NPκ,α,ξ. It then follows from Lemma 2.6,
hull condensation of Σ and the proof of Theorem 18.33 of [4] that

12



Corollary 2.7 whenever η ∈ (κ, δP) is such that η > o(NPκ,β,ξ) and n < ω, there are

names (Ṫ , Ṡ) ∈ PColl(ω,η), such that

1. Ṫ , Ṡ ∈ PColl(ω,η),

2. P � “ 
Coll(ω,µPβ,ξ,γ) Ṫ and Ṡ are (δP)+n-complementing”,

3. for any λ < (η, ((δP)+n)P) and any P-generic g ⊆ Coll(ω, λ),

P [g] � “p[Ṫg] is an (ω1, ω1, ω1)-iteration strategy for Nκ,α,ξ”

and letting Φ be the πPκ,α,ξ-pullback of the strategy given by (p[Ṫg])
P[g] then

Φ = ΣP(α,ξ) � HCP[g].

Our generic interpretability result now can be proved using the tree production
lemma (Theorem 3.3.15 of [1]) and Corollary 2.7. We leave the details to the reader.

Theorem 2.8 (The generic interpretability) Suppose (P ,Σ) is a prehod pair or
is a hod pair such that λP is limit. Assume that for every α < λP , ΣP(α) has branch
condensation. Then generic interpretability holds for (P ,Σ).

Next, we present our result on internal fullness preservation. The proof follows
the same line of thought as the proof of Theorem 3.12 of [3] and because of that we
omit it.

Definition 2.9 Suppose P is a hod premouse and (α, ξ, γ) ∈ λP × (ςPα + 1) ×
(ζPα,ξ + 1). We say Λ = ΣPα,ξ,γ is internally fullness preserving if whenever (~T ,R) ∈
I(P(α, ξ, γ),Λ) ∩ P is a stack such that (|~T |+)P exists, β < λR and η ∈ (δβ, δβ+1]R

is a cardinal cutpoint of R,

1. if M ∈ P is a sound max(δP + 1, (|~T |+)P)-iterable ΛR(β),~T -mouse over R|η
then M E R,

2. ifM∈ P is a sound max(δP+1, (|~T |+)P)-iterable ΛR(β),~T -mouse overR(β, 0, 0)
then M E R.

Theorem 2.10 (Internal fullness preservation) Suppose P is a hod premouse
and (α, ξ, γ) ∈ λP×(ςPα +1)×(ζPα,ξ+1). Then ΣPα,ξ,γ is internally fullness preserving.
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3 Diamond comparison

Our goal here is to provide another comparison argument, diamond comparison,
that doesn’t rely on branch condensation as heavily as our other argument (see
Corollary 1.7). The new comparison argument follows the same line of thought as
the proof of a similar comparison argument from [3] (see Theorem 2.47 of [3]).

We have two applications in mind for such a comparison argument. First we
will use it to show that in some instances tails of strategies with hull condensa-
tion get branch condensation and strong branch condensation. This will appear as
Theorem 6.7.

Next, as in [3], the diamond comparison argument can be used to show that
AD+ + LSA is consistent relative to a Woodin cardinal that is a limit of Woodin
cardinals. This will appear as Theorem 13.1. In [3], a similar argument gave the
consistency of ADR + “Θ is regular” relative to a Woodin cardinal that is a limit of
Woodin cardinals.

Following the proof of Theorem 2.47 of [3], we first define a bad block and a bad
sequence and show that there cannot be such a bad sequence of length ω1. We then
show that the failure of comparison produces such bad sequences of length ω1.

3.1 Bad sequences

For the purposes of this subsection, we make a definition of a bad block and a bad
sequence. In later subsections, we will redefine these names for different objects. For
the duration of this subsection, we fix a Γ-fullness preserving

Definition 3.1 (Bad block) Suppose (P ,Σ) and (Q,Λ) are two hod pairs of limit
type. Then

B = (((Pi,Qi,Σi,Λi) : i < 5), (~Ti, ~Ui : i < 4), (c, d))

is a bad block on ((P ,Σ), (Q,Λ)) if the following holds:

1. (P0,Σ0) = (P ,Σ) and (Q0,Λ0) = (Q,Λ).

2. ~T0 is a stack according to Σ0 on P.

3. ~U0 is a stack according to Λ0 on Q.

4. Let ~T0 = (Mβ, ~Tβ, Eβ : β ≤ ν) and ~U0 = (Nβ, ~Uβ, Fβ : β ≤ ν). Then ~Tν and ~Uν
are undefined, P1 =Mν and Q1 = Nν.
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5. There is some β+1 < min(λP1 , λQ1) such that P1(β+1) = Q1(β+1), P1(β+1)
is of successor type, ΣP1(β+1),~T0 6= ΛQ1(β+1), ~U0

and

ΣP1(β),~T0 = ΣQ1(β), ~U0
.

6. ~T1 = ~U1 is a comparison tree for (P1(β+1),ΣP1(β+1),~T0) and (Q1(β+1),ΛQ1(β+1), ~U0
),

c = ΣP1(β+1),~T0(~T1), and d = ΛQ1(β+1), ~U0
(~U1). We let P2 =M~T1

c and Q2 =M~U1
d

where we apply the stack ~T1 and ~U1 to P1 and Q1 respectively.

7. Σ1 = ΣP1,~T0, Σ2 = ΣP2,~T_0 ~T_1 {P2}, Λ1 = ΣQ1, ~U0
, and Λ2 = ΣQ2, ~U_0 ~U_1 {Q2},

8. ~T2 is a stack according to Σ2 on P2 with last model P3 and Σ3 = (Σ2)P3,~T2.

9. ~U2 is a stack according to Λ2 on Q2 with last model Q3 and Λ3 = (Λ2)Q3, ~U2
.

10. ~T3 is a normal tree according to Σ3 on P3 with last model P4 and Σ4 = (Σ3)P4,~T3.

11. ~U3 is a normal tree according to Λ3 on Q3 with last model Q4 and Λ4 =
(Λ3)Q4, ~U3

.

12. Pb3 = Qb3 and (Σ3)Pb3 = (Λ3)Qb3.

13. ~T3 and ~U3 are the trees produced via extender comparison between P3 and Q3.

We set ~T B = ~T _0 ~T _1 {P2}_ ~T _2 ~T3 and ~UB = ~U_0 ~U_1 {Q2}_ ~U_2 ~U3. We say ~T B is the

stack on the top of B and ~UB is the stack in the bottom of B.

Next we show that there cannot be a bad sequence of length ω1.

Lemma 3.2 (No bad sequences) Suppose (P ,Σ) and (Q,Λ) are two hod pairs
of limit type such that P and Q are countable, and both Σ and Λ are (ω1, ω1, ω1)-
strategies. There is then no bad sequence, i.e., a sequence (Bβ : β < ω1) satisfying
the following holds:

1. For all β < ω1, Bβ = (((Pβ,i,Qa,i,Σβ,i,Λβ,i) : i < 5), (~Tβ,i, ~Uβ,i : i < 4), (cβ, dβ)).

2. For all β < ω1, Bβ is a bad block on ((Pβ,0,Σβ,0), (Qβ,0,Λβ,0)).

3. For all β < ω1, Pβ+1,0 = Pβ,4 and Qβ+1,0 = Qβ,4.
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4. For β < α < ω1, let πβ,α : Pβ,0 → Pα,0 be the composition of the embeddings
on the “top” and σβ,α : Qβ,0 → Qα,0 be the composition of the embeddings in
the “bottom”. Then for all limit λ < ω1, Pλ,0 is the direct limit of (Pβ : β < λ)
under the maps πβ,α. Similarly, for all limit λ < ω1, Qλ,0 is the direct limit of
(Qβ : β < λ) under the maps σβ,α.

5. For all β < ω1, Σβ,0 = ΣPβ,0,⊕γ<β ~T Bγ and Λβ,0 = ΣQβ,0,⊕γ<β ~UBγ .

Proof. Towards a contradiction, suppose ~B = (Bβ : β < ω1) is a bad sequence. Let
Pω1 be the direct limit of (Pβ,0 : β < ω1) under the embeddings πβ,α and Qω1 be the
direct limit of (Qβ,0 : β < ω1) under the embeddings σβ,α. Let X be a countable

submodel of Hω3 such that letting τ : M → Hω3 be the uncollapse map, ~B ∈ rng(σ).
Let κ = ωM1 and notice that for every β < κ,

B−β =def (((Pβ,i,Qβ,i) : i < 5), (~Tβ,i, ~Uβ,i : i < 4), (cβ, dβ)) ∈M

and B−β is countable in M . It then follows that τ−1(Pω1) = Pκ,0 and τ−1(Q) = Qκ,0.
Let

πβ : Pβ,0 → Pω1 and σβ : Qβ,0 → Qω1

be the direct limit embeddings.
Standard arguments show that for all x ∈ Pκ,0 ∩Qκ,0,

πκ(x) = τ(x) = σκ(x).

Notice that we have that λPκ,0 = λQκ,0 . Letting λ = λPκ,0 , notice that δ
Pκ,0
λ−1 = δ

Qκ,0
λ−1 .

Let then δ = δ
Pκ,0
λ−1 . Let φ = π

~Tκ,0 and ψ = π
~Uκ,0 . It then follows that

(1) ℘(δ)Pκ,0 = ℘(δ)Qκ,0 .

Let β be such that ~Tκ,1 = ~Uκ,1 is based on Pκ,1(β + 1) = Qκ,1(β + 1). Notice
that

(2) δPκ,1(β+1) = sup{φ(f)(a) : f ∈ Pκ,0 ∧ f : δ → δ ∧ a ∈ (Pκ,1(β))<ω}
(3) δQκ,1(β+1) = sup{ψ(f)(a) : f ∈ Qκ,0 ∧ f : δ → δ ∧ a ∈ (Qκ,1(β))<ω}

Let now p = π
~Tκ,1
cκ , q = π

~Tκ,1
dκ

, j : Pκ,2 → Pω1 and i : Qκ,2 → Qω1 be the itera-

tion embeddings along the top and bottom of ~B. Notice that because

(Σκ,2)Pκ,2(p(β)+1) = (Λκ,2)Qκ,2(p(β)+1),
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we have that

(4) j � Pκ,2(p(β) + 1) = i � Qκ,2(q(β) + 1).

Let then

s = {γ < δ
Pκ,1
β+1 : ∃f ∈ (δδ)Pκ,0∃a ∈ (Pκ,1(β))<ω(γ = φ(f)(a))}

t = {γ < δ
Qκ,1
β+1 : ∃f ∈ (δδ)Qκ,0∃a ∈ (Qκ,1(β))<ω(γ = ψ(f)(a))}.

(1) then implies that

(5) j ◦ p[s] = i ◦ q[t].

(4) then implies that

(6) p[s] = q[t]

and because (by (2) and (3)) s and t are cofinal in δPκ,0(β+1), we have that cκ = dκ,
contradiction. �

3.2 The comparison argument

In this subsection we prove the following comparison theorem under the hypothesis
that the lower level comparison holds. Suppose (P ,Σ) and (Q,Λ) are two hod pairs
such that Γ(P ,Σ) = Γ(Q,Λ) =def Γ, both Σ and Λ are Γ-fullness preserving and P
and Q are of limit type. We then let “lower level comparison” stand for the following
statement.

Lower Level Comparison: for every (~T ,P1) ∈ B(P ,Σ) and (~U ,Q1) ∈ B(Q,Λ),
comparison holds for (P1,ΣP1,~T ) and (Q1,ΛQ1, ~U).

The following is then the comparison theorem we will prove in this subsection.

Theorem 3.3 (Diamond comparison) Suppose (P ,Σ) and (Q,Λ) are two hod
pairs such that Γ(P ,Σ) = Γ(Q,Λ) =def Γ, both Σ and Λ are Γ-fullness preserving
(ω1, ω1, ω1)-strategies, P and Q are countable and are of limit type, and lower level

comparison holds between (P ,Σ) and (Q,Λ). Then there are (~T ,R) ∈ I(P ,Σ) and

(~U ,R) ∈ I(Q,Λ) such that either
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1. P and Q are of lsa type and Σsts
R,~T = Λsts

R, ~U or

2. P and Q are not of lsa type and ΣR,~T = ΛR, ~U .

We prove the theorem by showing that the failure of its conclusion produces a
bad sequence of length ω1. Towards showing this, we prove two useful lemmas.

In the sequel, we say that (P ,Σ) and (Q,Λ) satisfy the lower level comparison if
(∗) above holds. We say that weak comparison holds between (P ,Σ) and (Q,Λ) if

there is (~T , ~U ,R,S) such that

1. (~T ,R) ∈ I(P ,Σ),

2. (~U ,S) ∈ I(Q,Λ),

3. Rb = Sb and ΣRb,~T = ΛSb, ~U .

Our first lemma says that lower level comparison implies that weak comparison holds.

Lemma 3.4 Suppose (P ,Σ) and (Q,Λ) are two hod pairs such that Γ(P ,Σ) =
Γ(Q,Λ) =def Γ, both Σ and Λ are Γ-fullness preserving, P and Q are of limit type and
that lower level comparison holds between (P ,Σ) and (Q,Λ). Then weak comparison
holds between (P ,Σ) and (Q,Λ).

Proof. We inductively construct (Pi, ~Ti : i < ω) and (Qi, ~Ui : i < ω) such that the
following conditions hold.

1. P0 = P and Q0 = Q.

2. Suppose i = 2n. Then the following holds.

(a) ~Ti is a stack on Pbi according to ΣPbi ,⊕k<i ~Tk
with last model Pi+1 (when we

apply ~Ti to Pi).
(b) ~Ui is a stack on Qi according to ΛQi,⊕k<i ~Ui with last model Qi+1.

