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Abstract

The main contribution of this paper is a the analysis of HOD below the
theory AD™ + “The largest Suslin cardinal is a member of the Solovay se-
quence”. It is shown that below the aforementioned theory, HOD of models
of AD™ are fine structural models and hence, satisfy GCH. We also show that
the aforementioned theory is consistent relative to a Woodin cardinal which is
a limit of Woodin cardinals. This was stated as an open problem in [6]. The
paper is a continuation of [4].

In this paper, we continue the work that has started in [4]. Here our goal is
to carry out the analysis of HOD of models of ADT + SMC +V = L(p(R)) un-
der the following minimality assumption. Given « such that 6, is defined, we let
I, ={ACR:w(A) <0,}. Wesay I'is a Solovay pointclass if I' = I, for some a.

*2000 Mathematics Subject Classifications: 03E15, 03E45, 03E60.
tKeywords: Mouse, inner model theory, descriptive set theory, hod mouse.
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Recall from [4] that LSA stands for the theory ADT + “the largest Suslin cardinal
is a member of the Solovay sequence”. We let

#15a¢ There is « such that 6,0 < © and L(I',11) F LSA.
Minimality Assumption: —#;,, holds.

Recall from [3] that SMC stands for Strong Mouse Capturing, i.e., Mouse Cap-
turing relative to any strategy of a hod pair. It is known that SMC' is not needed
for the computation of HOD as it follows from AD* + V = L(p(R)) and our Min-
imality Assumption. However, this is a subject of another paper. This paper is a
continuation of [4], and we assume that the reader is familiar with [4].

Our computation of HOD follows the general outline of the computation of HOD
that can be found in [5]. The proof is by induction on the Solovay pointclasses.
Suppose we have shown that for all § < «, there is a hod pair (P, ) such that

[(P,S) = {A CR: w(A) < 05} ().

Then we show that if §, < © then there is a hod pair (P, ) such that T'(P,X) =
{ACR:w(A) < 6,}. We then use this fact to show that M., (P, X)|f, has VP as
its universe, and then using this, we complete induction by showing that if 6,,1 < 6
then there is (P, X) such that I'(P,X) = {A CR: w(A) < Op41}-

Recall from [3] or from [5] that (*) is known as Generation of Pointclasses. To
prove it, we need to introduce hod pair constructions that produce hod pairs whose
strategies are I'-fullness preserving. However, for technical reasons, it is convenient
to introduce such constructions for arbitrary pointclasses.

1 I'-hod pair constructions

Fix a pointclass I' closed under continuous preimages and images. Below if A is an
iteration strategy then we let M, be the structure that A iterates. We use Code(A)
for the set of reals coding A [ HC'. Also, recall that we say that a is self-wellordered
if there is a well ordering of a in J,(a).

Fix a pointclass I'. Let

HPY = {(P,A): (P,A) is a hod pair and Code(A) € T'}

and



Mice = {(a, A\, M) : a € HC, a is self-wellordered transitive set, A is an iteration
strategy such that (My,A) € HPY, My € a, and M < Lpt*(a)}.

Suppose (P,¥) € HPY. We then let
Micet, = {(a, M) : (a, %, M) € Mice'}.

Suppose now A C R is such that w(A) > w(I'). We let Ar be the set of reals
o that code a pair (0g,0;) of continuous functions such that o;'[A] codes some
(P,A) € HP' and o} '[A] codes some (a, M, ¥) such that (a, A\, M) € Mice! and ¥
is the unique strategy of M. If I' = o(R) then we let HP = H P and Mice = Mice'.

It is convenient to introduce the notion of I'-hod pair construction while working
inside self-capturing background triples (see Definition 2.24 of [3]).

Definition 1.1 (Self-capturing background triples) Suppose (M, d,%) is a back-
ground triple. We say (M, 0,%) is self-capturing if for every M-inaccessible cardinal
A < 6 and for any g C Coll(w, ), there is a set X € M such that for every M|gl-
cardinal n which is countable in V', (M([g],¥) Suslin, co-Suslin captures Code(Ey )
at n as witnessed by a pair (T,S) € OD??[Q].

Suppose now that (M, §, ¥2) is a self-capturing background triple such that (M, X)
Suslin, co-Suslin captures the pair (Ar, A). Suppose B C R and suppose A < ¢ is
an M-inaccessible cardinal such that whenever g C Coll(w, A), (M|g], %) Suslin, co-
Suslin captures B. We then write (M, \,¥X) F B € T" if whenever g C Coll(w, \)
is M-generic, there is 0 € M|g] N Ar such that if h is M[g]-generic and (o9, 01)
is the pair coded by o then, letting B* = BN M[g % h] and A* = AN M|[g * h],
Mg x h) E B* = o, '[A*]. Notice that the definition of (M, \,%) F B € I' depends
on the pair (Ar, A). In our exposition the pair (Ar, A) will always be clear. The
following lemma isn’t difficult to show.

Lemma 1.2 (Lemma 2.29 of [3]) Suppose (M, ,Y) is a self-capturing background
triple such that (M,%) Suslin, co-Suslin captures the pair (Ar, A). Suppose B C R
and suppose X\ < 0 is an M-inaccessible cardinal such that whenever g C Coll(w, \),
(M{g],X%) Suslin, co-Suslin captures B. Then (M,\,X) E B € T if and only if
Be HP.

The next lemma shows that mouse operators are definable over self-capturing
triples.



Lemma 1.3 (Lemma 2.30 of [3]) Suppose that (M,0,X) is a self-capturing back-
ground triple such that (M,Y) Suslin, co-Suslin captures (Ar, A). Suppose further
that (P,A) € HPY and \ < § is an M-inaccessible cardinal such that (M, )\, %) E
Code(A) € T. Let F : HC — HC be given by F(a) = Lp**(a). Suppose g C
Coll(w, ) is M-generic and h € HC is VM|g|-generic. Then F | VM[g][h] is defin-
able over M|g]lh| from the pair (Ar N Mlg], AN M[g]) uniformly in h.

Lemma 1.4 (Lemma 2.31 of [3]) Assume the hypothesis of Lemma 1.3. Suppose
further that the function n — A | ‘/;7M is definable over M (from parameters) and

that there is some set X € M such that there is an invariant 7 € M@ sych
that 7 € ODY and whenever g C Coll(w, \) is M -generic then 7, = {(z,y) € R* :
codes P and y € Code(N)}. Then F | VM is definable over VM.

We can now introduce I'-hod pair constructions. Such constructions are modi-
fications of the hod pair constructions introduced in [4] (see Definition 16.2 of [4]).
Below we write M F B € T if for some A < 6, (M, \,X)F B €T.

Definition 1.5 (I-hod pair constructions) Suppose I' is a pointclass closed un-
der continuous preimages and images and suppose that A C R is such that w(A) =
w(I"). Suppose further (M,0,%) is a self-capturing background triple such that M
locally Suslin, co-Suslin captures (Ar, A). Then

(Naaf”}/’ Pa’£777 P;;f,’)” Fa7£7'y7 EQ,&:’Y’ 2:;7§7’Y Qa S )\7§ S ga’ ’7 S Caa£>

is the output of the I'-hod pair construction of M if it satisfies the following properties
(in M ).

E*

1. Forall (a,§,7) € (A+1) x(sat1) X (Cag 1), (Pagy Zagy) and (P, a,{,'y)

gy’
are hod pairs with the property that
)\PO,E»’Y = )\,P;u&,"/ = {a . 1 : g;) >0

o DG =0,

and

(a) ME (Pagy, Bagy) €1 and M E (P, 55 ,) €T,
(b) 7)0‘755’7(&7 07 O) = ;7577(047 07 O);

. P
(¢) if (@, €,7) <iew (NS Carea) then p(Phe.) > 62", and



(d)

2. The construction of (Nao0, Paoo, P

Pagny = C(Phe.) and if m 1 Pagr — Poe., is the uncollapse map then

Yoy = m-pullback of X7, ¢ .

00)- Welet my < mu be the first two

«

M-cardinals such that for each i € {0,1}, Lp" (V') E “n; is a Woodin cardi-
nal”, and Nogo = (jE)V"AlI.

(a)

(b)

We let ng < my be the first two M-cardinals such that for each i € {0, 1},
Lp" (VM) E “n; is a Woodin cardinal”. We then let Nooo = (TE)Va'.
Neat suppose o =0+ 1. If Py, ¢, ., is of lsa type then stop the construc-
tion. Otherwise let

0 . otherwise

{5P9"9’<9v<e Ca#0
V=

Then if

Po 566,
, , 50:$0,5p
i. no level of Ny projects across ,

ii. Nyoo has at least two Woodin cardinals > (57)9‘9’{959,

iii. ifa=0+1and Py, F w7500 s o Woodin cardinal” then
Naoo E «sT0s0%0. s q Woodin cardinal”

then P o0 = Paoo = Na7070|(u+”)Na7070 where i is the least Woodin car-
dinal of Nuoo bigger than 8700055
Assume a is a limit ordinal. Let Qn = Up<aPot1,00 and let A be the strat-
eqy of Q induced by X. Let ng < ny be the first two Woodin cardinals of
M such that for every i € {0,1}, Lp" (V) E “n; is a Woodin cardinal”.
Let My = (TEMViL . Then the following holds.

i. If no initial segment of M, projects across o(Q,) then letting k =

0(Qa); Pioo = Paoo = (kt)Me and X, 00 be the strateqy of Paoo
induced by 3.
it. Provided the above clause holds, let vy < vy be the first two cardinals
of M such that for every i € {0,1}, Lpt=00 (VM) E “v; is a Woodin
cardinal”. Let Ny = (JEZa00)VA' | [f
(kH)Na = (kH) P00 gnd N, |(kT)Ne = Py 0| (k+) P00
then Ny = Nyop-



(c) The terminating condition. Below we make a list of the conditions
described above that will force the construction to stop. Stop the construc-
tion if any of the following happens.

i. « is a successor ordinal and there is a level of Ny oo projecting across

P9,<0,C9
dy 0 where § = a — 1.

i. a =0 ora=60+1is a successor ordinal and Ny oo doesn’t have
at least two Woodin cardinals > v where v = 0 if « = 0 and v =
57000 otherwise.

. a=0+1, Po.co.¢o.5, E «§7?50%. s q Woodin cardinal” and Nooo F
«§70s0%.59 s not a Woodin cardinal”.

w. « 1s a limit ordinal and some initial segment of M, projects across
0(Qn) where My, and Q, are as in clause 2.b.1.

v. « is a limit ordinal and the above clause fails, but either (k+)Ne
(KF)Pa00 or N |(KT)Ne £ Pyl (kF)P200 where k and N, are as in

clause 2.b.1 and 2.b.11.

3. The construction of (./\/’ajf,(),lpa,éo,/]);’f’o) for fized o and & > 0. Suppose
a € Ord is fived. We define (Nag0: Paeo, Paco - & > 0) by induction on §.
Suppose (o, &) € Ord?® and

(Na*,f*,q/* s Poé*“g*;y*, 7);*75*,7*, Fa*,g*(y*, Za*,f*,w*a 23*75*77* : (OK*, 5*) <lex
(Oé,g) A /y* S Ca*7§*)

has been defined.

(a) Suppose § is limit. Let (Qugi, Qe 1 < Vag) be a sequence defined as
follows.
i Qheo = limeePagr ¢, oor
i, for all i < vag, Qagei = C(Qhei),
ii. for alli < vag, Qf ¢y 18 the least initial segment M of T (Qaei), if
it exists, such that p(M) < 0(Qac.i),
w. for all limit © < vae, Qaei = limjiQag,js
V. Vg 5 the least ordinal B such that either
A. J(Qagp) has no level projecting across Qa5 or
B. there is M 1T (Qaep) such that p(M) < §P=00,



Suppose that clause B doesn’t hold. Let then Py .o = (Qaewa)™ ie
Preo is the least active level of jE[Qa,&VM] We also let 37, ., be the

«

strategy of P induced by X.  Suppose p(Pp () > §P00Then let
no < m be the first two cardinals of M such that for i € {0,1}, if Paeo
is not of lsa type then Lpr’zav&o(‘/;ﬁ”) F “n; is a Woodin cardinal”, and if
Poco is of lsa type then Lpr’zitévo(\/?y) E “n; 1s a Woodin cardinal”. Let
then

N (FEBaco)Vi' Paco is not of lsa type
&0 (JE EReo)n Py e is of lsa type.