(c) Pbi+1 Ehod Qbi+1 and ΛPbi+1,⊕k≤i ~Uk
= ΣPbi ,⊕k<i ~Tk

.

3. Suppose i = 2n+ 1. Then the following holds.

(a) ~Ti is a stack on Pi according to ΣPi,⊕k<i ~Tk with last model Pi+1.

(b) ~Ui is a stack on Qbi according to ΛQbi ,⊕k<i ~Ui
with last model Qi+1 (when

we apply ~Ui to Pi).
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(c) Qbi+1 Ehod Pbi+1 and ΛQbi+1,⊕k≤i ~Uk
= ΣQbi ,⊕k<i ~Tk

.

We show how to carry out the inductive step. Suppose i = 2n and we have
constructed (Pi, ~Ti : i ≤ 2n) and (Qi, ~Ui : i ≤ 2n). We now consider three cases.

Suppose first that Pi = Pbi . Next suppose that either cfPi(δPi) = ω or cfPi(δPi) =
δPi . Let (αi : i < ω) be such that sup(αk : k < ω) = δP

b
i . By induction we construct

a sequence (~T ∗k ,Wk, ~Sk,Rk, ~S∗k ,R∗k, βk : k < ω) such that the following holds.

1. ( ~S∗0 ,R∗0) ∈ I(Qi,ΛQi,⊕m<i ~Um) and

Γ(Pi(α0),ΣPi(α0),⊕m<i ~Tm) = Γ(R∗0(β0),ΛR∗0(β0),(⊕m<i ~Um)_ ~S∗0
).

Moreover, (~T ∗0 ,W0) ∈ I(Pi,ΣPi,⊕m<i ~Tm), ( ~S0,R0) ∈ I(R∗0,ΛR∗0,(⊕m<i ~Um)_ ~S∗0
)

and ~T ∗0 and ~S0 are some stacks that come from comparing (Pi(α0),ΣPi(α0),⊕m<i ~Tm)

with (R∗0(β0),ΛR∗0(β0),(⊕m<i ~Um)_ ~S∗0
).

2. For k + 1 < ω, ( ~S∗k+1,R∗k+1) ∈ I(Rk,ΛRk,(⊕m<i ~Um)_(⊕m≤k( ~S∗_m ~Sm))) and

Γ(Wk(α
∗
k+1),ΣWk(α∗k+1),(⊕m<i ~Tm)_⊕m≤k ~T ∗m

) =

Γ(R∗k+1(βk+1),ΛR∗k+1(βk+1),(⊕m<i ~Um)_(⊕m≤k( ~S∗_m ~Sm))).

where α∗k is the image of αk+1 in Wk. Moreover,

(~T ∗k+1,Wk+1) ∈ I(Wk,ΣWk,(⊕m<i ~Tm)_⊕m≤k ~T ∗m
),

( ~Sk+1,Rk+1) ∈ I(R∗k+1,ΛR∗k+1,(⊕m<i ~Um)_(⊕m≤k( ~S∗_m ~Sm))_ ~S∗k+1
)

and ~T ∗k+1 and ~Sk+1 are some stacks that come from comparing

(Wk(α
∗
k),ΣWk(α∗k+1),(⊕m<i ~Tm)_⊕m≤k ~T ∗m

) and

(R∗k+1(βk+1),ΛR∗k+1(βk+1),(⊕m<i ~Um)_(⊕m≤k( ~S∗_m ~Sm))_ ~S∗k+1
)

We then let ~Ti+1 = ⊕k<ω ~T ∗k and ~Ui = ⊕m<ω ~S∗_k ~S. Also, we let Pi+1 be the last

model of ~Ti+1 and Qi+1 be the last model of ~Ui. We carry out the odd induction step
similarly by reversing the roles of Pi and Qi in the above construction. Notice that
because Γ(P ,Σ) = Γ(Q,Λ), we must have that cfQi(δQi) = ω or cfQi(δQi) = δPi
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The construction of (Pi, ~Ti : i < ω) and (Qi, ~Ui : i < ω) in the case cfP(δP) is
measurable is very similar to the above construction. Just let (αi : i < ω) in the
above construction be such that αi = δW

b
i .

We then clearly have that if ~T = ⊕i<ω ~Ti, ~U = ⊕i<ω ~Ui, R is the last model of
~T and S is the last model of ~U then (~T ,R) and (~U ,S) witness weak comparison
between (P ,Σ) and (Q,Λ). �

Lemma 3.5 Suppose (P ,Σ) and (Q,Λ) are two hod pairs such that Γ(P ,Σ) =
Γ(Q,Λ) =def Γ, both Σ and Λ are Γ-fullness preserving, both P and Q are of
limit type and low level comparison holds. Suppose further that Pb = Qb and for
all β < λP − 1, ΣP(β+1) = ΛQ(β+1). Let (T ,R,U ,S) be the trees of the extender
comparison of P and Q2. Suppose that either

1. R 6= S or

2. R = S and ΣR,T 6= ΛS,U .

Then there is a bad block on ((P ,Σ), (Q,Λ)).

Proof. It follows from Lemma 18.5 of [4] that we can find minimal low level dis-

agreement (~T ∗, ~U∗,W) between (R,ΣR,T ) and (S,ΛS,U). We then let P1 and Q1

be the last models of ~T ∗ and ~U∗ when we regard them as stacks on R and S re-
spectively. Let ~T1 be a comparison stack for (W ,ΣW,T_ ~T ∗) and (W ,ΛW,U_ ~U∗). Let

b = Σ(T _ ~T ∗_ ~T2), c = Λ(U_ ~U∗_ ~U2), P2 =M~T2
b and Q2 =M~T2

c (here we apply the
stacks to P1 and Q1 respectively).

Next let (~T2,P3) and (~U2,Q3) witness that weak comparison holds between

(P2,ΣP2,T_ ~T ∗_ ~T1), and(Q2,ΛQ2,U_ ~U∗_1
~U1

).

Finally, let (T3,P4) and (U3,Q4) be the result of extender comparison between P3

and Q3.
Next let P0 = P , Q0 = Q, Σ0 = Σ, Λ0 = Λ, ~T0 = T _ ~T ∗, and ~U0 = U_ ~U∗. Also,

for i ∈ {1, 2, 3, 4} let Σi = ΣPi,⊕k<i ~Tk and Λi = ΛQi,⊕k<i ~Uk , . It is then easy to see
that

(((Pi,Qi,Σi,Λi) : i < 5), (~Ti, ~Ui : i < 4), (πi, σi : i < 5), (b, c))

2Thus, T is on P with last model R and U is on Q with last model S.
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is a bad block on ((P ,Σ), (Q,Λ)). �

We now start proving Theorem 3.3. Suppose that the conclusion of Theorem 3.3
fails. This means that

(1) whenever (~T ,R) ∈ I(P ,Σ) and (~U ,R) ∈ I(Q,Λ),

1. if P and Q are of lsa type then Σsts
R,~T 6= Λsts

R, ~U or

2. if P and Q are not of lsa type then ΣR,~T 6= ΛR, ~U .

It follows from Lemma 3.4 that, without loss of generality, we can assume that
Pb = Qb and for all β+ 1 < λP

b
, ΣP(β+1) = ΛQ(β+1). We now by induction construct

a bad sequence (Bα : α < ω1) on ((P ,Σ), (Q,Λ)).
It follows from Lemma 3.5 that there is a bad block on ((P ,Σ), (Q,Λ)). Let

B0 be any bad block on ((P ,Σ), (Q,Λ)). Suppose next that we have constructed
(Bβ : β < λ) for λ a limit. Let Pλ and Qλ be the direct limit of respectively
(Pβ : β < λ) and (Qβ : β < λ) under the corresponding iteration embeddings. Then
letting Σλ,0 and Λλ,0 be the corresponding tails of Σ and Λ, we have that (Pλ,Σλ)
and (Qλ,Λλ) satisfy the hypothesis of Lemma 3.5. Let then Bλ be a bad block on
((Pλ,Σλ), (Qλ,Λλ)).

Next suppose that we have constructed (Bβ : β < λ + 1). Let Pλ+1 = Pλ,4,

Qλ+1 = Qλ,4 and let ~T and ~U be the stacks respectively on the top of (Bβ : β < λ+1)
and in the bottom of (Bβ : β < λ + 1). We then again can find, using Lemma 3.5,
a bad block on Bλ+1 on ((Pλ+1,ΣPλ+1,~Tλ), (Qλ+1,ΛQλ+1, ~Uλ)). It then follows that the

resulting sequence (Bβ : β < ω1) is a bad sequence on ((P ,Σ), (Q,Λ)), contradiction!

4 The derived models of hod mice

First we state the version of Theorem 3.19 of [3]. First recall (see Corollary 20.6 of
[4]) that if (P ,Σ) is a hod pair and Q ∈ pI(P ,Σ) such that Σ has strong branch
condensation, the the strategy of Q induced by Σ is independent of the particular
iteration producing Q. We denote this strategy by ΣQ.

Given a hod pair (P ,Σ) and (β, ξ, γ) ∈ λP × (ςPβ + 1) × (ζP
β,ςPβ

+ 1) such that β

is limit, we let D(P ,Σ, β) be the derived model of P(β, 0, 0) as computed by Σβ,0,0

and we let

D(P ,Σ, (β, ξ, γ)) = ∪Q∈pI(P(β,ξ,γ),ΣP(β,ξ,γ))D(Q,ΣQ, πΣ
P,Q(β)).
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Next recall (see Definition 15.5 of [3]) that if (P ,Σ) is a hod pair then we let

B(P ,Σ) = {(~T ,Q) : ∃R((~T ,R) ∈ I(P ,Σ) ∧Q Ehod Rb)}

and

Γ(P ,Σ) = {A ⊆ R : ∃(~T ,Q) ∈ B(P ,Σ)(A ≤w Code(ΣQ,~T )}.

Theorem 4.1 Suppose (P ,Σ) is a hod pair such that Σ has strong branch conden-
sation and is fullness preserving. Suppose further that there is a good pointclass Γ
such that Code(Σ) ∈ ∆Γ˜. Then

1. Γ(P ,Σ) = ∪Q∈pI(P,Σ),β<λQD(Q,ΣQ, β).

2. For any Q ∈ pI(P ,Σ), if β + ω < λP then D(Q,ΣQ, β) is completely mouse
full and if β + ω = λP then D(Q,ΣQ, β) is mouse full3.

3. For any Q ∈ pI(P ,Σ), if β < λP then letting Γ∗ = D(Q,ΣQ, β + ω), if ξ is
such that θΓ

Code(ΣQ(β))
= θΓ

ξ then for every n,

θΓ
Code(ΣQ(β+n))

= θΓ
ξ+n and ΩΓ = ξ + ω.

4. Γ(P ,Σ) is a mouse full pointclass.

Theorem 4.2 Suppose (P ,Σ) is a hod pair such that λP is limit and Σ has strong
branch condensation and is fullness preserving. Suppose further that there is a good
pointclass Γ such that Code(Σ) ∈ ∆Γ˜. Then for every Q ∈ pB(P ,Σ), Γ(P ,Σ) �
“MC for ΣQ”.

5 Anomalous hod premice

The use of anomalous hod premice here is the same as it is in [3]. We will use them
to produce pointclasses that are not completely OD-full (see Definition 3.14 of [3]).

3See Definition 3.18 of [3]. More precisely, a pointclass is completely mouse-full if the next model
of determinacy has the same mice relative to common iteration strategies. Given two pointclasses
Γ1 and Γ2, we write Γ1 Emouse Γ2 if Γ1 ⊆ Γ2 and Γ2 has the same mice as Γ1 relative to common
iteration strategies. Finally, Γ is mouse full if either it is completely mouse full or is a union of
completely mouse full pointclasses (Γα : α < Ω) such that for all α, Γα Emouse Γα+1 and for all
limit α, Γα = ∪β<αΓβ .
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Definition 5.1 (Anomalous hod premouse of type I) P is an anomalous hod
premouse of type I if for some successor ordinal λ and some δ there is a sequence
〈Pβ : β < λ〉 such that

1. Pβ is a hod premouse such that λPβ = β,

2. for all β < α < λ, Pβ Ehod Pα and Pβ = Pα(β),

3. P � “∀ξ > o(P(λ− 1))(P||ξ is a ΣP(λ−1)-premouse over P(λ− 1))”,

4. P � “δ is Woodin”,

5. for every ξ ∈ (δ, o(P)), ρ(P|ξ) ≥ δ,

6. ρ(P) < δP .

Definition 5.2 (Anomalous hod premouse of type II) P is an anomalous hod
premouse of type II if P is meek and for some limit ordinal λ and some δ there is a
sequence 〈Pβ : β < λ〉 such that

1. Pβ is a hod premouse such that λPβ = β,

2. for all β < α < λ, Pβ Ehod Pα and Pβ = Pα(β),

3. P|δ = ∪β<λPβ,

4. P � “∀ξ > o(P(λ− 1))(P||ξ is a ⊕β<λΣP(β)-premouse over P|δ)”,

5. for every ξ ∈ (δ, o(P)), ρ(P|ξ) ≥ δ,

6. ρ(P) < δP .

Definition 5.3 (Anomalous hod premouse of type III) P is an anomalous hod
premouse of type III if it is limit type, it is not anomalous hod premouse of type II
and ρ(P) < δP .

We say P is an anomalous hod premouse if it is an anomalous hod premouse of
some type. If P is an anomalous hod premouse then we let δP and λP be as in the
above definitions. We then let ΣP be the strategy that is on the sequence of P .

Definition 5.4 (Anomalous hod pair) (P ,Σ) is an anomalous hod pair if P is
an anomalous hod premouse, Σ is an iteration strategy with hull condensation and
whenever Q is a Σ iterate of P, ΣQ = Σ ∩Q.
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The following lemma is due to Mitchell and Steel. It appears as Claim 5 in the
proof of Theorem 6.2 of [2]. In the current work, the lemma is used to show that
certain hod pair constructions converge, which leads to showing that generation of
pointclasses holds (see Theorem 12.2).

Lemma 5.5 Suppose (P ,Σ) is a an anomalous hod pair, (~T ,Q) ∈ I(P ,Σ) and n is
least such that ρn(P) < δP . Then ρn(Q) < δQ.

The next theorem is the equivalent of Theorem 3.27 of [3].

Theorem 5.6 Suppose (P ,Σ) is an anomalous hod pair of type II or III. Suppose

that there is a pointclass Γ such that for any (~T ,Q) ∈ B(P ,Σ) there is a hod pair
(R,Λ) such that Λ has branch condensation and is Γ-fullness fullness preserving, and
there is π : Q → R such that Λπ = ΣQ,~T . Then

1. For every (~T ,Q) ∈ B(P ,Σ), ΣQ,~T has branch condensation, is positional and
is commuting.

2. Σ is Γ(P ,Σ)-fullness preserving and Γ(P ,Σ) is a mouse full pointclass.

We omit the proof of Theorem 5.6 as it is only notationally more complicated then
the proof of Theorem 3.10 of [3]. It can be proved using the same proof. We remind
the reader that the proof of Theorem 3.27 of [3] depended on generic interpretability
result, which appeared as Theorem 3.10 in [3]. In our current context we need to
use Theorem 2.8. The general idea is that we can translate the properties of Σ into
the derived model of P as computed via Σ. This fact then just gets preserved under
pull-back embeddings.

The following is an easy corollary of Theorem 5.6.

Corollary 5.7 (Branch condensation pulls back) Suppose (P ,Σ) is a hod pair
such that λP is limit and Σ has branch condensation. Suppose π : Q → P is elemen-
tary. Then for every β < λQ, (Σπ)Q(β) has branch condensation.

6 Getting strong branch condensation

In this section we show that strategies with branch condensation acquire strong
branch condensation on a tail.
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Theorem 6.1 (From condensation to strong condensation) Suppose (P ,Σ) is
a hod pair such that Σ has branch condensation and P is of limit type. Then there
is some (~T ,Q) ∈ I(P ,Σ) such that (Q,ΣQ,~T ) has strong branch condensation.

We spend the rest of this section proving Theorem 6.1. We prove Theorem 6.1
by proving three useful general lemmas. The idea is just like the idea behind the
comparison proof of the previous section. If there is no tail with strong branch
condensation then we obtain a certain bad sequence of length ω1. As is expected,
such sequences cannot exist. We start by describing the blocks of our bad sequences.

Definition 6.2 (A bad diamond) Suppose (P ,Σ) is a hod pair such that λP is

limit. We say ((Pi : i < 2), (~Ti : i < 3), (~Ui : i < 3), (Ri : i < 2), (Si : i < 2), k, ξ) is
a bad diamond on (P ,Σ) if it satisfies the following conditions:

1. P0 = P, for i < 2, Pi,Ri and Si are hod premice and k : P0 → R0.

2. (~U0,S0) ∈ I(P ,Σ), for i ∈ [1, 3), (~Ui,Si) ∈ I(Si−1,ΣSi−1
)4, ~U1 is a normal tree

on S0 and P1 is the last model of ~U2.

3. ~T0 = ∅, ~T1 is a normal tree on R0 with last model R1 and ~T2 is a stack on R1

with last model P1,.

4. ξ + 1 < λS0, S0(ξ + 1) = R0(ξ + 1), ~T −1 = ~U−1 5 is a normal tree based on

S(ξ+ 1) such that it has �~T −1 ,s-maximal cutpoint N such that (~T −1 )≥N is based

on N (ν + 1) where ν = π(~T −1 )N (ξ).

5. If b is the last branch of ~T −1 in ~T1 then b 6= ΣS0(~U−1 ).

6. Letting γ = π
~T1(ξ) = π

~U1(ξ), R1(γ + 1) = S1(γ + 1). If ~W is the part of ~T2

based on R1(γ + 1) then ~W is according to ΣS1(γ+1).

Lemma 6.3 Suppose (P ,Σ) is a hod pair such that Σ has branch condensation and
P is of limit type. Suppose further that Σ doesn’t have strong branch condensation.
Then there is a bad diamond on (P ,Σ).

4Recall that because Σ has branch condensation, Σ is positional and the strategy of Si−1 is
independent of the particular iteration producing it (see Corollary 20.6 of [4]).

5Recall that this is just ~T1 without its last model.
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Proof. Let (~T ,Q, π,R, β, σ) be a witness for the failure of strong condensation of

(P ,Σ). Let (~U0,S0) ∈ I(P ,Σ) be such that R(β + 1) = S0(β + 1). We let π = k,
R0 = R and ξ = β. Let Λ = Σσ

Q. Let T be a normal tree on R(β + 1) according to
both ΣS0 and Λ and such that ΣS0(T ) 6= Λ(T ) but letting b = ΣS0(T ), c = Λ(T ),

S1 = M~T
b and R1 = M~T

c then ΣS1(πTb (β+1)) = ΛR1(πTc (β+1)),T . Such a T can be
found using the Theorem 1.7. Notice that Theorem 1.7 is applicable because both
Σ and Λ are Γ(S0(β+ω),ΣS0)-fullness preserving (here we need to use Corollary 5.7

to conclude that ΛR(β+ω) has branch condensation). Let ~T1 = T _{MT
c }, ~U1 =

T _{MT
b }, R1 =MT

c and S1 =MT
b .

Next we would like to compare (R1,ΛR1,~T1) and (S1,ΣS1). To do this, we can

use Corollary 5.7 and Theorem 3.3. Let then (~T2,P1) ∈ I(R1,ΛR1,~T1) and (~U2,P1) ∈
I(S1,ΣS1) be such that ΣP1 = ΛP1,~T_1 ~T2 . It is then not hard to see that

((Pi : i < 2), (~Ti : i < 3), (~Ui : i < 3), (Ri : i < 2), (Si : i < 2), k, ξ)

is a bad diamond on (P ,Σ). �

Now we want to show that there cannot be an ω1-sequence of bad diamonds on
P .

Definition 6.4 (A bad diamond sequence of length β) Suppose (P ,Σ) is a hod

pair such that λP is limit. We say ~D = 〈Dα : α < β〉 is a bad diamond sequence of

length β if Dα = ((Pαi : i < 2), (~T αi : i < 3), (~Uαi : i < 3), (Rα
i : i < 2), (Sαi : i <

2), kα, ξα) and the following holds:

1. D0 is a bad diamond on (P ,Σ) and P1
0 = P0

1 .

2. For all α < β, P0
α ∈ pI(P ,Σ), Dα is a bad diamond on (Pα0 ,ΣPα0 ) and Pα+1

0 =
Pα1 .

3. For ν < α < β, let πν,α : Pν0 → Pα0 be the embedding obtained by composing

κγ with the iteration embeddings given by ~T γ_1
~T γ2 ’s and σν,α : Pν0 → Pα0 be

the iteration embedding given by ~Uγ_0
~Uγ_1

~Uγ2 . Then for limit λ < β, Pλ0 is
the direct limit of (Pγ0 : γ < λ) under σν,α, and (Pλ0 )b is the direct limit of
((Pγ0 )b : γ < λ) under πν,α.

We say that π embeddings are the top embeddings of ~D and σ embeddings are the
bottom embeddings of ~D.
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Lemma 6.5 (No bad diamond sequence of length ω1) Suppose (P ,Σ) is a hod
pair such that Σ has a branch condensation. Then there is no bad diamond sequence
of length ω1 based on (P ,Σ).

Proof. Suppose not and let ~D = (Dβ : β < ω1) be a bad diamond sequence of length

ω1. Let τ : H → Hω2 be a countable submodel such that { ~D, (P ,Σ)} ∈ rng(τ).
Let κ = ωH1 . Notice that κ = crit(τ). Let for ξ < β ≤ ω1, πξ,β : Pξ0 → P

β
0 be the

composition of the top embedding of ~D and let σξ,β : Pξ0 → P
β
0 be the composition

of the bottom embeddings of ~D. Let Pω1 = τ(Pκ0 ). Standard arguments show that

τ � Pκ0 = πκ,ω1 = σκ,ω1 .

Let j : Rκ
1 → Pω1 and k : Sκ1 → Pω1 be the composition of respectively the top and

the bottom embeddings of ~D. Let γ = π
~T κ1 (ξκ). We then have that

(1) j � Rκ
1(γ + 1) = k � Sκ1 (γ + 1).

Notice then

(2) δ
Rκ1
γ+1 = sup{π ~T κ1 ◦kκ(f)(a) : a ∈ (Rκ

1(γ))<ω∧f ∈ Pκ0 } and δ
Sκ1
γ+1 = sup{π ~Uκ_0

~Uκ1 (f)(a) :
a ∈ (Sκ1 (γ))<ω ∧ f ∈ Pκ0 }

and because of (1),

(3) for all f ∈ Pκ0 and a ∈ (Sκ1 (γ))<ω, π
~T κ_0

~T κ1 (f)(a) = π
~Uκ_0

~Uκ1 (f)(a).

It then follows from (2) and (3) that

(4) δR1
γ+1 = sup(rng(π

~T1) ∩ rng(π
~U1))

contradicting the fact that ~T1 isn’t according to ΣSκ0 . �

The next lemma finishes the proof of Theorem 6.1. Its proof is straightforward
and we leave it to the reader.

Lemma 6.6 Suppose (P ,Σ) is a hod pair such that Σ has branch condensation and

for every (~T ,Q) ∈ I(P ,Σ), (Q,ΣQ,~T ) doesn’t have strong branch condensation. Then
there is a bad diamond sequence on (P ,Σ) of length ω1.
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6.1 Getting branch condensation

In this section, we state a theorem that shows how to get branch condensation and
on a tail by starting with a pair that has only hull condensation. This result will
be used when proving generation of pointclasses (Theorem 12.2). The proof is very
much like the proof of Theorem 6.1 and because of that we omit it.

Theorem 6.7 (Getting branch condensation) Suppose (P ,Σ) is a hod pair or
an anomalous hod pair of type II or III with the property that cfP(λP) is measurable in

P. Suppose further that whenever (~T ,Q) ∈ B(P ,Σ), ΣQ,~T has branch condensation.

Then there is (~T ,Q) ∈ I(P ,Σ) such that ΣQ,~T has branch condensation.

7 Σ-closed mice

In this section, our goal is to prove a finer versions of generic interpretability than
the one presented in Theorem 2.8 (see for instance Theorem 7.9). We start with
the definition of super fullness preservation, which first appeared in [3] as Definition
3.33. Recall from [4] that given a transitive set X, we letM+(X) be the least sound
active mouse over X.

Definition 7.1 (Super fullness preservation) Suppose (P ,Σ) is a hod pair. Σ

is super fullness preserving if it is fullness preserving and whenever (~T ,Q) ∈ I(P ,Σ)
and α < λQ is such that if Q is of limit type then α + 1 < λQ, the two sets

UΣ
Q(α) = {(x, y) ∈ R2 : x codes a transitive set a ∈ HC and y codes M such that

M E LpΣQ(α)(a) and ρ(M) = a}
WΣ
Q(α) = {(x, y, z) ∈ R3 : (x, y) ∈ UΣ

Q(α) and if M is the ΣQ(α)-mouse coded by y

then z codes a tree according to the unique strategy of M}.

are term captured by (Q[g],ΣQ,~T ) whenever g ⊆ Coll(ω,Q(α)) is Q-generic. We let

uΣ
Q(α) and wΣ

Q(α) be the term relations locally capturing UΣ
Q(α) and WΣ

Q(α).

Notice that if (P ,Σ) is a hod pair such that Σ is super fullness preserving then
whenever Q ∈ pI(P ,Σ), α < λQ is such that if Q is of limit type then α + 1 < λQ,
g ⊆ Coll(ω,Q(α)), a ∈ HC and x is a real coding a such that x is generic over Q[g]
then

LpΣQ(α)(a) = {M :there is y ∈ RQ[x] such that y codes M and (x, y) ∈ (uΣ
Q(α))g∗x)}.
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Thus, LpΣQ(α)(a) ∈ Q[x]. Moreover, if h is Q[g]-generic then the restriction of the
function b→ LpΣQ(α)(b) to Q[g ∗ h] is definable over Q[g ∗ h]. Also, continuing with
the above setting, if M is a sound ΣQ(α)-mouse over a projecting to a and Λ is its
unique iteration strategy then whenever h is Q[g][x] generic and κ is a cardinal of
Q[g][x],

Λ � HQ[g∗x∗h]
κ ∈ Q[g ∗ x ∗ h].

This is because Λ � HQ[g∗x∗h]
κ can be defined over Q[g ∗ x ∗ h] using wΣ

Q(α).

Suppose now that (P ,Σ) is a hod pair such that P is non-meek and N is Σ-closed
(i.e., Σ � N is definable over N). We would like to show that generic extension of
N are also Σ-closed. In order to show this, we need a way of finding Q-structures
for trees that are based on the top window of P . Some of these Q-structures would
involve short tree strategy mice. The super fullness preservation cannot be used to
find such Q-structures (the way it was used in the proof of Lemma 3.34 or Lemma
3.35 of [3]). Here to prove an analogous result, we only consider sufficiently closed
Σ-mice (where Σ is allowed to be an sts strategy).

Definition 7.2 (Σ-closed mouse) Suppose (P ,Σ) is a hod pair (possibly an sts hod
pair) and N is a Σ-premouse. We say N is Σ-closed if for every N -cardinal κ there
is M E N such that M � ZFC −Replacement, N||κ EM and some (P ,ΣM)-hod
pair construction of M in which extenders used have critical points > κ reaches a
ΣM-iterate of P. We say N is a Σ-closed mouse if it has a (k, |P|+ + 1)-iteration
strategy Λ witnessing that N is a Σ-mouse. We say M witnesses Σ-closure of N at
κ.