(b) Suppose & = " + 1.
i. Suppose there is an extender F' that coheres ¥ and
(N‘a*7£*7,y*’Pa*’g*j,y*,,]);*’f*;y*’ Fa*’g*’,y*7 EO{*,&* * Za g* N (a*, é‘*) <lex
(,§) Ay* < ga*,E*) R
such that letting E = F N Pogc, s (Pagae E5€) is a hod premouse
where E is the amenable code of E. Then P 0= Patcac E, c).
it. Suppose there is no such F'. Then stop the construction of Pu¢o and
let ¢, = &*.
(¢) The terminating condition. Below we make a list of the conditions

described above that will force the construction to stop. Stop the construc-
tion if any of the following happens.

i. Clause 3.a.v.B holds, i.e., there is M 1 J(Qagp) such that p(M) <
§Pa0,0

i. Ppeo is defined but p(Pp ) < §Pa00

4. The description of (Nagy: Pogqs Pac,) for fized (a,§). Fiz (a,§) €
Ord*. We define (N, oty Poers Pae ) by induction. Suppose (a,§,7) € Ord?

and

(Na*’§*7'y* ? Pa*’£*77* ’ 7);*75*,’}/*7 Fa*fg*"\/* ) Ea*v'ﬁ* * 20[ f* o (O[*’ 5*7 ,y*) <l€IE

(a,€,7))
has been defined.
(a) Suppose v is a limit ordinal or is 0 Then we let Py ¢, = limys s, Po gy
Also, let 37, . be the strategy of P, .., induced by Z Let no < m be the

first two cardmals of M such that for z € {0,1}, if Pogo is not of lsa type
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then Lp"=e60 (VM) & “p. is a Woodin cardinal”, and if Pa.¢ is of lsa type
p f 7 £ yp

i

then LpF’EZiE’O(VWJl‘,J) E “n; is a Woodin cardinal”. Then

N, (jE’Ea’éw)VnA{[ ! Pagr 15 not of lsa type
ey (jEvzit,Zw)Vnﬂf : Paen s of lsa type.

We then let P ¢ 1 be the first level of N g, if exists, that projects across
0(Pag~)- If there isn’t such a level then stop the construction.

(b) Suppose v =~*+ 1. Let ng < my be the first two cardinals of M such that
for i € {0,1}, if Paco is not of lsa type then Lpr’zav&“(‘/;f) E “n; is a
Woodin cardinal”, and if Pyeo is of lsa type then Lpnzi%vo (V;]]Z”) F “n; s
a Woodin cardinal”. Then

N {(jE’E“vm*)V’% : Pagq+ 15 not of lsa type
gy =

(TEEem )V Poe~+ 1s of lsa type.
(¢) The terminating condition. Terminate the construction if
i. there is a M QN ¢. such that p(M) < sPaco0 or
ZZ O( ;7577) — 6

(d) If v is a limit ordinal and Ny, is defined but there is no M < Ny¢.,
such that p(M) < §Per. Set (¢ = 7.

(e) If v = ~v*+ 1 and N,¢ ., is defined but there is no M < No¢. such that
p(M) < 0P Set (o0 ="

5. The main termination condition If the construction reaches («, &) such
that Pag ¢, s of lsa type then stop the construction.

The next theorem, which is the generalization of the equivalent theorem in [4],
shows that I'-hod pair constructions produce winning strategies for II in the un-
dropping game (see Definition 7.1 of [4]).

Theorem 1.6 (Theorem 17.3 of [4]) Suppose I is a pointclass closed under con-
tinuous preimages and images and suppose that A C R is such that w(A) = w(T).
Suppose further (M,0,%) is a self-capturing background triple such that M locally
Suslin, co-Suslin captures (Ar, A). Let

(Na7577’ ’Pav§7’y7 P;,g,’}” FO&:EW’ Zaé-:’y’ ZZ,E,’Y e S )\76 S ga? PY S Cayé)

be the output of the T'-hod pair construction of M. Then for every (o, &, ) such that
Yoy is defined, Yo is a winning strategy for I1 in G (P, wr,wr,wr).

8



Just like in [4], the notion of I'-hod pair construction leads to comparison of two
[-fullness preserving hod pairs. We state the result without the proof as it can be
proved using the same proof as the corresponding result from [4] (see Theorem 18.11
and Corollary 18.12 of [4]).

Corollary 1.7 (Comparison) Assume AD* and suppose ' is a pointclass closed
under continuous images and preimages. Suppose (P, X)) and (Q, A) are two hod pairs
such that both X2 and A are I'-fullness preserving and have branch condensation. Then
the normal comparison' for (P,X) and (Q, ) holds.

Recall that the proof of Corollary 1.7 is by first choosing a self-capturing back-
ground triple (M, §, X)) that Suslin, co-Suslin captures some pair (A, Ar) and then
showing that the I-hod pair construction of M produces a common iterate of (P, )

and (Q, A).

2 The internal theory of hod mice

In this section we generalize the result of Section 3.1 of [3] to our current context.
As in [3], these results lead towards showing that given a hod pair (P, %), I'(P, %)
is an OD-full pointclass (see Definition 3.16 of [3]).

2.1 The uniqueness of the internal strategy

The first theorem, Theorem 2.2, is just a direct generalization of Theorem 3.3 of [3].
It says that the internal strategies are unique. First we prove a useful lemma.

Lemma 2.1 Suppose P is a hod premouse and (o, &,7y) € AP x (¢F +1) x ( 55 +1).

Suppose further that if o +1 = AP then (£,7) € <& x ( 23,5 +1). Suppose UePis
a stack on P(a,&,7) and suppose R is its last model. Then for all v+ 1 < \® such
that R E “61%, is a Woodin cardinal”, cf” (6%.;) > w.

Proof. Towards a contradiction, assume not. Let (J\/’a,lja,Ea . a < n) be the
components of U. Without loss of generality we can assume that for every cutpoint
SofU, dgs is not a counterexample to our claim.

Let S be the least model in ¢/ such that wgﬁ exists and 0%, € rng(wgﬁ). It

follows that there is A in ¢ such that for some extender F in U , F'is applied to M

IRecall that this means that the comparison can be achieved via a normal tree.



and S = Ult(N, F). Let p be such that ﬂgﬂ(u) = v. Since Wgﬁ is cofinal at 073, ,,
we have that cfp(éiﬂ) = w.
Let E be the undropping extender of ZZSM and let M* = Ult(P, E). Hence,

there is a sequence (h; : i < w) € P such that for some (a; : i < w) € (V5*)“,

sup;<, 7 (75 (hi)) (a;) = 0,5
But (7" (7g(hs)) : i < w) € Ult(M, F). Hence,
Ult(M*, F) F 83y = $Waeyge i 7 (m(hi))(a)

implying that Ult(M*, F) & cf(65,,) < vp contradicting the fact that Ult(M™T, F) E

“(55 11 is a Woodin cardinal”. 0

Theorem 2.2 (Uniqueness of internal strategies) Suppose P is a hod premouse
and (o, &,7) € NP x (& +1) x ( ZZE +1). Suppose further that if « +1 = N\ then
(&) €l x (L +1). Then P E “P(a,,v) has a unique iteration strategy”.

Proof. Tt follows from the proof of Lemma 2.1 that whenever U € P is a stack on
P(a, &, v) with last model R and 3+ 1 < AR then cfp(%zﬂ) > w. Uniqueness of the
strategy is an easy consequence of this fact. To show it, we start working in P.
Suppose A # ¥, ¢ is another iteration strategy for P, ¢ . Since P(e, &, ) is not
of Isa type, it follows from Lemma 18.5 of [4] that we can fix T on P(a, &, v) which
constitutes a minimal low-level disagreement between A and ¥, ¢ . Let b = Eafﬁ('f)
and ¢ = A(’f') Let Q be a cutpoint of 7 such that 729 is a continuable stack on
P(c,€,7) (see Definition 5.4 of [4]) and U =g4.¢ T-o is an irreducible normal tree
on Q. Let v+1 < A2 be least such that I/ is based on Q(v+1,0,0). We then have that

(1) (Ea,m)g(y)fgg = Ag() 7., and that U is above 5.

It then follows that cf(6(7)) = w. Notice that because of (1) it cannot be the
case that

O(T) < min(xif(62,), 7 (61))

as in that case, both Q(8,U) and Q(c,U) exist and are fully iterable, and hence the
same, implying that b = c. It then follows from (1) that cf(62 ) = w contradicting
Lemma 2.1. g

The proof of Theorem 2.2 can be used in the context of lsa hod premice as
well. We will state this result after proving the fullness preservation of the internal
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strategies. Essentially the internal short tree strategy is the unique short tree strategy
which is internally fullness preserving. For now, we state the following corollary of
the proof of Theorem 2.2.

Corollary 2.3 Suppose_)P is an lsa type hod premouse and A is its internal short
tree strategy. Suppose (T,Q) € I(P,A) and B+1 < \°. Then P E "Ny 7 18 the
unique strategy of Q(B +1)”.

2.2 Generic interpretability

We now move to generic interpretability. We start by recalling and generalizing the
definition of a pre-hod pair.

Definition 2.4 (Prehod pair) (P,) is a prehod pair if
1. P s a countable hod premouse,
2. A\ is a successor but P is not of lsa type,

3. ¥ is an (wy,wy,w)-strategy for P acting on stacks based on P(A\T — 1) such
that (P(A¥ — 1), %) is a hod pair and that whenever i : P — Q comes from an
iteration according to 3, Eg()\g_l) =X |9,

4. P is a X-mouse over P(A\F — 1),

5. for any P-cardinal n € (03, _|,0%), considering P|n as a X-mouse over P(A” —
1), there is an wy-strategy A for P|n.

Notice that there must be a unique strategy A as in 5 of Definition 2.4. Also,
recall the definition of Generic Interpretability from [3] (Definition 3.8). In our
current context it takes the following form.

Definition 2.5 (Generic Interpretability) Suppose (P,X) is a pre-hod pair or a
hod pair such that \¥ is a limit ordinal. We say generic interpretability holds for
(P, %) if there is a function F' such that

1. F is definable over P with no parameters,

2. dom(F) consists of triples (o, &, k) such that o < AP, &€ < P, ,ufgcp < o7
ARl ay&

and Kk € (,uzg’gpg, 67) is a P-cardinal,

11



3. for (a, &, k) € dom(F), F(o, &, k) = (T, S) such that letting ju = M§£<73 ,
& Cae

(CL) T’ S c PCOll(w,u)’
(b) PE IFCoti(w,p) T and S are k-complementing”,
(c) for any v € (u, k) and any P-generic g C Coll(w,v),

Plgl E “p[T,] is an (wy,ws,wr)-iteration strategy for P(a, &) which
extends 277;(&75) 7

and

(p[T,))7¥) = Epag) | HCPW.

The proof that the generic interpretability holds is just like the proof of Theorem
3.10 of [3] using Theorem 18.3 of [4] and Theorem 2.2 instead of Theorem 3.3 and
Lemma 2.15 of [3]. First the proof of Lemma 3.9 of [3] can be used with no changes
to establish the following useful lemma.

Lemma 2.6 Suppose (P,X) is a prehod pair and o +1 = \P. Let k < 67 be a P-
cardinal such that P has no extenders with critical point 67 and index greater than
k. Let A* be the iteration strategy of P|k as in & of Definition 2.4. Let A be the
fragment of A* that acts on non-dropping stacks. Let g C Coll(w, k) be P-generic.
Then Plg] locally Suslin captures Code(A) and its complement at any cardinal of P
greater than k.

Fix now a prehod pair (P,¥) and let a + 1 < A\”. Let k < §” be a P-cardinal
such that P has no extenders with critical point 67 and index greater than . Fix
¢ <P and let

(NﬁaV7<7PﬁaV7C7P;7V,C7 Fﬁ"j7<7 ®O‘7V»C7 éz,y,c : ﬁ S )\7 v S gCY?C S g‘th,l/)

be the output of hod pair construction of P|6” in which extenders used have critical
point > k. It follows from Theorem 18.11 of [4], Lemma 2.2 and Lemma 2.6 that for
some (o, v, (), (N, Pauc) is a tail of (P(a,§), X ). We then set

NP o =Ns,cand Apoe = Ppg.