Suppose N is a Σ-closed mouse, κ is an N -cardinal andM is as in Definition 7.2.
We then let SMκ be the ΣM-iterate of P constructed via a fully backgrounded con-
struction where critical points of extenders used are > κ.

We cannot in general hope to prove that if (P ,Σ) is an sts pair and N is Σ-closed
mouse then its generic extensions are also Σ-closed (not as mice). The reason is that
the statement that an iterate of P has been constructed by the construction ofM is
too weak. What it means in the above definition is that SMκ is a ΣM-iterate of P , i.e.,
there is a normal tree T on P such that M+(T ) E SMκ and in M, SMκ is the stack
of all ΣMM+(T )-mice (consult clause 4 of Definition 13.1 of [4] for an idea on how M
certifies the mice in this stack). However, it is quite possible that N may just not be
full enough to find all ΣM+(T )-mice. We will prove our generic interpretability result
for Σ-closed mice that have a fullness preserving iteration strategy in the following
sense.
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Keeping the notation and terminology of Definition 7.2, suppose Λ is an iteration
strategy for N (witnessing that N is a Σ-mouse). Suppose Λ is an iteration strategy
for N . We then let Γ(N ,Λ) be the collection of sets A ⊆ R such that for some

(~T ,R) ∈ I(N ,Λ), there are

1. an R-cardinal κ,

2. M E R witnessing that R is super Σ-closed at κ, and

3. α < λS
M
κ − 1

such that

A ≤w Code(ΣSMκ (α),U)

where U is the comparison tree on P with last model SMκ .

Definition 7.3 We then say that Λ is a fullness preserving iteration strategy for N
if for every N -cardinal η, letting Λη be the fragment of Λ that acts on stacks above
η, Γ(N ,Λη) = Γ(P ,Σ).

The next definition introduces our method of finding branches for trees in the
generic extension. We recall the definition of s(~T , ξ) (see Definition 6.7 of [4]).

Suppose P is a hod-like lsp and ~T is an almost non-dropping stack on P . Let
Q = π

~T ,b(Pb). Then Q is an lsp. For ξ + 1 ≤ λQ, we let

s(~T , ξ) = {α : ∃a ∈ (δQξ )<ω∃f ∈ Pb(α = π
~T ,b(f)(a))} ∩ δQξ+1

Definition 7.4 (Successful coiteration in Σ-closed mice) Suppose (P ,Σ) is a
hod pair or an sts hod pair. Suppose N is a Σ-closed mouse, g is an N -generic and
R ∈ N [g] is a hod premouse. Let κ be an N -cardinal such that g is a < κ-generic
and let M be as in Definition 7.2. Let

((Mγ,Nγ : γ ≤ η), (Fγ : γ < η), (~Tγ : γ < η))

be the output of (P ,ΣM)-construction of M where extenders used have critical point

> κ. Let SMκ = Nη be the Σ-iterate of P, UMκ = ~Tη−1. Let

πMκ =

{
πU
M
κ : P → SMκ : Σ is a strategy

πU
M
κ ,b : P → SMκ : otherwise.
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Notice that πMκ ∈ N .
For each ξ < η, we let UMR,κ,ξ be the tree on R that is constructed by compar-

ing R with the construction producing Nξ. More precisely, UMR,κ,ξ is constructed as
follows. Suppose we have constructed UMR,κ,ξ � γ. We assume, part of the inductive
construction, that no predicate appearing in a model producing Nξ has been part of
a disagreement. We proceed as follows.

1. Suppose γ = β + 1. If there is a disagreement on the Nξ side then we stop
the construction. More precisely, letting Q be the last model of UMR,κ,ξ � γ, the
following holds:

(a) If there is η such that Q|η = Nξ|η, Nξ|η 6= Nξ||η and Q||η 6= Nξ||η, then
we stop the construction.

(b) If there is η such that Q|η = Nξ|η, Nξ|η = Nξ||η, Q||η 6= Q|η and
η 6∈ dom(EQ) then we stop the construction.

(c) If there is η such that Q|η = Nξ|η, Nξ|η = Nξ||η, Q||η 6= Q|η and
η ∈ dom(EQ) then let EQη be the next extender used in UMR,κ,ξ � γ.

2. Suppose γ is limit. Suppose further that Nξ � “δ(UMR,κ,ξ � γ) is not Woodin” and
there is a cofinal well-founded branch b of UMR,κ,ξ � γ such that Q(b,UMR,κ,ξ � γ)-
exists and Q(b,UMR,κ,ξ � γ) E Nξ. Then II continues by playing b. If there is
no such b then stop the construction.

3. Suppose then γ is limit but Nξ � “δ(UMR,κ,ξ � γ) is Woodin”. Let µ be such

that δ(UMR,κ,ξ � γ) = δ
Nξ
µ . Suppose there is a cofinal well-founded branch b of

UMR,κ,ξ � γ such that for some β ∈ b, s(Tξ, µ) ⊆ rng(π
UMR,κ,ξ�γ
β,b ). Then II plays b.

If there is no such b then we stop the construction.

Suppose now that (P ,Σ) is a hod pair. Then we say UMR,κ,ξ is successful if it has a
last model Q such that Q E Nξ. We also say that (R,Mξ) coiteration is successful.

Next, suppose that (P ,Σ) is an sts hod pair. Then we say UMR,κ,ξ is successful if
either

1. R is of lsa type, M+(UMR,κ,ξ) =M+(SMκ |δS
M
κ ) and πU

M
R,κ,ξ,b exists or

2. UMR,κ,ξ has a last model Q such that Q E Nξ.

Suppose now that (P ,Σ) is a hod pair and N is a Σ-premouse which is Σ-closed.
Suppose further that κ is an N -cardinal, g is < κ-generic over N , R ∈ N|κ[g] is a
hod premouse and M witnesses Σ-closure of N at κ.
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Definition 7.5 (Good hod premice) We say R is (M, κ)-good if (R,SMκ ) coit-
eration is successful. If R is (M, κ)-good then we let UMR,κ be the comparison tree on

R constructed via (R,SMκ ) coiteration process. We also let πMR,κ = πU
M
R,κ. We say R

is good if for all sufficiently large κ there is M such that R is (M, κ)-good.

Notice that goodness is relative to N which will always be clear from context.
Fix now some goodR ∈ N|κ[g] and suppose T ∈ N [g] is a tree onR without fatal

drops. Suppose T irreducible (i.e., doesn’t have cutpoints) and for some β+ 1 ≤ λR,
T is based on the top window of R(β + 1).

Definition 7.6 (Correctly guided) We say T is correctly guided if whenever λ is
an N cardinal such that T ∈ N|λ[g], there is M witnessing Σ-closure of N at λ
such that whenever γ < lh(T ) is limit, letting b be the branch of T � γ chosen by T ,
the following holds:

1. R(β + 1) is of limit type and one of the following holds.

(a) If M+(T � γ) � “δ(T � γ) isn’t Woodin” then Q(b, T � γ) EM+(T � γ).

(b) If M+(T � γ) � “δ(T � γ) is Woodin” then (M+(T � γ),SMλ ) coiteration
is successful and if Q EMξ is the last model of UMM+(T �γ),λ then letting E

be extender derived from π
UM
M+(T �γ),λ, Ult(Q(b, T � γ), E) E SMλ .

2. R(β+1) is not of limit type, Q(b, T � γ) holds and (Q(b, T � γ),SMλ ) coiteration
is successful.

Definition 7.7 (Certified stacks) Continuing with the notation of Definition 7.4,

suppose Σ is an iteration strategy (rather than an sts strategy) and ~T ∈ N [g] is a

stack on P with no fatal drops. Let λ be an N -cardinal such that ~T ∈ N|λ[g] and let

M witness Σ-closure of N at λ. We say ~T is M-certified if the following conditions
hold.

1. Suppose R is a cutpoint of ~T . Then for some ξ, UMR,λ,ξ is successful. Moreover,

if R is such that π
~T≤R-exists then R is good. Also, if E = E~T is the undropping

extender of ~T≤R then Ult(P , E) is good. We let

πR =

{
πU
M
R,λ : π

~T≤R-exists

πU
M
Ult(P,E),λ,ξ : otherwise.

Also, let
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σP,R =

{
π
~T≤R : π

~T≤R-exists

πE : otherwise.

Then πMP,λ = πR ◦ σP,R.

2. Suppose R is a cutpoint of ~T and T is the longest irreducible initial segment
of ~T which is based on R. Then T is correctly guided.

If ~T ∈ N [g] is a certified stack such that its last vn-component is of limit length and

b is a branch of ~T then we say b is certified if ~T _{MT
b } is certified.

Continuing with the notation of Definition 7.4, we let Φ∗ be the strategy of P
that chooses certified branches for stacks with no fatal drop (this means that the
continuation of the stack via the branch is certified). Assuming that Φ∗ = Σ � N [g],

we can extend Σ to act on stacks with fatal drops. To do this suppose that ~T ∈ N [g]
is a stack on P according to Φ∗ and with last model Q. Suppose η < o(Q). We need
to describe a strategy for OQη,η.

Suppose first that for some β < λQ, η ∈ (o(Q(β)), δQβ+1). We can then use super

fullness preservation of Σ to dfine the strategy of OQη,η over N [g] (see the discussion
after Definition 7.1).

Next, suppose for some β + 1 ≤ λQ, η ∈ (δQβ , δ
Q
β+1) and Q(β + 1) is of limit

type. Let γ ∈ dom( ~E)Q be the least such that crit(EQγ ) = δQβ and γ > η. Then

OQη,η = OUlt(Q,E
Q
γ )

η,η . We can now use the super fullness preservation of ΣUlt(Q,EQγ )(β+1)

to define the strategy of OQη,η over N [g]. We let Φ be this strategy of P .

Definition 7.8 (Sts stacks with certified branches) Suppose (P ,Σ) is an sts
hod pair and N is a super Σ-closed mouse, g is an N -generic and R ∈ N [g] is
a hod premouse. Let κ be an N -cardinal such that g is a < κ-generic and let M be
as in Definition 7.2. Suppose ~T = (Mi, ~Ti : i ≤ m < ω) ∈ N [g] is a stack on P. Let

λ be an N cardinal such that ~T ∈ N|λ[g] and let M witness Σ-closure of N at λ.

We say ~T has M-certified branches if the following conditions hold:

1. Suppose R is a cutpoint of ~T . Then for some ξ, UMR,λ,ξ is successful. More-

over, if R is such that π
~T≤R,b-exists then Rb is good. Also, if E = E~T is the

undropping extender of ~T≤R then Ult(Pb, E) is good. We let

πR =

{
πU
M
R,λ,b : π

~T≤R,b-exists

π
UM
Ult(Pb,E),λ,ξ : otherwise.
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Also, let

σP,R =

{
π
~T≤R,b : π

~T≤R,b-exists

πE � Pb : otherwise.

Then π
SMλ ,b

P = πR ◦ σP,R.

2. Suppose R is a cutpoint of ~T and T is the longest irreducible initial segment
of ~T which is based on R. Then T is correctly guided.

Continuing with the terminology of Definition 7.8, if ~T ∈ N [g] and b ∈ N [g] is

a branch of ~T then we say b is certified if ~T _{MT
b } is certified. We let Φ∗ be the

strategy of P that chooses certified branches. Assuming that Φ∗ = Σ � N [g], we can
extend Σ to act on stacks with fatal drops just like in Definition 7.7. We leave the
details to the reader and let Φ be this strategy of P .

It remains to show that Φ∗ = Σ � N [g] which is the content of the next lemma.

Lemma 7.9 Suppose (P ,Σ) is a hod pair such that Σ is a strategy with branch
condensation and super fullness preservation. Suppose N is a model of ZFC −
Replacement which is super Σ-closed. Let g be N -generic. Then N [g] is Σ-closed.

Proof. We show that Φ∗ = Σ � N [g]. To show this we need to show that

1. if ~T ∈ N [g] is according to Φ∗ then it is according to Σ, and

2. if ~T ∈ N [g] is a stack on P according to Φ∗ such that its last normal component

has a limit length then Φ∗(~T ) is defined.

We start with clause 1. To see it, fix some ~T ∈ N [g] which is according to Φ∗ and

Σ and let b = Φ∗(~T ). We need to show that b = Σ(~T ). We can assume that there

is no club C ⊆ tn(~T ) as otherwise Σ(~T ) = bC = Φ∗(~T ). Let then R be a terminal

node of ~T such that U =def
~T≥R is an irreducible normal tree on R. Recall that

because ~T is according to Φ∗, ~T doesn’t have fatal drops. Because ~T is according to
Σ and Φ∗, we have that R is good. We now have two cases.

Case 1. π
~T≤R-exists. We then have again have two sub cases. Suppose β is the

least such that U is based on R(β). We then have the following cases.
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Case 1.1. Suppose β = γ + 1 and R(β) is not of limit type. It follows that U
is based on the window (δRγ , δ

R
β ). Fix then λ such that R, ~T ∈ N|λ[g] and let M

witness that N is Σ-closed at λ. We then have that U_MU
b is correctly guided. We

want to see that this implies that b = Σ(~T ).
Suppose first that Q(b,U)-exists. Let Q = Q(b,U). We then have that for some

ξ, UMQ,λ,ξ is successful. Let S be the last model of UMQ,λ,ξ and let τ : Q → S. Because
S is iterable, it follows that Q is iterable above δ(U). We need to see that it is
iterable as a ΣR(β)-mouse. Notice that we have that πR � R(β) = τ(R(β)). The
desired conclusion then is an easy consequence of branch condensation.

Suppose next Q(b,U) doesn’t exist. Let then S E SMλ be the iterate of Q =MU
b .

We then have that

πMP,λ = πQ ◦ π ~Tb .

It again follows from branch condensation of Σ that Σ(~T ) = b.

Case 1.2. Suppose β = γ + 1 and R(β) is of limit type. It again follows that U
is based on the top window of R. We again have two cases and they both are similar
two the cases considered above. First suppose that Q(b,U) doesn’t exist. Then we
finish as above.

Suppose then Q(b,U)-exists. Let Q = Q(b,U). If Q EM+(M(U)) then we must
have that Σ(U) = b. Otherwise, we have that for some ξ, UMM+(U),λ,ξ is successful.

Let S∗ be the last model of UMM+(U),λ,ξ and let τ :M+(U)→ S∗. Let S = Ult(Q, E)

where E is the (δ(U), τ(δ(U)))-extender derived from τ . Because S is iterable, it
follows that Q is iterable above δ(U). We need to see that it is iterable as a Σsts

M+(U)-
mouse. Again, the desired conclusion is an easy consequence of branch condensation.

Case 2. π
~T≤R doesn’t exist. Suppose β is least such that U is based on R(β).

Suppose first that β+ 1 < λR. Then the argument of case 1 applied to Ult(P , E~T≤R)

shows that Σ(U) = b. We thus assume that R is of limit type and β = λR. Notice
that we cannot have that R is of lsa type. Therefore, we must have that Q(b,U)-
exists. The argument from case 1.2 now shows that Σ(U) = b.

This finishes the proof of clause 1. We now prove clause 2. Fix ~T ∈ N [g] ac-
cording to Φ∗ such that its last normal component has a limit length. We need to
show that Φ∗(~T ) is defined. First suppose that there is a club C ⊆ tn(~T ). Then
bC is according to Φ∗. Suppose then that there is no such club. Fix λ such that
~T ∈ N|λ[g] and let M witness that N is Σ-closed at λ. Let R be a cutpoint of ~T
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such that U = ~T≥R is a normal tree on R. We again have two cases.

Case 1. π
~T≤R-exists. Let β be the least such that U is a tree on R(β). We then

have the following cases.

Case 1.1. Suppose β = γ + 1 and R(β) is not of limit type. It follows that U
is based on the window (δRγ , δ

R
β ). Fix then λ such that R, ~T ∈ N|λ[g] and let M

witness that N is Σ-closed at λ. It follows from the Dodd-Jensen property of ΣR(β)

that (M(U),SMλ ) coiteration is successful. Let W be the tree on M(U) with last
model S such that S E SMλ . Let τ :M(U)→ S be the iteration embedding.

Suppose now that δ(W) is not Woodin in SMλ . Let b = Σ(~T ). Notice that b is the
unique branch of U such that Q(b,U)-exists and Ult(Q(b,U), Eτ ) E SMλ . It follows
that b ∈ N [g] and Φ∗(U) = b.

Suppose then δ(W) is Woodin in SMλ . Let b = Σ(~T ). Let c = Σ(~T _{M~T
b }_W).

Notice that c is the unique branch of W such that s(K, ξ) ⊆ πWc [δ(U)] where K is

the normal tree on P with last model SMλ and ξ is such that δ(W) = δ
SMλ
ξ . It then

follows that c ∈ N [g]. We then again have that b is the unique branch of ~T such
that there is (πWc )−1(s(K, ξ)) ⊆ rng(πUb ). Hence, b ∈ N [g]. It is now not hard to

check that indeed Φ∗(~T ) = b.

Case 1.2. Suppose β = γ+ 1 and R(β) is of limit type. If β < λR then we must

have that Q(b,U) exists where b = Σ(~T _U). Then the argument from case 1.1 shows
that b ∈ N [g] and Φ∗(U) = b. We then assume that β = λR. Again, because of the

same argument we can assume that R is of lsa type and if b = Σ(~T _U) then Q(b,U)
doesn’t exist. In this case, b is the unique branch such that there is an embedding
σ : MU

b → SMλ such that πMλ = σ ◦ π ~Tb . It then follows that b ∈ N [g] and that

Φ∗(~T ) = b.
This finishes the proof of the lemma in the case Σ is an iteration strategy. �

The proof of Lemma 7.9 can be used to prove an equivalent lemma for sts hod
pairs. However, we have to require that stacks have only one main round. To prove
the more general result we will require more closure properties.

Lemma 7.10 Suppose (P ,Σ) is a hod pair such that Σ is an sts strategy which
is fullness preserving and has branch condensation. Suppose N is Σ-closed, Λ is
a fullness preserving iteration strategy for N and g is N -generic. Let Φ1 be the
fragment of Φ∗ that acts on stacks with a single main round. Then Φ1 � b(Φ1) = Σ �
(N [g] ∩ b(Σ)).
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Proof. The proof is very similar to the proof of Lemma 7.9. Because of this, we only
indicate the parts that are different. The part that is different is to show that if ~T
is a stack according to Φ1 and ~T ∈ b(Σ) then Σ(~T ) ∈ N [g] and Φ(~T ) = b. The
reason that the proof here requires more care is because we do not that πS

M
λ exists

for various (M, λ).

Fix then ~T as above. We can assume that there is a cutpoint R such that
U = ~T≥R is a normal tree on R. Fix β such that U is based on R(β). Suppose first
that R(β) ∈ pB(P ,Σ). It follows from the proof of Lemma 7.9 that it is enough to
show that there is (M, λ) such that R(β) is (M, λ)-good.

Let ν be such that ~T ∈ N|ν[g]. We can then find ( ~W ,S) ∈ I(N ,Λ) such that ~W
is above ν and for some S-cardinal λ,M E S and α, Code(ΣSMλ (α)) =w Code(ΣR(β)).

It then follows that in S, R is (M, λ)-good. By elementarity, such an (M, λ) exists
in N .

Suppose then R(β) ∈ pI(P ,Σ). The proof is very similar. It is enough to find
(M, λ) such that M+(U) is (M, λ)-good. We can find such an (M, λ) using the

above argument and using the fact that if ~T ∈ b(Σ). �

To generalize Lemma 7.9 to stacks with arbitrary many main rounds we need to
know that N satisfies a certain fullness condition defined below. The reason is that
we need to be able to certify models not just branches.

Definition 7.11 (Fullness condition) Suppose (P ,Σ) is a hod pair such that Σ
is an sts strategy which is fullness preserving and has branch condensation. Suppose
N is Σ-closed. We say N satisfies Σ-fullness condition if whenever g is N -generic,
~T = (Mi, ~Ti : i ≤ m) ∈ N [g] is a stack on P according to Σ such that ~T ∈ m(Σ)

and κ is an N -cardinal such that ~T ∈ N|κ[g], letting Q = Σ(~T ), Q ∈ N and for
any S such that M+(Q|δQ) E S E Q and ρ(S) = δQ, there is M E N such that

1. M witnesses Σ-closure of N at κ and

2. M � ZFC−Powerset+ “there are infinitely many Woodin cardinals 〈δn : n <
ω〉”

3. S ∈ M|δ0, and S has an iteration strategy Λ ∈M acting on trees that are above
δQ and such that if h ⊆ Coll(ω,< δω)-generic and D is the derived model of
M computed via h then Λ has an extension Λ∗ ∈ D such that whenever S∗ is
a Λ∗-iterate of S and ~U ∈ dom(ΣS

∗
) then M[h] � “~T _ ~U is branch certified

stack (see Definition 7.8)”.
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Lemma 7.12 Suppose (P ,Σ) is a hod pair such that Σ is an sts strategy which is
fullness preserving and has branch condensation. Suppose N is Σ-closed, Λ is a
Γ(P ,Σ)-fullness preserving strategy for N and whenever (~U ,S) ∈ I(N ,Λ), S has
fullness condition. Suppose g is N -generic. Then Φ∗ = Σ � N [g].

Proof. The proof is just like the proof of Lemma 7.10 except now we can certify
models by using the fullness condition. Namely, suppose ~T = (Mi, ~Ti : i ≤ m) ∈
N [g] is a stack according to both Φ∗ and Σ. Suppose that there is no club C ⊆ tn(~T ).

Let R be a cutpoint such that ~T≥R is a normal irreducible tree on R of limit length.

Suppose that the branch certification process doesn’t yield a branch for ~T≥R. Then

we let Φ∗(~T ) be the union of S such that M+(~T≥R) E S, ρ(S) = δ(~T≥R) and S has
an iteration strategy as in clause 3 of Definition 7.11. The proof of Lemma 7.10 then
shows that Φ∗(~T ) = Σ(~T ). �

Lemma 7.12 left open whether there can exist Σ-closed mice which satisfy Σ-
fullness condition. Our source of such N is the universality of background construc-
tions which will give us mouse capturing for short tree strategies.

Definition 7.13 (MC for sts strategies) Suppose (P ,Σ) is an sts hod pair such
that Σ has branch condensation and is fullness preservation. We let MC(Σ) stand
for the following statement: for every transitive a ∈ HC such that P ∈ a,

℘(a) ∩ HODΣ,a∪{a} = LpΣ(a).

Lemma 7.14 Suppose (P ,Σ) is a hod pair such that Σ is an sts strategy which is
fullness preserving and has branch condensation. Suppose further that MC(Σ) holds.
Let N be a Σ-closed mouse which has a fullness preserving iteration strategy and let
(δi : i < ω) be a sequence of Woodin cardinals of N . Then N|δω satisfies Σ-fullness
condition.

Proof. To see this, let ~T ∈ N [g] be a maximal stack according to Σ and let Q be
its last model. We have that M+(Q|δQ) ∈ N [g] and need to show that Q ∈ N [g]
and clause 2 of Definition 7.11 is satisfied. Notice that Q is ODΣ,Q|δQ . It the follows
from MC(Σ) that Q ∈ N|δω[g].

To see clause 2 of Definition 7.11, fix S such that Q|δQ E S E Q such that
ρ(S) = δQ. Let Ψ be the strategy of S which acts on trees above δQ. Because Ψ is
ODΣ,S and S ∈ N , we have that letting λ = (δ+

ω )N , Ψ � N|λ ∈ N . It then follows
from the proof of Lemma 7.9, that letting Λ = Ψ � N|λ, Λ witnesses clause 2 for
M = N|δω. Fixing now κ < δω, using condensation, we have that there must be
M E N|(κ+)N with the desired property. �
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8 Γ(P ,Σ) when λP is a successor

In this section, we translate the results of Section 5.6 of [3] to our current context.
Suppose (P ,Σ) is a hod pair such that λP is a successor and Σ is super fullness
preserving and has branch condensation. Suppose first that P isn’t of lsa type. We
then let

ΓΣ = (Σ2
1(Code(ΣP−)))

L(MiceΣP−
,R)

.

Notice that ΓΣ is a lightface good pointclass. Also MiceΣP−
belongs to ΓΣ and is a

universal ΓΣ set. We let

Γ(P ,Σ) = {A : for cone of x ∈ R, A ∩ CΓΣ
(x) ∈ CΓΣ

(CΓΣ
(x))} = Env(ΓΣ).

Notice that if (Q,Λ) is a tail of (P ,Σ) then Γ(Q,Λ) = Γ(P ,Σ).
The above definition defines Γ(P ,Σ) when λP is a successor but P isn’t of lsa

type. In particular, Γ(P ,Σ) is not an LSA pointclass. The difficulty with generating
LSA pointclasses as Γ(P ,Σ) is the following: Suppose Γ is an LSA pointclass, i.e.,
Γ = ℘(R)∩L(Γ,R) and L(Γ,R) � AD+ +LSA. Let α be such that α+ 1 = ΩΓ and
set Γb = {A ⊆ R : w(A) < θα}6. The difficulty is that the pair that generates Γb is
the same as the pair that generates Γ.

In what follows we will use the following notation: if (P ,Σ) is a hod pair such that
P is of lsa type then we let Γ(P ,Σ) = {A ⊆ R : ∃Q ∈ pB(P ,Σ)(A ≤w Code(ΣQ))}.
We reserve the notation Γu(P ,Σ) for the upper part of the lsa pointclass. In what
follows we will describe a way of defining it.

Suppose (P ,Σ) is a hod pair such that Σ is fullness preserving and P is of lsa
type. We then let

Γu(P ,Σ) = {A : for cone of x ∈ R, A ∩ LpΣsts(x) ∈ LpΣsts

2 (x)}.

It is not immediately clear that L(Γu(P ,Σ)) ∩ ℘(R) = Γu(P ,Σ). The next lemma
shows that this is indeed true. Notice that if Q ∈ pI(P ,Σ) then Γu(Q,ΣQ) =
Γu(P ,Σ).

Lemma 8.1 Suppose (P ,Σ) is a hod pair such that P is of lsa type and Σ is fullness
preserving. Then

L(Γu(P ,Σ)) ∩ ℘(R) = Γu(P ,Σ)

6The superscript “b” stands for bottom.
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and the set {(x, y) : y codes an Σsts-mouse over x} cannot be uniformized in L(Γu(P ,Σ)).
Hence,

L(Γu(P ,Σ)) � AD+ + LSA.

Proof. We only outline the argument. The proof is very much like the proof of
Lemma 5.16 of [3]. Let Γ be any good pointclass such that Code(Σ) ∈ ∆˜Γ. Let F
be as in Theorem 2.25 of [3] for Γ. Fix x such that if F (x) = (N ∗x ,Mx, δx,Σx) then
Code(Σ) is Suslin, co-Suslin captured by (N ∗x , δx,Σx). We then have that the fully
backgrounded hod pair construction ofN ∗x |δx reaches a tail of (P ,Σ) (see Theorem 1.7

above or Corollary 18.12 of [4]). Let (Q,Λ) be this tail. Let N = (J ~E,Λsts)N
∗
x |δx .