R7a’£

Also let 7T,7:,a7£ P, &) — foa,f be the iteration embedding according to X, ¢ and let
Tr.a.c be the tree on P(a, £) with last model N7, .. Tt then follows from Lemma 2.6,
hull condensation of ¥ and the proof of Theorem 18.33 of [4] that

12



Corollary 2.7 whenever n € (k,0”) is such that n > 0(N£B7£) and n < w, there are
names (T, 8) € P such that

1. .6 € poolien),

2. PE“IFoow WP ) T and S are (6F)"-complementing”,
’ &Y

3. for any X < (n, ((67)™)%) and any P-generic g C Coll(w, \),

Plgl E “p[T}] is an (wy,ws,ws)-iteration strateqy for Ny q¢”
and letting ® be the Wf’a,g—pullback of the strategy given by (p[Tg])P[g] then
D = Sp(ae | HOPY,

Our generic interpretability result now can be proved using the tree production
lemma (Theorem 3.3.15 of [1]) and Corollary 2.7. We leave the details to the reader.

Theorem 2.8 (The generic interpretability) Suppose (P,3) is a prehod pair or
is a hod pair such that \¥ is limit. Assume that for every o < A7, Yp(a) has branch
condensation. Then generic interpretability holds for (P,Y).

Next, we present our result on internal fullness preservation. The proof follows
the same line of thought as the proof of Theorem 3.12 of [3] and because of that we
omit it.

Definition 2.9 Suppose P is a hod premouse and («,&,7) € AP x (¢ + 1) x
( Zj,& +1). We say A = Ezm is internally fullness preserving if whenever (T,R) €
I(P(, &,7),A) NP is a stack such that (|T|*)? exists, 5 < \* and n € (65, 0541]%

1s a cardinal cutpoint of R,

1. if M € P is a sound max(6” + 1, (|T|)P)-iterable A ) #-mouse over R|n
then M 4R,

2. if M € P is a sound max (67 +1, (|T|)7)-iterable A ) 7-mouse over R(f,0,0)
then M <R.

Theorem 2.10 (Internal fullness preservation) Suppose P is a hod premouse

and (o, €,7) € NP x (T +1) x ( 55 +1). Then Eg’m is internally fullness preserving.
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3 Diamond comparison

Our goal here is to provide another comparison argument, diamond comparison,
that doesn’t rely on branch condensation as heavily as our other argument (see
Corollary 1.7). The new comparison argument follows the same line of thought as
the proof of a similar comparison argument from [3] (see Theorem 2.47 of [3]).

We have two applications in mind for such a comparison argument. First we
will use it to show that in some instances tails of strategies with hull condensa-
tion get branch condensation and strong branch condensation. This will appear as
Theorem 6.7.

Next, as in [3], the diamond comparison argument can be used to show that
ADT + LSA is consistent relative to a Woodin cardinal that is a limit of Woodin
cardinals. This will appear as Theorem 13.1. In [3], a similar argument gave the
consistency of ADg + “© is regular” relative to a Woodin cardinal that is a limit of
Woodin cardinals.

Following the proof of Theorem 2.47 of [3], we first define a bad block and a bad
sequence and show that there cannot be such a bad sequence of length w;. We then
show that the failure of comparison produces such bad sequences of length w.

3.1 Bad sequences

For the purposes of this subsection, we make a definition of a bad block and a bad
sequence. In later subsections, we will redefine these names for different objects. For
the duration of this subsection, we fix a I'-fullness preserving

Definition 3.1 (Bad block) Suppose (P,%) and (Q,A) are two hod pairs of limit
type. Then

B = (((P;, Qi %, Ay) 16 < 5), (To,Us i < 4), (¢, d))
is a bad block on ((P,X),(Q,A)) if the following holds:
1. (Po, %) = (P, %) and (Qo, Ag) = (Q, A).
2. ’TB s a stack according to ¥y on P.

3. Zjo is a stack according to Ao on Q.

4. Let Ty = (./\/lg,'fg,Eg :B<v) and Uy = (./\/5,2/75,]75 : B <v). Then 7, and U,
are undefined, Py = M, and Q; = N,,.
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10.

11.

12.

15.

There is some B+1 < min(A\P1, \2) such that P1(B+1) = Q1(B+1), Pi(B+1)
s of successor type, EP1(6+1),7% #* Agl(ml),go and

X (8)T0 = 20180

-

Ti = U, is a comparison tree for (Py(6+1), Ep a5 and (Qi(B+1), Mg 11y 4):

¢ =p 507 (Th) and d = Ng 51 (Uh). Welet Py = MT and Qy = MY
where we apply the stack 711 and Zjl to P and Q; respectively.

Y1 =3p 7 2= Ep, 77 (p,) Ay =34 g and Ay = Y 0 il {0s)

Ty is a stack according to Yo on Po with last model Ps and Y3 = (22)7)37712.

ng is a stack according to Ay on Qs with last model Q3 and A = (A2)Qg,ﬁ2'
’TE, 18 a normal tree according to X3 on P3 with last model Py and ¥4 = (23)7)477:3.

2/73 is a normal tree according to As on Qs with last model Q4 and Ay =
(A3)Q477/73'

P3 = Q3 and (33)pr = (As)gy-

Tg and ng are the trees produced via extender comparison between Ps and Qs.

We set TB = T Ty APy T Ts and U = U U { QoY Uy Us. We say T2 is the
stack on the top of B and UP is the stack in the bottom of B.

Next we show that there cannot be a bad sequence of length wy.

Lemma 3.2 (No bad sequences) Suppose (P,%) and (Q,A) are two hod pairs
of limit type such that P and Q are countable, and both ¥ and A are (wy,wr,w)-
strategies. There is then no bad sequence, i.e., a sequence (Bg : B < wy) satisfying
the following holds:

1.

For all B < wy, B = ((Ps.4, Qais Lp.i, Mgi) -1 < 5), (TaasUsi =i < 4), (cg,dg)).

2. For all B < wq, Bg is a bad block on ((Ps.o,Xs0), (9p.0,Nso))-

3. For all < wy, Pgy10=Psa and Qpi10 = Qp.a.
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4. For B < a < wi, let g : Pao — Pao be the composition of the embeddings
on the “top” and og. : Qo — Qa0 be the composition of the embeddings in
the “bottom”. Then for all limit A < wy, Pro is the direct limit of (Ps : 8 < A)
under the maps mgo. Stmilarly, for all limit X < wq, Qx s the direct limit of
(Qp : B < A) under the maps 0g,q.

5. For all f < wy, Ygog =2 and Agog =2

Pg,0:By<pT > Q30,0 <pUPT

Proof. Towards a contradiction, suppose B = (Bg : B < wyq) is a bad sequence. Let
P, be the direct limit of (P : 8 < wy) under the embeddings 74, and 9, be the
direct limit of (Qgp : f < wq) under the embeddings og,. Let X be a countable

submodel of H,, such that letting 7 : M — H,, be the uncollapse map, Be rng(o).

Let k = wM and notice that for every 3 < &,

5 =der (Psi, Q) 11 <5), (Toulsi i < 4),(cs dg)) € M

and Bj is countable in M. It then follows that 771 (P.,) = Puo and 771(Q) = Q.. 0.
Let

g : ,Pg,() — Pwl and og: Qﬁ’o — le

be the direct limit embeddings.
Standard arguments show that for all x € P, o N Oy,

Te(x) = 7(x) = 04 ().
Notice that we have that AP0 = \9=0_ Letting A = A\P=0, notice that 5ff’f = 6/\9_”’10.
Let then 6 = 0., Let ¢ = x7%0 and ¢ = 70 It then follows that
(1) o8P0 = p(5)%.

Let 8 be such that '7_2,1 = _',.@1 is based on P.i(f + 1) = Q.1(8 + 1). Notice
that

(2) §P=1+H) = sup{o(f)(a) : f € Peo Af:0 = dANa € (Pear(B))<“}

(3) 0910 = sup{¥/(f)(a) : f € Quo A [ 16 = dAa € (Qua(B))}

Let now p = WZ"I, q = WE’I, Jj i Pea — P, and i @ Q.o — Q,, be the itera-
tion embeddings along the top and bottom of B. Notice that because

(Bk2)Prawd)+1) = (Me2) 0, n(p(8)+1)
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we have that

(4) j I Pea(p(B) +1) =i | Qualq(B) +1).
Let then
s={y <05t 3f € (0)P=03a € (Pra(8))“(v = ¢(f)(a))}
t={y <5 3f € (0°)%Ta € (Qur(B))“(y = v(f)(a))}.
(1) then implies that

(5) jopls] =ioqlt].

(4) then implies that

and because (by (2) and (3)) s and ¢ are cofinal in §7=0*+1) we have that c, = d,,
contradiction. g

3.2 The comparison argument

In this subsection we prove the following comparison theorem under the hypothesis
that the lower level comparison holds. Suppose (P, ) and (Q, A) are two hod pairs
such that I'(P,X) = T'(Q,A) =45 I', both ¥ and A are I'-fullness preserving and P
and Q are of limit type. We then let “lower level comparison” stand for the following
statement.

Lower Level Comparison: for every (7,P;) € B(P,%) and (U, Q;) € B(Q, ),
comparison holds for (P, %, ) and (Q1,Ag, 17)-

The following is then the comparison theorem we will prove in this subsection.

Theorem 3.3 (Diamond comparison) Suppose (P,%) and (Q,A) are two hod
pairs such that I'(P,X) = ['(Q,A) =4er I', both ¥ and A are I'-fullness preserving
(w1, wr,w)-strategies, P and Q are countable and are of limit type, and lower level
comparison holds between (P,X) and (Q,A). Then there are (T,R) € I(P,%) and
(U, R) € I(Q, ) such that either
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sts _ Asts
1. P and Q are of lsa type and 272,7" = AR,L? or

2. P and Q are not of lsa type and D AR,Z]'

We prove the theorem by showing that the failure of its conclusion produces a
bad sequence of length w;. Towards showing this, we prove two useful lemmas.

In the sequel, we say that (P, ) and (Q, A) satisfy the lower level comparison if
(%) above holds. We say that weak comparison holds between (P, %) and (Q, A) if
there is (71, U,R, S) such that

1. (T,R) € I(P,D),
2. (U,S) e I(Q,N),
3. Rb = &% and Yo7 = Ngo g
Our first lemma says that lower level comparison implies that weak comparison holds.

Lemma 3.4 Suppose (P,%) and (Q,A) are two hod pairs such that T'(P,%) =
I'(Q,A) =4er I', both ¥ and A are I'-fullness preserving, P and Q are of limit type and

that lower level comparison holds between (P, %) and (Q,A). Then weak comparison
holds between (P,%) and (Q,A).

Proof. We inductively construct (P;,7; : i < w) and (Q;,U; : i < w) such that the
following conditions hold.

1. Po="P and Qp = Q.
2. Suppose ¢ = 2n. Then the following holds.

(a) 7T; is a stack on P? according to Epb o, 7. With last model iy (when we
apply T; to P;).
(b) U; is a stack on Q; according to Ao, e, g7, With last model Q4.
b b _
(C) Pi"‘l Hhod Qi""l and Apf+17@kgidk - Epf,@kaﬁc'
3. Suppose i = 2n + 1. Then the following holds.
(a) 7T, is a stack on P according to X, OpiT with last model P; 1.
(b) U; is a stack on QY according to Agp o,z With last model Q41 (when

we apply U; to Pi).
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b — -
(¢) Q41 Dnoa Pily and Ag, sl = 2O @eiT

We show how to carry out the inductive step. Suppose ¢ = 2n and we have
constructed (P;, 7; - i < 2n) and (Q;,U; : i < 2n). We now consider three cases.

Suppose first that P; = P?. Next suppose that either cf”(67¢) = w or cf” (§7) =
6P, Let (o : i < w) be such that sup(ay, : k < w) = 67/, By induction we construct
a sequence (7_;*, Wi, gk, R, §;, R, Br : k < w) such that the following holds.