Because Σ is fullness preserving we have that no level of N projects acres δQ.
We also have that the least strong cardinal of N is a limit of Woodin cardinals (the
proof of this is just like the proof of the similar fact in the proof of Lemma 5.16 of
[3]). It then follows that L(Γu(P ,Σ)) can be realized as a derived model of N|λ via
Ψ, where letting κ be the least strong of N , λ = (κ+)N and Ψ is the strategy of N|λ
induced by the background construction.

To carry out the above outline, we use several results. First we use the proof of
Theorem 18.3 to conclude that Ψ is fullness preserving. Next we use Lemma 7.14
to conclude that N|λ satisfies Σ-fullness condition. Lemma 7.12 can the be used to
show that L(Γu(P ,Σ)) can indeed be realized as a derived model of N|λ via Ψ. �

9 B-iterability

In this section, we import B-iterability technology to our current context. Most
of what we will need was laid out in [3]. Here we will only sketch the necessary
arguments.

Definition 9.1 (Suitable pair) (P ,Σ) is a suitable pair if

1. P is a hod premouse, λP is a successor ordinal and P is not of limit type,

2. (P(λP−1),Σ) is a hod pair such that Σ has branch condensation and is fullness
preserving

3. P is a ΣP(λP−1)-mouse above P(λP − 1),

4. for any P-cardinal η > δPλ−1, if η is a strong cutpoint then P|(η+)P = LpΣ(P|η)
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Suppose (P ,Σ) and (Q,Λ) are such that Σ and Λ have branch condensation and
are fullness preserving. We then let (P ,Σ) ≤DJ (Q,Λ) if and only if (P ,Σ) loses
the coiteration with (Q,Λ). Notice that ≤DJ is a well-founded relation. We then let
α(P ,Σ) = |(P ,Σ)|≤DJ , and we let [P ,Σ] be the =DJ equivalence class of (P ,Σ), i.e.,

(Q,Λ) ∈ [P ,Σ] iff (Q,Λ) is a hod pair such that Λ has branch condensation and is
super fullness preserving and α(Q,Λ) = α(P ,Σ).

Notice that [P ,Σ] is independent of (P ,Σ). We let

B(P ,Σ) = {B ⊆ [P ,Σ]× R : B is OD}.

Note that B(P ,Σ) is defined for hod pairs not suitable pairs.
The following standard lemma features prominently in our computations of HOD.

The proof is very much like the proof of Lemma 4.16 of [3]. Given a hod premouse
P such that λP is successor and P is not of limit type, we let P− = P(λP − 1).

Lemma 9.2 Assume SMC and suppose (P ,Σ) is a suitable pair. Suppose B ∈
B(P−,Σ) and κ > δPλP−1 is a P-cardinal. Then there is τ ∈ PColl(ω,κ) such that
(P , τ) locally term captures B(P,Σ) at κ for comeager set of P-generics.

If B is locally term captured for comeager many set generics over a suitable pair
(P ,Σ) then we let τP,ΣB,κ be the invariant term in P locally term capturing B at κ
for comeager many set generics. One way to get term capturing for all generics is to
show that a suitable pair can be extended to a structure that has one more Woodin.

Definition 9.3 (n-Suitable pair) (P ,Σ) is an n-suitable pair if there is δ such
that

1. (P|(δ+ω)P ,Σ) is suitable,

2. P � ZFC−Replacement+“there are n Woodin cardinals, η0 < η1 < ... < ηn−1

above δ”,

3. o(P) = supi<ω(η+i
n )P ,

4. P is a Σ-mouse over P|δ,

5. for any P-cardinal η > δ, if η is a strong cutpoint then P|(η+)P = LpΣ(P|η).

If (P ,Σ) is n-Suitable then we let δP be the δ of Definition 9.3 and
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P− = ((P|((δP)+ω)P)−.

We let λP = λP
−

+ 1. Clearly 0-suitable pair is just a suitable pair. The following
are easy consequences of Lemma 9.2.

Lemma 9.4 Assume SMC and suppose (P ,Σ) is a n-suitable pair. Suppose B ∈
B(P−,Σ) and κ > δPλP−1 is a P-cardinal. Then there is τ ∈ PColl(ω,κ) such that (P , τ)
locally term captures B(P,Σ) at κ for comeager set of P-generics.

Corollary 9.5 Assume SMC and suppose (P ,Σ) is a n-suitable pair such that n >
0. Suppose B ∈ B(P−,Σ), δ = δP , ν = (δ+ω)P and κ ∈ (δPλP−1, ν) is a P-cardinal.

Then (P|ν, τP,ΣB,κ ) locally term captures B(P,Σ) at κ.

Corollary 9.5 is our main method of showing that various B are term captured
over the hod mice we will construct.

Suppose now that (P ,Σ) is a hod pair. It is now a trivial matter to import
the terminology of Section 4.1 of [3] to our current context. We will have that
S(Σ) consist of those Q such that Q− ∈ pI(P ,Σ) and (Q,ΣQ−) is a suitable pair.

Given Q ∈ S(Σ), we let fB(Q) = ⊕κ<o(Q)τ
Q,ΣQ−
B,κ . Then the rest of the notions are

defined for F = {fB : B ∈ B(P ,Σ)}. Therefore, in the sequel, we will freely use the
terminology of Section 4.1 of [3].

Before we move on, we remark that the same notions make sense for lsa pairs
as well. Here by suitable we mean just an lsa pair (P ,Σ) such that Σ is a fullness
preserving iteration strategy with branch condensation. Given a suitable lsa pair
(P ,Σ), we let M(P ,Σ) be the set of pairs (M+(Q|δQ),ΣM+(Q|δQ)) such that there

is a stack ~T according to Σ and with last model Q such that I can start a new main
round on Q. We then let

B(P ,Σ) = {B ⊆ pM(P ,Σ)× R : B is OD}.

The rest of the concepts cary over word by word. We leave it to the reader.

10 Getting ~B-guided pairs

In this section, we would like to prove that there are hod pairs (P ,Σ) such that Σ is
~B-guided for some ~B. The non lsa case is exactly as in [3] (see Theorem 5.20). To
prove such a result for lsa hod pairs, we need to construct a model which satisfies
the hypothesis of Lemma 7.14. Full backgrounded constructions do produce such
models. The following lemma shows just that. Suppose (P ,Σ) is an lsa hod pair.
We then let
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MicestsΣ = {(a,M) : a ∈ HC ∧ P ∈ a ∧M E LpΣsts(a) ∧ ρ(M) = a}.

Recall that if M is a model of some fragment of set theory, λ is a limit of Woodin
cardinals of M and g ⊆ Coll(ω,< λ) is M -generic then D(M,λ, g) is the derived
model of M at λ as computed by g. More precisely, letting R∗ be the symmetric
reals, we set

Γ = {A ⊆ R∗ : A ∈M(R∗) and L(A,R∗) � AD+}.

Then D(M,λ, g) = L(Γ,R∗).

Lemma 10.1 Suppose (P ,Σ) a hod pair such that P is lsa type and Σ is fullness
preserving and has strong branch condensation. Suppose further that MC(Σsts) holds
and that there is a good pointclass Γ such that Code(Σ) ∈ ∆˜Γ. Let F be as in Theorem
2.25 of [3] for Γ, and let x ∈ dom(F ) be such that F (x) = (N ∗x ,Mx, δx,Σx) Suslin,
co-Suslin captures MiceΓ,MicestsΣ and (P ,Σ). Then the hod pair construction of
N ∗x |δx reaches a tail of (P ,Σ).

Moreover, if Q is a tail of (P ,Σ) reached by some hod pair construction of N ∗x |δx,

Λ = ΣQ and N ∗ is the output of (J ~E,Λsts [Q])N
∗
x |δx, κ is the least < δx-strong cardinal

of N ∗ and Ψ is the strategy of N =def N ∗|(κ+ω)N
∗

then Ψ is fullness preserving (see
Definition 7.3 and wheneverM is a Ψ iterate of N such that the iteration embedding
π : N → M exists then M has Λsts-fullness condition (see Definition 7.11) and
whenever g ⊆ Coll(ω,< π(κ)) is M-generic then

Λsts � D(M, π(κ), g) ∈ D(M, π(κ), g).

Proof. By an absoluteness argument, it is enough to show that the claim holds for
N . We need to show that

(i) Ψ is fullness preserving (as a Λsts-mouse),
(ii) iterates of N according to Ψ have the Λsts-fullness condition and
(iii) N � “there are proper class of Woodin cardinals”.

Given (i)-(iii), the last clause of the theorem follows from Lemma 7.12. We start
with (iii).

Claim 1. N|κ � “there are proper class of Woodin cardinals”.
Proof. Because (N ∗x , δx,Σx) Suslin, co-Suslin captures MicestsΣ , we have that

LpΣsts(N ∗) ∈ N ∗x
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and therefore, LpΣsts(N ∗) � “δx is Woodin”. Let (T, S) ∈ N ∗x witness that (N ∗x , δx,Σx)
Suslin, co-Suslin captures MicestsΣ . Let π : H → N ∗x be such that crit(π) = η,
N ∗x |η = H|η, |H| = η and (T, S)# ∈ rng(π). Then we have that LpΣsts(N ∗|η) ∈ H
implying that LpΣsts(N ∗|η) � “η is Woodin”. By universality of N ∗, we have that
LpΣsts(N ∗|η) E N ∗, implying that N ∗|κ � “for proper class of η, N ∗|η � “η is
Woodin””. �

Next we show (i). We show (i) for N ∗. The general result then follows by using
the proof given below and absoluteness.

Claim 2. N ∗ is a Λsts-closed mouse.
Proof. Fix some N ∗-cardinal ν. We need to show that there is M E N ∗ such that
N ∗||ν EM and some ΣM-hod pair construction ofM in which extenders used have
critical points > ν reaches R ∈ pI(Q,Λsts).

By universality, it is enough to show that for every ν, the ΣN
∗
-hod pair con-

struction converges (in which extenders used have critical point > ν). Towards
contradiction suppose not. It then follows that there is a T ∈ N ∗ such that T
appears in a ΣN

∗
-hod pair construction of N ∗, T ∈ b(Λsts) and T 6∈ dom(ΣN

∗
).

This means that while performing the construction producing N ∗, we have never
encountered a reason for indexing the branch of T in N ∗. In particular, we must
have that M+(T ) � “δ(T ) is a Woodin cardinal” and Q(b, T ) is an Λsts

M+(T )-mouse

over M+(T ).
Working in L[N ∗], let Σ1 be the sts strategy of M+(T ) induced by ΣN

∗
. The

stacks are according to Σ1 if they are N ∗-certified in the sense of Definition 7.8.
Let then N1 = (J ~E,Σ1)N

∗
. We must then have that Q(b, T ) 6E N1. Because N1 is

universal, Q(b, T ) cannot win the comparison with N1. It follows that there must
be T1 ∈ N1 such that T1 is according to ΣN1 but ΛM+(T )(T1) has not been indexed
in N1. By repeating this process, we build (Qi, Ti,Ni,Σi : i < ω) such that the
following conditions hold.

1. Q0 = Q, T0 = T , N0 = N ∗ and T0 ∈ N0.

2. Ti ∈ Ni is a normal tree on Qi according to Λsts
Qi and Qi+1 =M+(Ti).

3. Σi ∈ L[Ni] is the strategy of Qi+1 induced by ΣNi in the sense that stacks
according to Σi are Ni-certified.

4. Ni+1 = (J ~E,Σi [Qi])Ni .

5. For each i, Ti ∈ b(Λsts
Qi ).
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Let then bi = Λsts
Qi (Ti). We then have that the direct limit of ⊕i<ωTi given by bi is ill

founded, contradiction. �

The proof ofN ∗ gives much more. It shows that various constructions ofN ∗ reach
ΛQ-iterate of Q via T such that T ∈ m(Λsts

Q ). It then follows from absoluteness and
universality that Ψ is fullness preserving. This completes the proof of (i).

Next we show (ii). We will do this only for N . The general result follows from
absoluteness and the proof given below.

Claim 3. N satisfies Λsts-fullness condition.
Proof. Fix an N -generic h and a transitive a ∈ N [h] such that Q ∈ a. Let S E
LpΣsts(a) be such that ρ(S) = a. Fix η such that a ∈ N|η[h]. We want to show that
there is M E N such that

1. N||η EM,

2. M � “ZFC-Powerset+“there are infinitely many Woodin cardinals (δn : n <
ω)”,

3. S ∈ M|δ0 and S has an iteration strategy Φ ∈ M such that if k ⊆ Coll(ω,<
δω)-generic and D is the derived model of M computed via k then Φ has an

extension Φ∗ ∈ D such that whenever S∗ is a Φ∗-iterate of S and ~U ∈ dom(ΣS
∗
)

then M[h] � “~U is branch certified stack (see Definition 7.8)”.

LetR be the output of (J ~E,Λsts [a])N
∗

where the extenders used have critical point
> (κ+ω)N

∗
. Because R is universal we have that S E R. The fact that S has an

iteration strategy of the desired form follows from the proof of Claim 2 above and the
following observation. Let W be a model appearing in the construction producing
R and such that C(W) = S. It is then enough to show that W is iterable in N ∗ via
a desired iteration strategy. To do this, we observe that it is enough to show that

(1) for every N ∗-regular cardinal η > δQ, if Γ is the fragment of the iteration
strategy of N ∗|η that acts on non-dropping trees that are above δQ then Γ is Suslin,
co-Suslin captured by (N ∗, δx,Γ∗) where Γ∗ is the strategy of N ∗.

We omit the proof of (1) as it is just like the proof of Lemma 3.9 of [3]. �

�
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The next theorem can now be proved using Lemma 2.5, Lemma 7.14, Lemma 10.1
and the proof of Theorem 5.20 of [3].