L. (85.Ry) € I(Qi, Ag, ¢ _g7,) and
F(PZ(CVO), E (CXO) @m<17—m> (RO(/BO) R* BO) (@m<zum) ‘SO )

Moreover, (75, Wo) € I(P;, E e meiTn) (S0, Ro) € I(R;;, AR (@cilin)~5)
and 7%* and S, are some stacks that come from comparing (P;(ap), E’Pi(ao)v@m<i7¢m)
with (R5(50)s A (g). (@ citin) 55

2. For k+1<w, (S, Ri1) € I(Ry, ARk7(€Bm<iﬁm)A(eamgk(g,tfgm))) and
F(Wk(&z+1)’ Ewk(a2+1)7(@m<i7iM)A@m§k7i;z) -
F(Rk—kl(ﬁk-i-l)a Anzﬂ(fskﬂ),(@mdam)ﬁ(@mgk(g;,;gm)))-
where aj is the image of aj41 in Wy,. Moreover,

(T Whr1) € I, By, @)@ T )

(Sk+17 RkJrl) < [( k+1> A k+1,(@mggm)m(@mgk(grnﬂgm)rgzﬂ)
and 77, and Sy, are some stacks that come from comparing

<Wk(a2)’ EWk(a2+1):(@m<i71m)”®m§k71%) and
(Rk+1<ﬁk+1)’ Ri1(Brt1), (@m<iﬁm)A(€9m§k(§7ZA§m))A3§+1)
We then let ’ﬁﬂ = @k@ﬁ* and Z]l = ®m<w§;"§. Also, we let P; 1 be the last
model of 7;;1 and Q;,1 be the last model of U;. We carry out the odd induction step

similarly by reversing the roles of P; and Q; in the above construction. Notice that
because T'(P,X) = T'(Q, A), we must have that c¢f< (§9) = w or f % (§9) = §P
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The construction of (P;,7; : i < w) and (Q;,U; : i < w) in the case cf”(67) is
measurable is very similar to the above construction. Just let (a; : ¢ < w) in the
above construction be such that o; = oW

We then clearly have that if T = GBKMTZ U= EBKJJZ-, R is the last model of
7 and S is the last model of ¢ then (7,R) and (U, S) witness weak comparison
between (P, %) and (Q, A). O

Lemma 3.5 Suppose (P,%X) and (Q,A) are two hod pairs such that I'(P,X) =
[(Q,A) =4y I, both ¥ and A are T'-fullness preserving, both P and Q are of
limit type and low level comparison holds. Suppose further that P = Q° and for
all B < AP =1, Spgr1y) = Moy Let (T, R,U,S) be the trees of the extender
comparison of P and Q*. Suppose that either

1. R#S or
2. R=3S8 and ERJ’ 7é A‘g,u.
Then there is a bad block on ((P,X),(Q,A)).

Proof. Tt follows from Lemma 18.5 of [4] that we can find minimal low level dis-
agreement (7*,U* W) between (R,Yr.7) and (S,Asy). We then let P and Q
be the last models of 7* and U* when we regard them as stacks on R and S re-
spectively. Let 7; be a comparison stack for W, %y 7~7.) and OV, A~ 7.). Let
b=S(T"T*"T), c = AU UU), P, = M]* and Q, = M7z (here we apply the
stacks to P; and Q; respectively).

Next let (75,Ps) and (Us, Q3) witness that weak comparison holds between

(Pg, EP%TA%*A,%), and(Qg, AQ%UAHTAL-A).

Finally, let (73,P4) and (Us, Q4) be the result of extender comparison between P
and Qs.

Nextlet Py =P, Qo =0, % =%, Ag=A, To =TT, and Uy = U"U*. Also,
for i € {1,2,3,4} let ¥; = X 7oand A; = A It is then easy to see
that

PisPr< Qi Br<illy’

(((Pla QMEMAZ) t < 5)7 (7_?71/_{; 1 < 4)7 (’/Tiao—i 1 < 5)7 (b7 C))

2Thus, T is on P with last model R and U is on Q with last model S.
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is a bad block on ((P, %), (Q,A)). O

We now start proving Theorem 3.3. Suppose that the conclusion of Theorem 3.3
fails. This means that

(1) whenever (T,R) € I(P,%) and (U, R) € I(Q,A),

1. if P and Q are of Isa type then E%} =+ A%Sﬁ or

2. if P and Q are not of lsa type then Xy 7 # Ay ;7.

It follows from Lemma 3.4 that, without loss of generality, we can assume that
Pt = QF and for all B+1 < N, Ypa+1) = No(s+1)- We now by induction construct
a bad sequence (B, : a < wj) on ((P, %), (Q,A)).

It follows from Lemma 3.5 that there is a bad block on ((P,),(Q,A)). Let
By be any bad block on ((P,X),(Q,A)). Suppose next that we have constructed
(Bg : < A) for A a limit. Let Py and Q) be the direct limit of respectively
(Ps: B < A)and (Qp : f < A) under the corresponding iteration embeddings. Then
letting ¥, and Ay be the corresponding tails of ¥ and A, we have that (P, X))
and (Qy, A)) satisfy the hypothesis of Lemma 3.5. Let then B) be a bad block on
(P, Ex), (2x, AN))-

Next suppose that we have constructed (Bsz : f < A+ 1). Let Pyyy = P,
Oxrt1 = Qx4 and let 7 and U be the stacks respectively on the top of (Bg : f < A+1)
and in the bottom of (Bs : § < A+ 1). We then again can find, using Lemma 3.5,
a bad block on By;1 on ((Pas1, EPAHJK)’ (Qri1s AQA+170A))' It then follows that the
resulting sequence (Bg : f < wy) is a bad sequence on ((P,X), (Q, A)), contradiction!

4 The derived models of hod mice

First we state the version of Theorem 3.19 of [3]. First recall (see Corollary 20.6 of
[4]) that if (P,X) is a hod pair and Q € pI(P,>) such that ¥ has strong branch
condensation, the the strategy of Q induced by ¥ is independent of the particular
iteration producing Q. We denote this strategy by Y.

Given a hod pair (P,%) and (3,£,7) € A7 x (¢f +1) x (CZ;(Z; + 1) such that j

is limit, we let D(P, X, 5) be the derived model of P(,0,0) as computed by Xz
and we let

D(P’ Z’ (67 57 /Y)) = UQEPI(P(@&’Y),EP(L&,{,«,))D(Q’ EQ? ﬂ%,g(@))'
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Next recall (see Definition 15.5 of [3]) that if (P, %) is a hod pair then we let
B(P,%Y) ={(T.Q) : IR((T.R) € [(P,L) A Q pog R")}
and
I(P,2) ={ACR:3(T,Q) € B(P,%)(A <, Code(S4 7)}-

Theorem 4.1 Suppose (P,Y) is a hod pair such that X has strong branch conden-
sation and is fullness preserving. Suppose further that there is a good pointclass T’

such that Code(X) € Ar. Then

L. F(Pa Z) = UQEpI(P,E),B<)\QD<Q7 ZQa B)

2. For any Q € pI(P,Y), if B+w < A¥ then D(Q,Xq, ) is completely mouse
full and if B+ w = A then D(Q,Xq, ) is mouse full.

3. For any Q € pI(P,X), if B < AP then letting I'* = D(Q,%q, 8 + w), if £ is

such that ngde(zg(m) = 9£F then for every n,

r _qr r_
‘gcode(zg(5+n)) =0cy, and ' =+ w.

4. D(P, %) is a mouse full pointclass.

Theorem 4.2 Suppose (P,X) is a hod pair such that N7 is limit and 3 has strong
branch condensation and is fullness preserving. Suppose further that there is a good
pointclass T' such that Code(X) € Ap. Then for every Q € pB(P,%), I'(P,X) F
“MC for ¥g”.

5 Anomalous hod premice

The use of anomalous hod premice here is the same as it is in [3]. We will use them
to produce pointclasses that are not completely OD-full (see Definition 3.14 of [3]).

3See Definition 3.18 of [3]. More precisely, a pointclass is completely mouse-full if the next model
of determinacy has the same mice relative to common iteration strategies. Given two pointclasses
I'y and I'y, we write I'1 <j0use ['s if 'y € I's and I'y has the same mice as I'; relative to common
iteration strategies. Finally, I' is mouse full if either it is completely mouse full or is a union of
completely mouse full pointclasses (T, : @ < Q) such that for all «, T'o <pmouse Lat1 and for all
limit o, 'y, = Ug<al's.
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Definition 5.1 (Anomalous hod premouse of type I) P is an anomalous hod

premouse of type I if for some successor ordinal A and some § there is a sequence
(Ps : < \) such that

1. Pgs is a hod premouse such that \Ps = j3,

2. for all B < a <\, Pg poa Pa and Ps = Pu(p),

3. PE V¢ > o(P(A—1))(Pl€ is a ¥p(r—1)-premouse over P(A —1))”,
4. PE “0 ws Woodin”,

5. for every § € (6,0(P)), p(PI§) =0,

6. p(P) < o”.

Definition 5.2 (Anomalous hod premouse of type II) P is an anomalous hod
premouse of type 11 if P is meek and for some limit ordinal A\ and some § there is a
sequence (Pg: [ < A) such that

1. Pg is a hod premouse such that \*s = j3,

2. for all B < a <\, Pg Ujoa Po and Ps = Po(B),

3. P|6 = UgerPs,

4. PESYE> o(PA— 1) (P||€ is a ®perXp(s)-premouse over P|J)”,
5. for every £ € (6,0(P)), p(Pl§) = 6,

6. p(P) < d”.

Definition 5.3 (Anomalous hod premouse of type III) P is an anomalous hod

premouse of type III if it is limit type, it is not anomalous hod premouse of type I1
and p(P) < 7.

We say P is an anomalous hod premouse if it is an anomalous hod premouse of
some type. If P is an anomalous hod premouse then we let 67 and A7 be as in the
above definitions. We then let X7 be the strategy that is on the sequence of P.

Definition 5.4 (Anomalous hod pair) (P,X) is an anomalous hod pair if P is
an anomalous hod premouse, > is an iteration strategy with hull condensation and
whenever Q is a X iterate of P, X< =X N Q.
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The following lemma is due to Mitchell and Steel. It appears as Claim 5 in the
proof of Theorem 6.2 of [2]. In the current work, the lemma is used to show that
certain hod pair constructions converge, which leads to showing that generation of
pointclasses holds (see Theorem 12.2).

Lemma 5.5 Suppose (P,Y) is a an anomalous hod pair, (T, Q) € I(P, %) and n is
least such that p,(P) < 67. Then p,(Q) < §<.

The next theorem is the equivalent of Theorem 3.27 of [3].

Theorem 5.6 Suppose (P,3) is an anomalous hod pair of type II or III. Suppose
that there is a pointclass I' such that for any ('f', Q) € B(P,X) there is a hod pair
(R, A) such that A has branch condensation and is T'-fullness fullness preserving, and
there is m: Q — R such that AT = Egj-' Then

1. For every (71, Q) € B(P, %), Xy has branch condensation, is positional and
18 commuting.

2. 3 is (P, X)-fullness preserving and I'(P,X) is a mouse full pointclass.

We omit the proof of Theorem 5.6 as it is only notationally more complicated then
the proof of Theorem 3.10 of [3]. It can be proved using the same proof. We remind
the reader that the proof of Theorem 3.27 of [3] depended on generic interpretability
result, which appeared as Theorem 3.10 in [3]. In our current context we need to
use Theorem 2.8. The general idea is that we can translate the properties of ¥ into
the derived model of P as computed via Y. This fact then just gets preserved under
pull-back embeddings.

The following is an easy corollary of Theorem 5.6.

Corollary 5.7 (Branch condensation pulls back) Suppose (P,3) is a hod pair

such that \¥ is limit and ¥ has branch condensation. Suppose m: Q — P is elemen-
tary. Then for every 8 < A2, (™) g(s) has branch condensation.

6 Getting strong branch condensation

In this section we show that strategies with branch condensation acquire strong
branch condensation on a tail.
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Theorem 6.1 (From condensation to strong condensation) Suppose (P,3) is
a hod paz’csuch that X has branch condensation and P is of limit type. Then there
is some (T, Q) € I(P,X) such that (Q,% 7) has strong branch condensation.