Theorem 10.2 Suppose (P ,Σ) is a hod pair such that λP is a successor ordinal and
Σ has a branch condensation and is fullness preserving. Suppose B ∈ B(P−,ΣP−).

There is then Q ∈ pI(P ,Σ) and ~B = 〈Bi : i < ω〉 ⊆ B(P ,ΣP−) such that ~B strongly
guides ΣQ.

11 The computation of HOD

Throughout this section we assume AD+ + SMC and let 〈θα : α ≤ Ω〉 be the
Solovay sequence. Our goal is to compute V HOD

θα
for α ≤ Ω. We will do it under

some additional hypothesis described below. In the next section, we prove that
our additional hypothesis essentially follows from AD+ + “No initial segment of the
Solovay sequence satisfies LSA”.

Suppose (P ,Σ) is an sts pair such that Σ is fullness preserving and has branch
condensation. We then let α(P ,Σ) = w(Γ(P ,Σ)). Also, we let P− = P . We then
also say that (P ,Σ) is suitable. If (P ,Σ) is a hod pair such that P is of lsa type
then, just for convenience, we let ΣP− = Σsts.

Suppose first that α + 1 = Ω. We then let I = {(Q,Λ, B0, ..., Bi) :

1. (Q,Λ) is suitable, Λ is fullness preserving and has branch condensation, and
α(Q−,Λ) = α,

2. for every i < n, Bi ∈ B(Q−,Λ), and

3. (Q,Λ) is strongly ~B-iterable }.

Define � on I by

(P ,Σ, ~B) � (Q,Λ, ~C)↔ ~B ⊆ ~C and (Q,Λ, ~B) is a ~B-tail of (P ,Σ, ~B).

When (R,Ψ, ~B) � (Q,Λ, ~C), there is a canonical map

π : HR,Ψ~B
→ HQ,Λ~B

,

which is independent of ~B-iterable branches. We let π(R,Ψ, ~B),(Q,Λ, ~B) be this map. We

then have that (I,�) is a directed. Let

F = {HQ,Λ~B
: (Q,Λ, ~B) ∈ I}.
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and we letM∞ be the direct limit of F under the iteration maps π(R,Ψ, ~B),(Q,Λ, ~B). Let

δ∞ = δM∞ . For (Q,Λ, B) ∈ I, we let π(Q,Λ,B),∞ : HQ,ΛB →M∞. Standard arguments
show that M∞ is well-founded.

Following Section 4.4 of [3], we let φ be the following sentence: for every α+1 < Ω,
letting Γα = {A ⊆ R : w(A) < θα}, there is a hod pair (P ,Σ) such that

1. α(P−,ΣP−) = α,

2. Σ is fullness preserving and has branch condensation,

3. for any Q ∈ pI(P ,Σ) ∪ pB(P ,Σ), if λQ is a successor ordinal then

(a) there is a sequence 〈Bi : i < ω〉 ⊆ B(Q−,ΣQ−) which guides ΣQ and

(b) for any B ∈ B(Q−,ΣQ−) there is R ∈ pI(Q,ΣQ) such that ΣR respects
B.

4. L(Γα,R) � LSA if and only if P is of lsa type.

Our additional hypothesis, ψ, is a conjunction of φ with the following statement:
If Ω = α+ 1 then there is a suitable (P ,Σ) which is ∅-iterable, λP is a successor and
such that

1. (P−,ΣP−) is either a hod pair or an sts pair such that α(P−,ΣP−) = α and
ΣP− is fullness preserving and has branch condensation,

2. for any B ∈ B(P−,ΣP−) there is an ∅-iterate (Q,Φ) of (P ,Σ) such that (Q,Φ)
is strongly B-iterable.

3. M∞ is well-founded and δ∞ = Θ = θα+1.

4. V � LSA if and only if P is of lsa type.

We will use the following lemma to establish ψ. It can be proved exactly the
same way as Lemma 4.23 of [3].

Lemma 11.1 Suppose Γ ⊆ ℘(R) is such that L(Γ,R) � AD+ + SMC + Ω = α + 1
and Γ = ℘(R) ∩ L(Γ,R). Suppose Γ∗ ⊆ ℘(R) is such that Γ ⊆ Γ∗, L(Γ∗,R) � AD+

and there is a hod a pair (P ,Σ) ∈ Γ∗ such that the following holds.

1. Σ has branch condensation and is Γ-fullness preserving.

2. L(Γ,R) � LSA if and only if P is of lsa type.
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3. λP is a successor ordinal, Code(ΣP−) ∈ Γ and L(Γ,R) � “(P ,ΣP−) is a suitable
pair such that α(P−,ΣP−) = α”.

4. There is a sequence 〈Bi : i < ω〉 ⊆ (B(P−,ΣP−))L(Γ,R) guiding Σ.

5. For any B ∈ (B(P−,ΣP−))L(Γ,R) there is R ∈ pI(P ,Σ) such that ΣR respects
B.

Then L(Γ,R) � ψ and ML(Γ,R)
∞ =M+

∞(P ,Σ)7.

The next theorem is the adaptation of Theorem 2.24 of [3] to our current context.
It can be proved via exactly the same proof. Because of this, we omit the proof.

Theorem 11.2 (Computation of HOD) Assume AD+. Suppose Γ ⊆ ℘(R) is
such that Γ = ℘(R) ∩ L(Γ,R). Then the following holds:

1. Suppose L(Γ,R) � φ. Suppose β + 1 < ΩΓ. Let (P ,Σ) witness φ for β. Then

letting M =M+
∞(P ,Σ), ~E = ~EM and Λ = ΣM, for every α ≤ β

δMα = θΓ
α and M|θΓ

α = (V HODΓ

θΓ
α

, ~E � θΓ
α,Λ � V

HODΓ

θΓ
α

,∈).

2. If L(Γ,R) � ψ then letting M = ML(Γ,R)
∞ ~E = ~EM and Λ = ΣM, for every

α ≤ ΩΓ

δMα = θΓ
α and M|θΓ

α = (V HODΓ

θΓ
α

, ~E � θΓ
α,Λ � V

HODΓ

θΓ
α

,∈).

3. Suppose Γ∗ ⊆ ℘(R) is such that Γ ⊆ Γ∗, L(Γ∗,R) � AD+ and there is a hod a
pair (P ,Σ) ∈ Γ∗ such that the following holds:

(a) Σ has branch condensation and is Γ-fullness preserving,

(b) λP is a successor ordinal, Code(ΣP−) ∈ Γ and L(Γ,R) � “(P ,ΣP−) is a
suitable pair such that α(P−,ΛP−) = α”,

(c) there is a sequence 〈Bi : i < ω〉 ⊆ (B(P−,ΛP−))L(Γ,R) guiding Σ,

(d) for any B ∈ (B(P−,ΛP−))L(Γ,R) there is R ∈ pI(P ,Σ) such that ΣR
respects B.

Then L(Γ,R) � ψ and ML(Γ,R)
∞ =M+

∞(P ,Λ).

Thus, working in a model of AD+, if α < Ω then to compute HOD|θα we only
need to produce a hod pair (P ,Σ) such that Γ(P ,Σ) = {A ⊆ R : w(A) < θα}. We
will show that this is true in any model of AD+ provided that there is no transitive
class inner model containing the reals and satisfying AD+ + LSA.

7Recall that M+
∞(P,Σ) is the direct limit of all Σ-iterates of P
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12 The generation of the mouse full pointclasses

In this section, our goal is to show that if SMC holds and Γ is a mouse full pointclass
such that Γ 6= ℘(R) and there is a good pointclass Γ∗ such that Γ ⊆ Γ∗ then there is
(P ,Σ) such that Γ(P ,Σ) = Γ. Recall that we let

#lsa: There is α such that θα+2 ≤ Θ and L(Γα+1) � LSA.

As in Section 6.1 of [3], we will construct (P ,Σ) as above via a hod pair con-
struction of some sufficiently strong background universe. However, the background
universes given by Theorem 2.25 of [3] will not be sufficient for us. Below we describe
a stronger background universe which we will use for such constructions.

Theorem 12.1 Assume AD+ and suppose Γ is a good pointclass and is not the last
good pointclass. Let (N,Ψ) Suslin, co-Suslin capture Γ. There is then a function F
defined on R such that for a Turing cone of x, F (x) = 〈N ∗x ,Mx, δ

0
x, δ

1
x,Σx,Λx〉 such

that

1. x codes N ,

2. N ∗x |δ0
x =Mx|δ0

x,

3. Mx is a Ψ-mouse and M#,Ψ
1 (Mx) � “δ0

x is a Woodin cardinal”,

4. for all η < δ0
x, M#,Ψ

1 (Mx|η) � “δ0
x isn’t a Woodin cardinal”

5. N ∗x � “δ0
x < δ1

x are the only Woodin cardinals”,

6. Σx is the unique iteration strategy ofMx (induced by the strategy ofM#,Ψ
1 (Mx)),

7. N ∗x |δ1
x is a (Ψ,Σx)-mouse over Mx and N ∗x = LΨ[N ∗x |δ1

x],

8. Λx is a strategy of N ∗x and (N ∗x , δ1
x,Λx) Suslin, co-Suslin captures Code(Ψ) and

hence, (N ∗x , δ1
x,Σx) Suslin, co-Suslin captures Γ,

9. for any α < δ0
x and for any N ∗x -generic g ⊆ Coll(ω, α), (N ∗x [g],Σx) Suslin,

co-Suslin captures Code((Σx)Mx�α) and its complement at (δ0
x)

+.

The proof of Theorem 12.1 is very much like the proof of Theorem 2.25 of [3]. It
is unfortunately unpublished and is also beyond the scope of this paper. Here is our
theorem on generation of pointclasses.
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Theorem 12.2 (The generation of the mouse full pointclasses) Assume AD+

and ¬#lsa. Suppose Γ 6= ℘(R) is a mouse full pointclass such that Γ � SMC. Then
the following holds:

1. Suppose first that Γ is completely mouse full and let A ⊆ R witness it. Then
the following holds:

(a) Suppose L(A,R) � ¬LSA. Then there is (P ,Σ) ∈ L(A,R) such that
L(A,R) � “Σ has branch condensation and is fullness preserving” and
Γ(P ,Σ) = Γ.

(b) Suppose L(A,R) � LSA. Then there is an sts pair (P ,Σ) ∈ L(A,R) such
that L(A,R) � “Σ has branch condensation and is fullness preserving”
and Γ(P ,Σ) = Γ”.

2. If Γ is mouse full but not completely mouse full then there is a hod pair or an
anomalous hod pair (P ,Σ) such that Σ has branch condensation and Γ(P ,Σ) =
Γ.

Proof. Our proof has the same structure as the proof of Theorem 6.1 of [3]. The
proof is by induction. Suppose Γ 6= ℘(R) is a mouse full pointclass such that when-
ever Γ∗ is properly contained in Γ and is a mouse full pointclass then there is a hod
pair (P ,Σ) as in 1 or 2. We want to show that the claim holds for Γ. We examine
several cases.

Case 1. θΓ isn’t the largest Suslin cardinal.

Let A ⊆ R be such that w(A) = Γ. Recall that AΓ is the set of reals σ which
code a pair 〈σ0, σ1〉 of continuous functions such that σ−1

0 “A is a code for a set in
HPΓ and σ−1

1 “A is a code for a quadruple (α,Λ,M,Ψ) such that (a,Λ,M) ∈MiceΓ

and Ψ is the unique strategy of M. We let B = AΓ.
For each hod pair (P ,Σ) ∈ Γ, there is a sjs 〈Ai : i < ω〉 such that Ai ∈ Γ for

every i and MiceΓ
Σ = A0. We then let C be the set of reals σ coding a continuous

function such that σ−1[A] codes

1. a hod pair (P ,Σ) such that Code(Σ) ∈ Γ,

2. a sjs 〈Ai : i < ω〉 such that Ai ∈ Γ for all i and MiceΓ
Σ = A0.

Let Γ∗ be a good pointclass such that A,B,C ∈ ∆Γ∗ and let F and (N,Ψ) be as in
Theorem 12.1. Let x be such that (N ∗x , δ1

x,Λx) Suslin, co-Suslin captures A,B,C.
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We claim that some model of Γ-hod pair construction of N ∗x |δ0
x is as desired. Here

the proof is somewhat different than the proof of Theorem 6.1 of [3]. There the con-
tradictory assumption that such construction do not reach Γ lead to a construction
of a hod pair (P ,Σ) such that λP = δP and P � “δP is regular”. This meant that
a pointclass satisfying ADR + “Θ is regular” had been reached giving the desired
contradiction. In our current situation, if the constructions never stops then we will
end up with an lsa type hod premouse P of height δ0

x. The following claim shows
how to finish the argument from there.

Claim 1. Suppose the Γ-hod pair construction of N ∗x |δ0
x doesn’t stop and never

reaches Γ. Then there is a pointclass satisfying #lsa.

Proof. Let (P∗,Λ) be the output of the hod pair construction of N ∗x |δ0
x. Thus,

we have that o(P∗) = δ0
x. Let P = LpΛsts

ω (M+(P∗)).

Subclaim 1. P ∈ N ∗x .

Proof. To see this, notice first that we have that

Γ(M+(P∗),Λ) ⊆ Γ and Γ(M+(P∗),Λ) 6= Γ.

It then follows that there is (Q,Φ) ∈ Γ such that Γ(Q,Φ) = Γ(M+(P∗),Λ) implying
that, because of comparison, that (M+(P∗),Λ) ∈ Γ. We can then fix z such that z
codes a Wadge reduction of MiceΓ

Λsts to Code(Ψ).