We spend the rest of this section proving Theorem 6.1. We prove Theorem 6.1
by proving three useful general lemmas. The idea is just like the idea behind the
comparison proof of the previous section. If there is no tail with strong branch
condensation then we obtain a certain bad sequence of length w;. As is expected,
such sequences cannot exist. We start by describing the blocks of our bad sequences.

Definition 6.2 (A bad diamond) Suppose (P,Y) is a hod pair such that \” is
limit. We say (P; :i<2),(T;:1<3),(U:i<3),(R;:i<2),(S:1<2),kE) is
a bad diamond on (P, %) if it satisfies the following conditions:

1. Py =P, fori <2, P;,R; and S; are hod premice and k : Py — Ro.

2. Uy, Sy) € I(P, %), forie[1,3), U,S;) € I(Si1,Ss,_,)*, Uy is a normal tree
on Sy and Py is the last model ofﬁg.

3. 7_6 =, 'ﬁ 18 a normal tree on Ry with last model R and 712 is a stack on Ry
with last model Py,.

4.6+ 1 < A%, S(€+ 1) = Ro(€ + 1), T~ = U5 is a normal tree based on

S(€+1) such that it has <"1 *-maximal cutpoint N such that (T, )sn is based
on N(v+1) where v = 7(T¥(€).

5. If b is the last branch of T, in Ty then b +# S, (Uy ).

6. Letting v = 77(¢) = 70 (&), Ru(y+1) = Si(y+1). If W is the part of T
based on Ri(y + 1) then W is according to Xs, (v41)-

Lemma 6.3 Suppose (P, X)) is a hod pair such that ¥ has branch condensation and
P is of limit type. Suppose further that 3 doesn’t have strong branch condensation.
Then there is a bad diamond on (P,X).

4Recall that because ¥ has branch condensation, ¥ is positional and the strategy of S;_; is
independent of the particular iteration producing it (see Corollary 20.6 of [4]).

SRecall that this is just 71 without its last model.
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Proof. Let (71, Q,m, R, [5,0) be a witness for the failure of strong condensation of
(P,%). Let (Up,So) € I(P, ) be such that R(B + 1) = So(8 + 1). We let m = k,
Ro=TRand { = 3. Let A = X%. Let T be a normal tree on R(f + 1) according to
both s, and A and such that Xg,(7) # A(T) but letting b = Xs,(7T), ¢ = A(T),
Si = M] and Ry = M7 then s (8+1) = Ari@T(s+1)),7- Such a T can be
found using the Theorem 1.7. Notice that Theorem 1.7 is applicable because both
Y and A are I'(Sy (5 4+ w), Xs, )-fullness preserving (here we need to use Corollary 5.7
to conclude that Ag(siw) has branch condensation). Let Tio= T {MT}, Uy =
T M}, Ry = M] and S = M.

Next we would like to compare (R, Ay ) and (S1,¥s,). To do this, we can
use Corollary 5.7 and Theorem 3.3. Let then (75, P;) € I(Ry, Ay, 7) and (Us, Py) €
I(S1,%s,) be such that ¥p, = Ap, -7, It is then not hard to see that

(Pi:i<2),(Tii<3),U:i<3),(Ri:i<2),(Si:i<2),k¢)
is a bad diamond on (P, X). O

Now we want to show that there cannot be an wi-sequence of bad diamonds on

P.

Definition 6.4 (A bad diamond sequence of length () Suppose (P,X) is a hod
pair such that \¥ is limit. We say D = (D, : « < ) is a bad diamond sequence of
length B if Do = (P 14 < 2),(T,* 4 < 3), (U 17 <3), (R 1i<2),(5F 1<

2), k%, &%) and the following holds:
1. Dy is a bad diamond on (P,X) and P} = PY.
2. For alla < B, P € pl(P,Y), D, is a bad diamond on (P, Ypa) and Pt =
P

3. Forv <a<fB, letm,,: Py — P be the embedding obtained by composing
KY with the iteration embeddings given by 711””7_? s and 0, © Py — PG be
the iteration embedding given by ﬁo /\Z/_l;1 AZ/_{;Y Then for limit X < B3, Pp is
the direct limit of (P : v < A) under 0,., and (Pg)° is the direct limit of
(P =y < A) under m, 4.

We say that © embeddings are the top embeddings of D and o embeddings are the
bottom embeddings of D.
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Lemma 6.5 (No bad diamond sequence of length w;) Suppose (P,X) is a hod
pair such that ¥ has a branch condensation. Then there is no bad diamond sequence
of length wy based on (P,X).

Proof. Suppose not and let D= (Dg : f < wy) be a bad diamond sequence of length
wi. Let 7 : H — H,, be a countable submodel such that {D, (P,%)} € rng(r).
Let x = w. Notice that x = crit(r). Let for € < 8 < wy, me : P5 — P be the
composition of the top embedding of D and let oep: Py — P2 be the composition
of the bottom embeddings of D. Let Pt = 7(Py). Standard arguments show that

T [ P§ = Thws = Oror-

Let j: Rf — Pt and k : S§ — P“* be the composition of respectively the top and
the bottom embeddings of D. Let v = 7" (£5). We then have that

(1) jIRYy+1)=Fk[SF(y+1).
Notice then

)05l = sup{r T ok"(f)(a) : a € (R{(7))<“Af € P§}and 65}, = sup{z 4 (f)(a) :
€ (SF())“ A f € Pg}

(2
a
and because of (1),

(3) for all f € Py and a € (Sf(7))<, 78 T (f)(a) = 76U (f)(a).

It then follows from (2) and (3) that

(4) 5&1 = sup(rng(ﬂﬂ) N rng(ﬂﬁl))

contradicting the fact that ’ﬁ isn’t according to Zgg. OJ

The next lemma finishes the proof of Theorem 6.1. Its proof is straightforward
and we leave it to the reader.

Lemma 6.6 Suppose (P,X) is a hod pair such that ¥ has branch condensation and
forevery (T, Q) € I(P,X), (Q, %4 7) doesn’t have strong branch condensation. Then
there is a bad diamond sequence on (P, %) of length w;.
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6.1 Getting branch condensation

In this section, we state a theorem that shows how to get branch condensation and
on a tail by starting with a pair that has only hull condensation. This result will
be used when proving generation of pointclasses (Theorem 12.2). The proof is very
much like the proof of Theorem 6.1 and because of that we omit it.

Theorem 6.7 (Getting branch condensation) Suppose (P,X) is a hod pair or
an anomalous hod pair of type II or I1I with the property that cfp()\P) 18 measurable in
P. Suppose further that whenever (T, Q) € B(P,X), X4 7 has branch condensation.

Then there is (T, Q) € I(P, %) such that Yo7 has branch condensation.

7 Y-closed mice

In this section, our goal is to prove a finer versions of generic interpretability than
the one presented in Theorem 2.8 (see for instance Theorem 7.9). We start with
the definition of super fullness preservation, which first appeared in [3] as Definition
3.33. Recall from [4] that given a transitive set X, we let M™(X) be the least sound
active mouse over X.

Definition 7.1 (Super fullness preservation) Suppose (P,3) is a hod pair. ¥
is super fullness preserving if it is fullness preserving and whenever (T, Q) € I(P,%)
and o < A2 is such that if Q is of limit type then o +1 < A2, the two sets

US(a) = {(z,y) € R?: x codes a transitive set a € HC and y codes M such that
M < Lp¥e@ (a) and p(M) = a}
WS(Q) ={(z,y,2) e R3: (z,y) € US(Q) and if M is the Yg()-mouse coded by y
then z codes a tree according to the unique strategy of M}.

are term captured by (Qlg], ng) whenever g C Coll(w, Q(a)) is Q-generic. We let
ug(a) and wé(a) be the term relations locally capturing Ug(a) and WS(@)'

Notice that if (P, ) is a hod pair such that ¥ is super fullness preserving then
whenever Q € pI(P,Y), a < A2 is such that if Q is of limit type then o + 1 < A<,
g C Coll(w, Q(a)), a € HC and z is a real coding a such that = is generic over Q|g]
then

Lp¥e@ (a) = {M :there is y € R such that y codes M and (z,y) € (UG gwz) }-
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Thus, Lp*e@ (a) € Qlx]. Moreover, if h is Q[g]-generic then the restriction of the
function b — Lp¥e@ (b) to Q[g * h] is definable over Q[g * h]. Also, continuing with
the above setting, if M is a sound Yg()-mouse over a projecting to a and A is its
unique iteration strategy then whenever h is Qg][x] generic and & is a cardinal of

Qlglll,
A | H2 M ¢ Qlg * x * hl.

This is because A | HE™* can be defined over Q[g * «  h] using W)

Suppose now that (P, Y) is a hod pair such that P is non-meek and N is ¥-closed
(i.e., ¥ [ N is definable over N). We would like to show that generic extension of
N are also ¥-closed. In order to show this, we need a way of finding Q-structures
for trees that are based on the top window of P. Some of these O-structures would
involve short tree strategy mice. The super fullness preservation cannot be used to
find such Q-structures (the way it was used in the proof of Lemma 3.34 or Lemma
3.35 of [3]). Here to prove an analogous result, we only consider sufficiently closed
Y-mice (where ¥ is allowed to be an sts strategy).

Definition 7.2 (X-closed mouse) Suppose (P, ) is a hod pair (possibly an sts hod
pair) and N is a X-premouse. We say N is X-closed if for every N -cardinal  there
is M QN such that M E ZFC — Replacement, N||x I M and some (P, %M)-hod
pair construction of M in which extenders used have critical points > Kk reaches a
YMoiterate of P. We say N is a S-closed mouse if it has a (k,|P|T + 1)-iteration
strategy A witnessing that N is a X-mouse. We say M witnesses X-closure of N at
K.

Suppose N is a Y-closed mouse, « is an N -cardinal and M is as in Definition 7.2.
We then let SM be the Y M-iterate of P constructed via a fully backgrounded con-
struction where critical points of extenders used are > k.

We cannot in general hope to prove that if (P, ) is an sts pair and N is X-closed
mouse then its generic extensions are also ¥-closed (not as mice). The reason is that
the statement that an iterate of P has been constructed by the construction of M is
too weak. What it means in the above definition is that SM is a ¥M-iterate of P, i.e.,
there is a normal tree 7 on P such that M (7) < SM and in M, S} is the stack
of all X, (y-mice (consult clause 4 of Definition 13.1 of [4] for an idea on how M
certifies the mice in this stack). However, it is quite possible that N may just not be
full enough to find all X 5+ 7)-mice. We will prove our generic interpretability result
for Y-closed mice that have a fullness preserving iteration strategy in the following
sense.
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Keeping the notation and terminology of Definition 7.2, suppose A is an iteration
strategy for N (witnessing that A is a X-mouse). Suppose A is an iteration strategy
for N. We then let I'(N,A) be the collection of sets A C R such that for some
(T,R) € I(N,A), there are

1. an R-cardinal x,
2. M <R witnessing that R is super Y-closed at x, and
3. a< A1
such that
A <y Code(Xsmiayu)

where U is the comparison tree on P with last model SM.

Definition 7.3 We then say that A is a fullness preserving iteration strategy for N°
if for every N -cardinal n, letting A" be the fragment of A that acts on stacks above
n, T(N,AT) =T(P,X).

The next definition introduces our method of finding branches for trees in the
generic extension. We recall the definition of s(7,¢) (see Definition 6.7 of [4]).

Suppose P is a hod-like lsp and 7 is an almost non-dropping stack on P. Let
0= WT’b(Pb). Then Q is an Isp. For £ +1 < A2, we let

s(T,€) = {a:3a € (62)°3f € P'(a =77 (f)(a))} N2,

Definition 7.4 (Successful coiteration in Y-closed mice) Suppose (P,X) is a
hod pair or an sts hod pair. Suppose N is a X-closed mouse, g is an N -generic and
R € Nlg] is a hod premouse. Let r be an N -cardinal such that g is a < k-generic
and let M be as in Definition 7.2. Let

((MW’NW:7§n)7(Fv:7<77)7<717:7<77))

be the output of (P, XM)-construction of M where extenders used have critical point
> k. Let SM = N, be the S-iterate of P, UM =T, 1. Let

M Ut P SM Y s a strategy
g P SM: otherwise.

30



Notice that ™M € N

For each & < n, we let L{RI_65 be the tree on R that is constructed by compar-
ing R with the construction producing ./\/'5 More precisely, L{R,{5 15 constructed as
follows. Suppose we have constructed Z/IRKg I v. We assume, part of the inductive
construction, that no predicate appearing in a model producing N¢ has been part of
a disagreement. We proceed as follows.

1. Suppose v = B+ 1. If there is a disagreement on the N¢ side then we stop
the construction. More precisely, letting Q be the last model of L{%ﬁé [ v, the
following holds:

(a) If there is ) such that Qly = Neln, Neln # Nelln and Qlln # Nelln, then
we stop the construction.

(b) If there is n such that Qn = Neln, Neln = Nel|n, Qlln # Qln and
n & dom(E<) then we stop the construction.

(¢) If there is n such that Qln = Neln, Neln = Nelln, Qlln # an and
n € dom(E®) then let E2 be the next extender used in U, . |~

2. Suppose v is limit. Suppose further that Ng F “(5(L{R e | ) is not Woodm” and
there is a cofinal well founded branch b of Uz’ . |~ such that Q(b, Uz’ ¢ | 7)-
exists and Q(b,U RHE [ v) < Ne. Then I continues by playing b. If there is
no such b then stop the construction.

3. Suppose then ~y is limit but N¢ F “5(1/173,€£ I v) is Woodin”. Let i be such
that (F(Z/IRK6 [ y) = 5Nf. Suppose there is a cofinal well-founded branch b of

UM
UR,{g [ v such that for some B € b, s(Te, ) C Tng(wﬂf“g ). Then II plays b.
If there is no such b then we stop the construction.

Suppose now that (P, ) is a hod pair. Then we say L[{{fmé 15 successful if it has a
last model Q such that Q < /\/'é— We also say that (R, M) coiteration is successful.

Next, suppose that (P,%) is an sts hod pair. Then we say Mﬁ/f&g 18 successful if
either

1. R is of lsa type, MU', () = MF(SM55Y) and TR e eists or
2. Mﬁ/f&g has a last model Q such that @ < N.

Suppose now that (P, ) is a hod pair and A is a X-premouse which is X-closed.
Suppose further that x is an N-cardinal, g is < s-generic over N, R € Nk[g| is a
hod premouse and M witnesses Y-closure of N at k.
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Definition 7.5 (Good hod premice) We say R is (M, k)-good if (R,SM) coit-
eration is successful. If R is (M, k)-good then we let L{{{‘K be the comparison tree on

R constructed via (R,SM) coiteration process. We also let TRy = TR We say R
is good if for all sufficiently large k there is M such that R is (M, k)-good.

Notice that goodness is relative to N” which will always be clear from context.

Fix now some good R € N|k[g] and suppose T € Ng] is a tree on R without fatal
drops. Suppose T irreducible (i.e., doesn’t have cutpoints) and for some S+ 1 < AR,
T is based on the top window of R(S + 1).

Definition 7.6 (Correctly guided) We say T is correctly guided if whenever \ is
an N cardinal such that T € N|Ng], there is M witnessing X-closure of N at A
such that whenever v < lh(T) is limit, letting b be the branch of T | v chosen by T,
the following holds:

1. R(B+1) is of limit type and one of the following holds.

(a) If MF(T | v)E “6(T | v) isn't Woodin” then Q(b,T | ~v) I M (T | ~).

(b) If MT(T [ v) E “6(T | 7) is Woodin” then (M™*(T | 7),SM) coiteration
is successful and if @ < M is the last model ofblj\\/lﬂ(ﬂw),)\ then letting £
be extender derived from Wuf/‘\j“TWM, Uit(Q(b, T I v), E) < SM.

2. R(B+1) is not of limit type, Q(b, T | ) holds and (Q(b, T | ), S) coiteration

15 successful.

Definition 7.7 (Certified stacks) Continuing with the notation of Definition 7.4,
suppose X is an iteration strategy (rather than an sts strategy) and T € Nlg] is a
stack on P with no fatal drops. Let X be an N -cardinal such that T € N|\g] and let

M witness X-closure of N at X. We say T is M-certified if the following conditions
hold.

1. Suppose R is a cutpoint of T. Then for some &, U%A,ﬁ 15 successful. Moreover,
if R is such that 7<% _ezists then R is good. Also, if E = Ez is the undropping
extender of Ter then UlL(P, E) is good. We let

M T .
TR A - wT<R _exists
™R = uMm .
TURPELNE otherwise.

Also, let
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7T<r . gT<R _egists
OPR =
s

B . otherwise.
Then 7T7/;Vf)\ =TROOPR.

2. Suppose R s a cutpoint of T and T is the longest 1rreducible initial segment
of T which is based on R. Then T is correctly guided.

[f71 e Nlg] is a certzﬁed stack such that its last vn-component is of limit length and
b is a branch of’T then we say b is certified if TA{MT} 15 certified.

Continuing with the notation of Definition 7.4, we let ®* be the strategy of P
that chooses certified branches for stacks with no fatal drop (this means that the
continuation of the stack via the branch is certified). Assuming that ®* =X | Mg,
we can extend X to act on stacks with fatal drops. To do this suppose that TeN lg]
is a stack on P according to ®* and with last model Q. Suppose n < 0(Q). We need
to describe a strategy for (97%77

Suppose first that for some 8 < A€, n € (o(Q(B)), (5,8%1) We can then use super
fullness preservation of ¥ to dfine the strategy of (9,%7 over Ng| (see the discussion
after Definition 7.1).

Next, suppose for some 3+ 1 < A9, n € (5Q 55%1) and Q(8 + 1) is of limit
type. Let v € dom(E)2 be the least such that crit(E2) = 65Q and v > n. Then

o Ult(Q,E2) .
O, = Ony - We can now use the super fullness preservation of Xy, pe)s41)

to define the strategy of (9,%7 over Ng]. We let ® be this strategy of P.

Definition 7.8 (Sts stacks with certified branches) Suppose (P,X) is an sts
hod pair and N is a super ¥-closed mouse, g is an N -generic and R € Ng| is
a hod premouse. Let k be an N -cardinal such that g is a < k-generic and let M be
as in Definition 7.2. Suppose T = (M;,T; - i <m < w) € Ng] is a stack on P. Let
X be an N cardinal such that T € N'|\g] and let M witness S-closure of N at A.
We say T has M-certified branches if the following conditions hold:

1. Suppose R is a cutpoint of T. Then for some &, Z/{ﬁf)\é is successful. More-
over, if R is such that m7<”r’-exists then RY is good. Also, if E = Ez is the
undropping extender of T<r then Ult(P®, E) is good. We let

M 7 .
TR AP s TSR _egists
TR = UM
T UiPhE)LNE s otherwise.

33



Also, let

e : TsrRb_egists
OPR =

7 | P° : otherwise.

S{\Vl,b
Then Tp =TROOPR.

2. Suppose R is a cutpoint of T and T is the longest irreducible initial segment
of T which is based on R. Then T is correctly guided.

Continuing with the terminology of Definition 7.8, if 7 € Ng] and b € Ng] is
a branch of T then we say b is certified if 7~{M7} is certified. We let ®* be the
strategy of P that chooses certified branches. Assuming that ®* = 3 [ A[g], we can
extend ¥ to act on stacks with fatal drops just like in Definition 7.7. We leave the
details to the reader and let ® be this strategy of P.

It remains to show that ®* = X | N'[g] which is the content of the next lemma.

Lemma 7.9 Suppose (P,%) is a hod pair such that ¥ is a strategy with branch
condensation and super fullness preservation. Suppose N is a model of ZFC —
Replacement which is super 3-closed. Let g be N -generic. Then N|g] is X-closed.

Proof. We show that ®* = ¥ | Mg|. To show this we need to show that
1. if T € Ng] is according to ®* then it is according to ¥, and

2. if T € Ng] is a stack on P according to ®* such that its last normal component

—

has a limit length then ®*(7) is defined.

We start with clause 1. To see it, fix some 7 € N [g] which is according to ®* and

— —

Y and let b = ®*(7). We need to show that b = (7). We can assume that there
is no club C C tn(T) as otherwise (7)) = be = ®*(T). Let then R be a terminal
node of T such that U =def 71273 is an irreducible normal tree on R. Recall that
because 7T is according to ®*, 7 doesn’t have fatal drops. Because T is according to

>: and ®*, we have that R is good. We now have two cases.

Case 1. n/<R-exists. We then have again have two sub cases. Suppose [ is the
least such that U is based on R(S). We then have the following cases.
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Case 1.1. Suppose f = v+ 1 and R(/3) is not of limit type. It follows that U
is based on the window (6%, 0F). Fix then X such that R, T € N|A[g] and let M
witness that A/ is Y-closed at A. We then have that U~ MY is correctly guided. We
want to see that this implies that b= 2(7T).

Suppose first that Q(b,U)-exists. Let Q = Q(b,U). We then have that for some
&, Uéf&i is successful. Let S be the last model of Z/{é\&g and let 7: @ — S. Because
S is iterable, it follows that Q is iterable above §(U). We need to see that it is
iterable as a Yg(g-mouse. Notice that we have that 7z [ R(8) = 7(R(f5)). The
desired conclusion then is an easy consequence of branch condensation.

Suppose next Q(b,U) doesn’t exist. Let then S < SM be the iterate of Q@ = MY.
We then have that

M T
7T73’,/\_7TQO7Tb'

-

It again follows from branch condensation of ¥ that ¥(7) = b.

Case 1.2. Suppose f =~ + 1 and R(f) is of limit type. It again follows that U
is based on the top window of R. We again have two cases and they both are similar
two the cases considered above. First suppose that Q(b,U) doesn’t exist. Then we
finish as above.

Suppose then Q(b,U)-exists. Let Q@ = Q(b,U). If @ I MT(M(U)) then we must
have that (i) = b. Otherwise, we have that for some &, L{Af\jﬂu)’ A 18 successful.
Let 8* be the last model of Z/{//\\A/‘+(u)7/\7§ and let 7: MT(U) — S*. Let S = Ult(Q, E)
where E is the (0(U), 7(0(U)))-extender derived from 7. Because S is iterable, it
follows that Q is iterable above §(Uf). We need to see that it is iterable as a X5, "
mouse. Again, the desired conclusion is an easy consequence of branch condensation.

Case 2. 7/<® doesn’t exist. Suppose [ is least such that U is based on R(f).
Suppose first that 8+1 < A®. Then the argument of case 1 applied to Ult(P, E7-<R)

shows that X(U) = b. We thus assume that R is of limit type and § = AR. Notice
that we cannot have that R is of Isa type. Therefore, we must have that Q(b,U)-
exists. The argument from case 1.2 now shows that X(U) = b.

This finishes the proof of clause 1. We now prove clause 2. Fix T € N lg] ac-
cording to ®* such that its last normal component has a limit length. We need to
show that ®*(7T) is defined. First suppose that there is a club C' C tn(7). Then
bc is according to ®*. Suppose then that there is no such club. Fix A\ such that

T € N|A[g] and let M witness that A is S-closed at A. Let R be a cutpoint of T
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such that U = 7_;73 is a normal tree on R. We again have two cases.

Case 1. w/<r-exists. Let 3 be the least such that ¢/ is a tree on R(5). We then
have the following cases.

Case 1.1. Suppose f = v+ 1 and R(f3) is not of limit type. It follows that U
is based on the window (6%, 0F). Fix then X such that R, T € N|A[g] and let M
witness that N is Y-closed at A. It follows from the Dodd-Jensen property of Yz
that (M(U),SM) coiteration is successful. Let W be the tree on M(U) with last
model S such that S < SM. Let 7: M(U) — S be the iteration embedding.

Suppose now that §(W) is not Woodin in SM. Let b = X(T). Notice that b is the
unique branch of U such that Q(b,U)-exists and Ult(Q(b,U), E,) < SM. Tt follows
that b € Ng] and ®*(U) = b.

Suppose then 6(W) is Woodin in SM. Let b = (7). Let ¢ = S(T{M] }"W).
Notice that ¢ is the unique branch of W such that s(K,&) C 7V [§(U)] where K is
the normal tree on P with last model S and ¢ is such that §(W) = 5?\4. It then

follows that ¢ € N]g]. We then again have that b is the unique branch of T such
that there is (V)7 (s(K,&)) C rng(7¥). Hence, b € N[g]. It is now not hard to

check that indeed ®*(7) = b.