Let P∗∗ = (J ~E,Λsts)N
∗
x |δ1

x and let R = P∗∗|((δ0
x)

+ω)P
∗∗

. We claim that P E P∗.
Assume towards a contradiction that P 6E P∗ and let Q E P be the least such that
ρ(Q) = δ0

x and Q 6E P∗. Let Φ be the strategy of Q which witnesses that Q is a
Λsts-mouse. Fix w which codes a Wadge reduction of Code(Φ) to Code(Ψ).

Let now Γ∗∗ be a good pointclass such that Γ∗ < Γ∗∗ and Code(Φ) ∈ ∆˜Γ∗∗ .
Let F ∗ be as in Theorem 2.5 of [3] and let y ∈ dom(F ∗) be such that if F ∗(y) =
(K∗y,Wy, λy,Φy) then (K∗y, δy,Φy) Suslin, co-Suslin captures F , x, z, w and Code(Φ).

We then let M be the iterate of N ∗x according to Λx which is above δ0
x and is

constructed via a (Ψ,Σx)-construction of K∗x|λy done over N ∗x |δ0
x. Let

N = (J ~E,Λsts)M|πN∗x ,M(δ1
x).

Let T be the comparison tree of N and Q (we have that N doesn’t move in this
comparison) without its last branch. It then follows that T ∈ M[w,Q] and if
b = Φ(T ) then b ∈ M[w,Q]. But now universality of background constructions
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implies that in fact N reaches a level satisfying “there is a superstrong cardinal”.
This contradiction completes the proof. �

It then follows that P ∈ N ∗x and hence (P ,Λ) is an lsa type hod pair. However,
at this point we do not know if Λ is fullness preserving mainly because we do not
have enough absoluteness between N ∗x and V . Next, we produce an lsa type hod
pair which does have fullness preservation.

Subclaim 2. There is an lsa hod pair (Q,Φ) such that Φ is fullness preserving.

Proof. Fix a good pointclass Γ∗∗ such that Γ∗ < Γ∗∗ and that F ∈ ∆˜Γ∗∗ . Let F ∗ be as
in Theorem 2.5 of [3] and let y ∈ dom(F ∗) be such that if F ∗(y) = (K∗y,Wy, λy,Φy)
then F, x are Suslin, co-Suslin captured by (K∗y, λy,Φy). Let M be the iterate Λx-

iterate of N ∗x constructed via J ~E,Ψ-construction of K∗y|λy and let Q = πN ∗x ,M(P).
Let Φ be the strategy of Q which it inherits from Φy. It follows from the proof of
Subclaim 1 that Q is full. It then follows from Theorem 18.3 of [4] that Φ is fullness
preserving. �

The next subclaim finishes the proof of the claim.

Subclaim 3. L(Φ,R) � there is Γ′ such that L(Γ′,R) � #lsa.

Proof. It follows from Lemma 8.1 that L(Γ(Q,Φ)) � LSA. Moreover, it follows
from SMC that the set {(x, y) : y 6∈ LpΦsts(x)} cannot be uniformized by any func-
tion which is ODΦsts,z for some real z. Because Φ 6∈ Γ(Q,Φ)), the claim follows.
�

�

Thus we have that Γ-hod pair constructions of N ∗x |δ0
x have to stop. Next we show

that they cannot stop because they break down implying that they stop because
they reach Γ. An important remark is that it follows from the proof of the claim
that Γ-hod pair construction cannot reach an lsa type hod pair P before reaching Γ
as otherwise, letting Σ be its strategy, as in Subclaim 3, (P ,Σ) produces a model
satisfying #lsa. Thus, all hod mice reached by the Γ-hod pair construction before
reaching Γ must either be not lsa type or the corresponding strategy must be not
fullness preserving.

The proof that the construction doesn’t break down is very much like the proof
of Theorem 6.1 of [3] with one wrinkle. Suppose P is a model appearing in the Γ-hod
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pair construction of N ∗x |δ0
x. Suppose λP is a successor and δ = δPλP−1 is a measurable

cardinal. We have to show that adding a new extender to P doesn’t project to or
across δ. Below we only show how to handle this case, the rest is left to the reader
(as it is very similar to the proof of Theorem 6.1 of [3]).

Suppose then P∗ is a model of Γ-hod pair construction and Σ∗ is its strategy.
Suppose further that λP

∗
is a successor ordinal and if δ = δP

∗

λP∗−1
then δ is a measur-

able cardinal in P∗. Suppose that for some extender E the next model of the Γ-hod
pair construction is P = (P∗, E). Let Σ be the strategy of P . If ρ(P) ≥ ((δP)+)P

then we can continue the construction.
Suppose then that ρ(P) ≤ δ. If Γ(P ,Σ) = Γ then we are done. Hence we assume

that Γ(P ,Σ) 6= Γ implying that Code(Σ) ∈ Γ (using the comparison argument).
The argument now follows the same line of thought as the proof of Theorem 6.1

of [3]. Suppose first that ρ(P) < δ. Fix α < ΩΓ such that w(Code(Σ)) < θΓ
α. Let

Γ∗ = {A : w(A) < θΓ
α}. Notice that whenever (Q,Λ) ∈ Γ is such that

Γ(Q,Λ) = Γ(P ,Σ) and M∞(P ,Σ) =M∞(Q,Λ).

It then follows that M∞(P ,Σ) ⊆ HODL(Γ∗,R). Let β be such that θβ = sup(πΣ
P,∞ �

δP). It then follows that ρ(M∞) < θβ, contradiction!
We must then have that ρ(P) = δ. Let Q = Pb. Let F be the first extender

on the sequence of P with critical point δP . Let n ∈ ω be largest such that that
ρn(P) > δP and let S = Ultn(P , F ). Notice that ρ(S) = δP . Moreover, it follows
from Γ-fullness that Sb = Q.

Let now A ⊆ δP be the set coding P . Notice that A is also the new subset
defined over S. Moreover, its not hard to see that comparison implies that when-
ever (W ,Φ) is a hod pair such Γ(W ,Φ) = Γ(P ,Σ), Q = Wb and ΦQ = ΣQ then
A is the new set defined over W . It then follows that letting Γ∗ be as in the pre-
vious paragraph then L(Γ∗,R) � A ∈ ODCode(ΣQ). It then follows from SMC and
the fullness of Q that in fact A ∈ Q. But Q E P implying that A ∈ P , contradiction.

Case 2. θΓ is the largest Suslin cardinal.

The difference between Case 1 and Case 2 is that we now cannot choose a good
pointclass Γ∗ such that Γ ⊆ Γ∗. The proof then is by reflection. Suppose that there is
no lst hod pair (P ,Σ) such that Σ is fullness preserving and has branch condensation
and Γ(P ,Σ) = Γ. The non existence of such a pair can be reflected.

Let then A ⊆ R be such that for some α, Lα(A,R) � ZF + AD+ + LSA and
that there is no sts pair (P ,Σ) ∈ Lα(A,R) such that in Lα(A,R) is Σ is fullness
preserving and has branch condensation and
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Γ(P ,Σ) = {B ⊆ R : w(B) < w(A)}.

Let Γ∗ = {B ⊆ R : w(B) < w(A)}. It follows from Case 1 that there is a hod pair
(P ,Σ) such that P is of lsa type and Γ(P−,ΣP−) = Γ∗. We claim that Σsts ∈ Lα(R)
and spend the rest of the argument showing it.

Let π∗ : P → M∞(P ,Σ) be the iteration embedding. Let π = π∗ � Pb. It
follows from Theorem 11.2 that π, π∗(P) ∈ Lα(A,R). We intend to use π to define
Σsts over Lα(A,R). The proof is very much like our results proven in Section 7. Let
M = π∗(P).

Suppose ~T = (Mi, ~Ti : i ≤ m < ω) is a finite stack on P . We say the the

branches of ~T are π-certified if there is a sequence of embeddings (σR : R ∈ tn(~T ))

and a sequence of hod pairs (QR,ΛR : R ∈ tn(~T )), such that whenever R ∈ tn(~T ),
the following conditions hold:

1. if π
~T≤R,b exists then σR : Rb →M and π = σ ◦ π ~T≤R,b,

2. if π
~T≤R,b doesn’t exists then letting E be the undropping extender of ~T≤R, then

σ : Ult(Pb, E)→M and π = σ ◦ πE,

3. (QR,ΛR) is a hod pair in Lα(A,R) such that ΛR is fullness preserving and has
branch condensation and letting τR : QR →M∞(QR,ΛR), σR|δR ⊆ rng(τR),

4. if α+ 1 < λR and T is the longest irreducible component of T based on R(α)
then letting k : R(α)→ QR(β) be given by k(x) = τ−1

R (σR(x)), T is according
to k-pullback of ΛQR(β) and σR � R(α) is the iteration embedding according to
the k-pullback of (ΛR)Q(β).

Suppose ~T is a finite stack on P is such that for some cutpoint R, π
~T≤R,b exists

and ~T≥R is a normal irreducible tree on R based on the top window of R. Suppose

Q is an sts mouse such that M(~T≥R) E Q and J1(Q) � “δ(~T≥R) isn’t a Woodin
cardinal”. We say Q is π-certified if

1. if M+(M(~T )) � “δ(~T≥R) isn’t a Woodin cardinal” then Q EM+(M(~T )),

2. ifM+(M(~T )) � “δ(~T≥R) is a Woodin cardinal” then Q has an iteration strat-

egy Λ such that whenever S is a Λ-iterate of Q and ~U ∈ S is according to ΣS

then the branches of ~T _{M+(M(~T ))}_ ~U are π-certified.

Suppose then ~T is a finite stack on P . We then say that ~T is π-certified if

1. the branches of ~T are π-certified and
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2. whenever R ∈ tn(~T ) is such that π
~T≤R,b exists then letting T be the longest

irreducible initial segment of ~T that is based on the top window of R, if α <
lh(T ) andMT

α � “δ(T � α) isn’t a Woodin cardinal” then letting Q EMT
α be

the longest such thatQ � “δ(T � α) is a Woodin cardinal” thenQ is π-certified.

It can now straightforward to check that the following are equivalent:

1. ~T is according to Σsts.

2. ~T is π-certified.

We leave the details to the reader. We comment that clause 4 in the definition of
stacks that have π-certified branches guarantees that the embedding σR � R(α) is
according to Σ.

It then easily follows that Σsts ∈ Lα(A,R), contradiction. �

13 LSA pointclass from a Woodin limit of Wood-

ins

Theorem 13.1 Suppose there is a Woodin cardinal that is a limit of Woodin cardi-
nal. Then there is an inner model satisfying AD+LSA.

Proof. Woodin showed that, under our current hypothesis, there is an inner model
that has divergent models of AD+, i.e., there are sets of reals A,B ⊆ R such that
L(A,R) � AD+, L(B,R) � AD+, A 6∈ L(B,R) and B 6∈ L(A,R). Moreover,
his constructions shows that we can assume that both L(A,R) and L(B,R) satisfy
MC + Θ = θ0. Thus, we assume that such a pair of models exists.

We let Γ = L(A,R) ∩ L(A,R) ∩ ℘(R). We now assume that there is no inner
model satisfying AD+ + LSA. It follows from the proof of Subclaim 2 in the proof
of Lemma 12.2 that

(1) there is no inner model M containing the ordinals and reals such that M �
AD+ + “there is an lst pair (P ,Σ) such that Σ is fullness preserving and has branch
condensation”.
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Using Theorem 12.2 we get that there is (P ,Σ) ∈ L(A,R) and (Q,Λ) ∈ L(B,R)
such that Γ(P ,Σ) = Γ(Q,Λ) = Γ. As in [3], we intend to compare (P ,Σ) and (Q,Λ)
in V .

Before we do that, however, notice that because L(Γ,R) � ADR (this is an
unpublished result of Woodin), it follows that both P and Q are of limit type. The
proof of Theorem 6.26 implies that in fact both P and Q have to be non-meek. The
proof of Theorem 3.3 and Theorem 6.26 of [3] imply that there are (R,Ψ) and (S,Φ)
such that R ∈ pI(P ,Σ), S ∈ pI(Q,Λ), Ψ = ΣR, Φ = ΛS , Rb = Sb, ΨRb = ΦSb and
whenever W ∈ pB(R,Ψ) ∩ pB(S,Φ), ΨW = ΦW . We then have that the further
comparison of R and S doesn’t use low level disagreements. It follows from Lemma
8.5 of [4] that the comparison of R and S is just an extender comparison.

Let now (T ,U) be the trees on R and S respectively that are constructed using
the extender comparison of R and S until we reach models R∗ and S∗ such that

δR
∗

= δS
∗

=def δ and R∗|δ = S∗|δ.

Suppose first that we can reach such a stage in < ω1 many steps. Suppose next that
M+(R∗|δ) � “δ isn’t a Woodin cardinal”. It then follows that R∗ = S∗ and the
comparison halts, contradiction.

It then must be the case that M+(R∗|δ) � “δ is a Woodin cardinal”. Let
M = M+(R|δ). Notice that we have that Ψsts

M = Φsts
M . We also must have that

Γ(M,Ψsts
M) = Γ(M,Φsts

M) = Γ. (Otherwise, we have that Code(Ψsts
M) ∈ Γ and hence,

using (1), we get that R∗ E LpL(Γ,R),ΨstsM (M) and S∗ E LpL(Γ,R),ΨstsM (M) implying
that R∗ E S∗ or vice versa. It then follows that the comparison actually halts giv-
ing us contradiction. ) But now we have that Code(Φsts

M) ∈ L(Γ,R) implying that
Γ = Γ(M,Φsts

M) ⊂ Γ, contradiction.
We must then have that the construction of (T ,U) lasts ω1-steps. However, notice

that in this case, as both sides use the same Q-structures (this follows from (1)), the
extender comparison of R and S can be done in both L(A,R) and L(B,R). It then
follows that, as ω1 is measurable in both L(A,R) and L(B,R), that T and U have
branch which gives us a contradiction. �
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