Case 1.2. Suppose 8 = v+ 1 and R() is of limit type. If 3 < A® then we must
have that Q(b,U) exists where b = (7 "U). Then the argument from case 1.1 shows
that b € Ng] and ®*(U) = b. We then assume that 3 = A®. Again, because of the
same argument we can assume that R is of Isa type and if b = X(7 ") then Q(b,U)
doesn’t exist. In this case, b is the unique branch such that there is an embedding
o MY — SM such that 7' = o ox]. It then follows that b € N[g] and that
*(T) =b.

This finishes the proof of the lemma in the case X is an iteration strategy. O

The proof of Lemma 7.9 can be used to prove an equivalent lemma for sts hod
pairs. However, we have to require that stacks have only one main round. To prove
the more general result we will require more closure properties.

Lemma 7.10 Suppose (P,X) is a hod pair such that ¥ is an sts strategy which
is fullness preserving and has branch condensation. Suppose N is X-closed, A is
a fullness preserving iteration strateqy for N and g is N-generic. Let ®' be the
fragment of ®* that acts on stacks with a single main round. Then ®' | b(®!) =X |
(Vg) N H(E)).
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Proof. The proof is very similar to the proof of Lemma 7.9. Because of this, we only
indicate the parts that are different. The part that is different is to show that if T
is a stack according to ®' and 7 € b(X) then S(T) € Ng] and &(T) = b. The
reason that the proof here requires more care is because we do not that 753 exists
for various (M, \).

Fix then 7 as above. We can assume that there is a cutpoint R such that
U= 7127% is a normal tree on R. Fix [ such that U is based on R(f). Suppose first
that R(B) € pB(P,X). It follows from the proof of Lemma 7.9 that it is enough to
show that there is (M, \) such that R(8) is (M, \)-good.

Let v be such that 7 € N|v[g]. We can then find (W,S) € I(N, A) such that W
is above v and for some S-cardinal A, M < 8 and «, Code(Esm(q)) =w Code(Er(s)).
It then follows that in S, R is (M, A)-good. By elementarity, such an (M, \) exists
in NV.

Suppose then R(S) € pI(P,X). The proof is very similar. It is enough to find
(M, A) such that M*(U) is (M, N)-good. We can find such an (M, \) using the
above argument and using the fact that if 7 € (). O

To generalize Lemma 7.9 to stacks with arbitrary many main rounds we need to
know that A satisfies a certain fullness condition defined below. The reason is that
we need to be able to certify models not just branches.

Definition 7.11 (Fullness condition) Suppose (P,%) is a hod pair such that ¥
is an sts strateqy which is fullness preserving and has branch condensation. Suppose
N is Y-closed. We say N satisfies X-fullness condition if whenever g is N -generic,
T = (M, T; i <m) e Nlg is a stack on P according to ¥ such that T € m(%)
and k is an N -cardinal such that T € Nklg], letting Q = X(T), Q € N and for
any S such that M*(Q|69) < S < Q and p(S) = 62, there is M <IN such that

1. M witnesses Y-closure of N at k and

2. M E ZFC — Powerset+ ‘“there are infinitely many Woodin cardinals (0, : n <
w)??

3. § € M|by, and S has an iteration strateqy A € M acting on trees that are above
8 and such that if h C Coll(w, < 4,,)-generic and D is the derived model of
M computed via h then A has an extension A* € D such that whenever 8* is
a A*-iterate of S and U € dom(X5") then M[h] & “T~U is branch certified
stack (see Definition 7.8)”.
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Lemma 7.12 Suppose (P, %) is a hod pair such that ¥ is an sts strategy which is
fullness preserving and has branch condensation. Suppose N is Y-closed, A is a
L(P,X)-fullness preserving strategy for N and whenever (Z], S) € I(N,A), S has
fullness condition. Suppose g is N -generic. Then ®* =% | Ng].

Proof. The proof is just like the proof of Lemma 7.10 except now we can certify
models by using the fullness condition. Namely, suppose T = (M, 'ﬁ :1<m) €
Ng] is a stack according to both ®* and ¥. Suppose that there is no club C' C tn (7).
Let R be a cutpoint such that 7_;73 is a normal irreducible tree on R of limit length.
Suppose that the branch certification process doesn’t yield a branch for 71273 Then
we let ®*(7) be the union of S such that M*(Tor) IS, p(S) = 6(Tox) and S has
an iteration strategy as in clause 3 of Definition 7.11. The proof of Lemma 7.10 then

-

shows that ®*(7) = ©(T). O

Lemma 7.12 left open whether there can exist Y¥-closed mice which satisfy -
fullness condition. Our source of such N is the universality of background construc-
tions which will give us mouse capturing for short tree strategies.

Definition 7.13 (MC for sts strategies) Suppose (P,X) is an sts hod pair such
that ¥ has branch condensation and is fullness preservation. We let MC(X) stand
for the following statement: for every transitive a € HC' such that P € a,

p(a)N HODsy qu{a) = Lpz(a).

Lemma 7.14 Suppose (P,%) is a hod pair such that ¥ is an sts strategy which is
fullness preserving and has branch condensation. Suppose further that MC(X) holds.
Let N be a 3-closed mouse which has a fullness preserving iteration strategy and let

(0; : i < w) be a sequence of Woodin cardinals of N'. Then N[0, satisfies X-fullness
condition.

Proof. To see this, let 7 € Ng] be a maximal stack according to ¥ and let Q be
its last model. We have that M*(Q|69) € Ng| and need to show that Q € Ng]
and clause 2 of Definition 7.11 is satisfied. Notice that Q is ODy g5e. It the follows
from MC(X) that Q € N|d,[g].

To see clause 2 of Definition 7.11, fix & such that Q|5Q <1 S < Q9 such that
p(S) = 62. Let U be the strategy of S which acts on trees above §€. Because ¥ is
ODss and S € N, we have that letting A = (63)V, U | N[\ € M. Tt then follows
from the proof of Lemma 7.9, that letting A = ¥ | M|\, A witnesses clause 2 for
M = Nlé,. Fixing now x < 4, using condensation, we have that there must be
M QN| (k) with the desired property. O
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8 TI'(P,¥) when )\ is a successor

In this section, we translate the results of Section 5.6 of [3] to our current context.
Suppose (P,Y) is a hod pair such that A" is a successor and X is super fullness
preserving and has branch condensation. Suppose first that P isn’t of Isa type. We
then let

Iy = (S3(Code(Xp-))) M1,

Notice that I'y is a lightface good pointclass. Also Mices,,  belongs to I'y and is a
universal I'ss set. We let

['(P,%) = {A: for cone of x € R, AN Cr(z) € Cry.(Cry(x))} = Env(I'y).

Notice that if (Q, A) is a tail of (P, X) then I'(Q,A) = I'(P, X).

The above definition defines T'(P, ) when A” is a successor but P isn’t of Isa
type. In particular, I'(P, ¥) is not an LSA pointclass. The difficulty with generating
LSA pointclasses as T'(P,X) is the following: Suppose I' is an LSA pointclass, i.e.,
I['=p(R)NL(,R) and L(I',R) & AD* + LSA. Let a be such that a +1 = Q' and
set " = {A CR:w(A) < 0,}5 The difficulty is that the pair that generates I'® is
the same as the pair that generates I'.

In what follows we will use the following notation: if (P, 3) is a hod pair such that
P is of Isa type then we let I'(P,X) = {A CR: 39 € pB(P,%)(A <, Code(X9))}.
We reserve the notation I'(P, %) for the upper part of the lsa pointclass. In what
follows we will describe a way of defining it.

Suppose (P, %) is a hod pair such that X is fullness preserving and P is of lsa
type. We then let

I'“(P,%) = {A: for cone of z € R, AN Lp™" (x) € Lpy""(2)}.

It is not immediately clear that L(I"(P, X)) N p(R) = I'*(P,X). The next lemma
shows that this is indeed true. Notice that if Q@ € pI(P,X) then I'(Q,3¥g) =
(P, %)

Lemma 8.1 Suppose (P,3) is a hod pair such that P is of lsa type and ¥ is fullness
preserving. Then

L(I(P, %)) N p(R) = I'(P, ¥)

6The superscript “b” stands for bottom.
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and the set {(x,y) : y codes an X5 -mouse over x} cannot be uniformized in L(T"(P,X)).
Hence,

L(T“(P,%)) E AD* + LSA.

Proof. We only outline the argument. The proof is very much like the proof of
Lemma 5.16 of [3]. Let I" be any good pointclass such that Code(¥X) € Ar. Let F
be as in Theorem 2.25 of [3] for I. Fix x such that if F(z) = (N, My, 0, 3,) then
Code(X) is Suslin, co-Suslin captured by (N}, d,,3,). We then have that the fully
backgrounded hod pair construction of N;¥|d, reaches a tail of (P, X) (see Theorem 1.7
above or Corollary 18.12 of [4]). Let (Q, A) be this tail. Let A/ = (JEA™" )Nl

Because ¥ is fullness preserving we have that no level of N projects acres <.
We also have that the least strong cardinal of AV is a limit of Woodin cardinals (the
proof of this is just like the proof of the similar fact in the proof of Lemma 5.16 of
[3]). It then follows that L(I'(P,X)) can be realized as a derived model of V| via
U, where letting « be the least strong of N, A = (k+)" and W is the strategy of A/|\
induced by the background construction.

To carry out the above outline, we use several results. First we use the proof of
Theorem 18.3 to conclude that W is fullness preserving. Next we use Lemma 7.14
to conclude that N|\ satisfies X-fullness condition. Lemma 7.12 can the be used to
show that L(T"™(P, X)) can indeed be realized as a derived model of M|\ via ¥. O

9 B-iterability

In this section, we import B-iterability technology to our current context. Most
of what we will need was laid out in [3]. Here we will only sketch the necessary
arguments.

Definition 9.1 (Suitable pair) (P, %) is a suitable pair if
1. P is a hod premouse, A is a successor ordinal and P is not of limit type,

2. (P(A\?=1),X) is a hod pair such that 3 has branch condensation and is fullness
preserving

3. P is a Spr_y1y-mouse above P(N” — 1),

4. for any P-cardinal n > 6% _,, if ) is a strong cutpoint then P|(n™)" = Lp*(P|n)
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Suppose (P, X) and (Q, A) are such that ¥ and A have branch condensation and
are fullness preserving. We then let (P,Y) <p; (Q,A) if and only if (P, %) loses
the coiteration with (Q, A). Notice that <p; is a well-founded relation. We then let
a(P,X) =|(P, %) and we let [P, Y] be the =p; equivalence class of (P,X), i.e.,

’SDJ’

(Q,A) € [P,X] iff (Q,A) is a hod pair such that A has branch condensation and is
super fullness preserving and a(Q,A) = a(P, X).

Notice that [P, X] is independent of (P, ¥). We let
B(P,%) = {BC[P,%] xR: B is OD}.

Note that B(P, X)) is defined for hod pairs not suitable pairs.

The following standard lemma features prominently in our computations of HOD.
The proof is very much like the proof of Lemma 4.16 of [3]. Given a hod premouse
P such that A7 is successor and P is not of limit type, we let P~ = P\ —1).

Lemma 9.2 Assume SMC and suppose (P,%) is a suitable pair. Suppose B €
B(P~,%) and £ > 0L, is a P-cardinal. Then there is T € P such that
(P, 7) locally term captures Bp sy at k for comeager set of P-generics.

If B is locally term captured for comeager many set generics over a suitable pair
(P,3) then we let Tgf be the invariant term in P locally term capturing B at w
for comeager many set generics. One way to get term capturing for all generics is to
show that a suitable pair can be extended to a structure that has one more Woodin.

Definition 9.3 (n-Suitable pair) (P,>) is an n-suitable pair if there is § such
that

1. (P|(67%)P %) is suitable,

2. PE ZFC— Replacement+ “there are n Woodin cardinals, ng < m < ... < Mp_1
above 07,

3. O(P) - Supi<w<n:{i)7p7
4. P is a X-mouse over P|J,
5. for any P-cardinal n > 0, if n is a strong cutpoint then P|(n™)F = Lp*(P|n).

If (P,Y) is n-Suitable then we let 67 be the § of Definition 9.3 and
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P = (PI((07))").

We let A = AP~ 4+ 1. Clearly 0-suitable pair is just a suitable pair. The following
are easy consequences of Lemma 9.2.

Lemma 9.4 Assume SMC' and suppose (P,X) is a n-suitable pair. Suppose B €
B(P~, %) and k > 6%»_, is a P-cardinal. Then there is 7 € PEU“x) sych that (P, )
locally term captures Bipx) at k for comeager set of P-generics.

Corollary 9.5 Assume SMC' and suppose (P, %) is a n-suitable pair such that n >
0. Suppose B € B(P~,%), § =67, v = (6%)" and k € (65»_,,v) is a P-cardinal.
Then (P|v, Tgf) locally term captures Bips) at k.

Corollary 9.5 is our main method of showing that various B are term captured
over the hod mice we will construct.

Suppose now that (P,X) is a hod pair. It is now a trivial matter to import
the terminology of Section 4.1 of [3] to our current context. We will have that
S(X) consist of those Q such that @~ € pI(P,X) and (Q,Xo-) is a suitable pair.
Given Q € S(X), we let f(Q) = @KO(Q)T]?’EQ_. Then the rest of the notions are
defined for F' = {fp : B € B(P,X)}. Therefore, in the sequel, we will freely use the
terminology of Section 4.1 of [3].

Before we move on, we remark that the same notions make sense for Isa pairs
as well. Here by suitable we mean just an lsa pair (P, X)) such that 3 is a fullness
preserving iteration strategy with branch condensation. Given a suitable Isa pair
(P.%), we let M(P,X) be the set of pairs (M™(Q]69), Eps+(gjse)) such that there
is a stack T according to X and with last model Q such that I can start a new main
round on Q. We then let

B(P,Y) = {B C pM(P,¥) x R: B is OD}.

The rest of the concepts cary over word by word. We leave it to the reader.

10 Getting é—guided pairs

In this section, we would like to prove that there are hod pairs (P, X) such that ¥ is
B-guided for some B. The non lsa case is exactly as in [3] (see Theorem 5.20). To
prove such a result for Isa hod pairs, we need to construct a model which satisfies
the hypothesis of Lemma 7.14. Full backgrounded constructions do produce such
models. The following lemma shows just that. Suppose (P, ) is an lsa hod pair.
We then let
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Micest* = {(a, M) :a € HOAP € a AM < Lp™"(a) A p(M) = a}.

Recall that if M is a model of some fragment of set theory, A is a limit of Woodin
cardinals of M and g C Coll(w,< \) is M-generic then D(M, A, g) is the derived
model of M at A\ as computed by g. More precisely, letting R* be the symmetric
reals, we set

I'={ACR": Ae M(R*) and L(4,R*) E AD*}.
Then D(M, ), g) = L(I',R*).

Lemma 10.1 Suppose (P,%) a hod pair such that P is lsa type and ¥ is fullness
preserving and has strong branch condensation. Suppose further that MC(X5) holds
and that there is a good pointclass I such that Code(X) € Ar. Let F' be as in Theorem
2.25 of [3] for T, and let x € dom(F) be such that F(x) = (N}, My, ., 2,) Suslin,
co-Suslin captures Micer, Micest® and (P,X). Then the hod pair construction of
N0, reaches a tail of (P,Y).

Moreover, if Q is a tail of (P,X) reached by some hod pair construction of N¥|d,,
A =Yg and N* is the output of (jE’AStS[Q])N;“gz, K is the least < d,-strong cardinal
of N* and U is the strategy of N' =g N*|(k7“)YN" then W is fullness preserving (see
Definition 7.3 and whenever M is a VU iterate of N such that the iteration embedding
7 : N — M exists then M has A**-fullness condition (see Definition 7.11) and
whenever g C Coll(w, < w(k)) is M-generic then

A [ DM, 7 (k), g) € DM, 7(k), g).

Proof. By an absoluteness argument, it is enough to show that the claim holds for
N. We need to show that

(i) W is fullness preserving (as a A***-mouse),
(i) iterates of N according to ¥ have the A**-fullness condition and
(iii) N E “there are proper class of Woodin cardinals”.

Given (i)-(iii), the last clause of the theorem follows from Lemma 7.12. We start
with (iii).

Claim 1. N'|k E “there are proper class of Woodin cardinals”.
Proof. Because (N}, 0., %;) Suslin, co-Suslin captures Mice$!®, we have that

Lp™" (N*) € N*
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and therefore, Lp™" (N*) E “6, is Woodin”. Let (T, S) € N* witness that (N, 6., 2,)
Suslin, co-Suslin captures Mice§*. Let m : H — N be such that crit(r) = n,
Nif|n = Hln, |H| = n and (T, S)# € rng(r). Then we have that Lp™"" (N*|n) € H
implying that Lp™" (N*|n) E “n is Woodin”. By universality of A*, we have that
Lp™™ (N*|n) < N*, implying that N*|x E “for proper class of n, N*|n E “y is
Woodin””. U

Next we show (i). We show (i) for N*. The general result then follows by using
the proof given below and absoluteness.

Claim 2. N* is a A*-closed mouse.

Proof. Fix some N*-cardinal v. We need to show that there is M < N'* such that
N*||v < M and some ¥™-hod pair construction of M in which extenders used have
critical points > v reaches R € pI(Q, A%'*).

By universality, it is enough to show that for every v, the ¥~ -hod pair con-
struction converges (in which extenders used have critical point > v). Towards
contradiction suppose not. It then follows that there is a 7 € N* such that T
appears in a ¥V -hod pair construction of N*, T € b(A***) and T & dom(¥V").
This means that while performing the construction producing N*, we have never
encountered a reason for indexing the branch of 7 in N*. In particular, we must
have that M*(T) F “5(T) is a Woodin cardinal” and Q(b, T) is an A}f; -mouse
over M*(T).

Working in LIN*], let ¥, be the sts strategy of M*(T) induced by ¥V, The
stacks are according to X; if they are N*-certified in the sense of Definition 7.8.
Let then A} = (J%¥)V". We must then have that Q(b,T) 94 N;. Because N is
universal, Q(b,T) cannot win the comparison with Aj. It follows that there must
be T; € N; such that 77 is according to M but A m+(7)(T1) has not been indexed
in NV;. By repeating this process, we build (Q;, T;,N;,Z; : i < w) such that the
following conditions hold.

1. QO:Q776:T>-/\/‘0:N* and%E-/V‘O
2. T; € N is a normal tree on Q; according to AZ® and Q1 = M™(T;).

3. ¥; € LINj] is the strategy of Q,;; induced by ¥V in the sense that stacks
according to X; are N;-certified.

4. Nip = (TEZ QM.
5. For each i, T; € b(AZ?).
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Let then b; = Agf(ﬁ) We then have that the direct limit of @, 7; given by b; is ill
founded, contradiction. O

The proof of N* gives much more. It shows that various constructions of N* reach
Ag-iterate of Q via T such that 7 € m(Ag®). It then follows from absoluteness and
universality that W is fullness preserving. This completes the proof of (i).

Next we show (ii). We will do this only for N'. The general result follows from
absoluteness and the proof given below.

Claim 3. N satisfies A***-fullness condition.
Proof. Fix an N-generic h and a transitive a € N'[h] such that Q € a. Let S <
Lp~™" (a) be such that p(S) = a. Fix n such that a € N|n[h]. We want to show that
there is M < N such that

L NlnpaM,

2. M E “ZFC-Powerset+ “there are infinitely many Woodin cardinals (d,, : n <
w)”’

3. § € M|dy and S has an iteration strategy ® € M such that if £ C Coll(w, <
dw)-generic and D is the derived model of M computed via k then ® has an
extension ®* € D such that whenever S* is a ®*-iterate of S and U € dom/(%5")
then MIh] E “U is branch certified stack (see Definition 7.8)”.

Let R be the output of (J%4" [a])N" where the extenders used have critical point
> (kT)N7. Because R is universal we have that S < R. The fact that S has an
iteration strategy of the desired form follows from the proof of Claim 2 above and the
following observation. Let VW be a model appearing in the construction producing
R and such that C(W) = S. It is then enough to show that W is iterable in N'* via
a desired iteration strategy. To do this, we observe that it is enough to show that

(1) for every N*-regular cardinal n > 62, if I is the fragment of the iteration
strategy of A”*|n that acts on non-dropping trees that are above 0< then I is Suslin,
co-Suslin captured by (N*,0,,*) where T'* is the strategy of N*.

We omit the proof of (1) as it is just like the proof of Lemma 3.9 of [3]. O
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The next theorem can now be proved using Lemma 2.5, Lemma 7.14, Lemma 10.1
and the proof of Theorem 5.20 of [3].

Theorem 10.2 Suppose (P,X) is a hod pair such that \¥ is a successor ordinal and
Y has a branch condensation and is fullness preserving. Suppose B € B(P~,%Xp-).
There is then Q € pI(P,%) and B = (B; : i < w) C B(P, Sp-) such that B strongly
gquides Xg.

11 The computation of HOD

Throughout this section we assume AD' + SMC and let (A, : o < Q) be the
Solovay sequence. Our goal is to compute VGEOD for a < Q. We will do it under
some additional hypothesis described below. In the next section, we prove that
our additional hypothesis essentially follows from AD™ + “No initial segment of the
Solovay sequence satisfies LSA”.

Suppose (P,>) is an sts pair such that ¥ is fullness preserving and has branch
condensation. We then let a(P, %) = w(I'(P,X)). Also, we let P~ = P. We then
also say that (P,X) is suitable. If (P, ) is a hod pair such that P is of lsa type
then, just for convenience, we let Xp- = 25,

Suppose first that a + 1 = Q. We then let Z = {(Q, A, B, ..., B;) :

1. (Q,A) is suitable, A is fullness preserving and has branch condensation, and

a(Q7,A) = a,
2. for every i <n, B; € B(Q,A), and
3. (Q,A) is strongly B-iterable }.
Define < on Z by
(P,2,B) =< (Q,A,C) +» BC C and (Q,A, B) is a B-tail of (P,%, B).
When (R, V¥, é) =< (9, A, 6), there is a canonical map
T HYY — H,

which is independent of B-iterable branches. We let TR W, B)(OA,B) be this map. We
then have that (Z, <) is a directed. Let

F = {HB?’A 1 (Q,A,B) € T}.
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and we let M, be the direct limit of F under the iteration maps TR, B), (N, B)" Let

5o = 6Me. For (Q,A\,B) € Z, we let T(QA,B)00 - Hg’A — M. Standard arguments
show that M, is well-founded.

Following Section 4.4 of [3], we let ¢ be the following sentence: for every a+1 < €,
letting I'y, = {A C R : w(A) < 6,}, there is a hod pair (P, X) such that

L. (P, 3p-) = q,
2. Y is fullness preserving and has branch condensation,
3. for any Q € pI(P,¥) UpB(P,Y), if A€ is a successor ordinal then

(a) there is a sequence (B; :i < w) C B(Q~, ¥ o-) which guides Yo and

(b) for any B € B(Q~,¥Xo-) there is R € pl(Q,¥g) such that ¥x respects
B.

4. L(T',,R) E LSA if and only if P is of Isa type.

Our additional hypothesis, 9, is a conjunction of ¢ with the following statement:
If Q = o+ 1 then there is a suitable (P, Y) which is (-iterable, ¥ is a successor and
such that

1. (P~,Xp-) is either a hod pair or an sts pair such that o(P~,Xp-) = a and
Yp- is fullness preserving and has branch condensation,

2. for any B € B(P~,Xp-) there is an (-iterate (Q, @) of (P, ) such that (Q, P)
is strongly B-iterable.

3. M, is well-founded and d,, = © = 0,,1.
4. V E LSA if and only if P is of Isa type.

We will use the following lemma to establish ¢). It can be proved exactly the
same way as Lemma 4.23 of [3].

Lemma 11.1 Suppose I' C p(R) is such that L(I',R) F ADT + SMC+Q=a+1
and T' = p(R) N L(T',R). Suppose I'* C p(R) is such that T C T'*, L(I'*,R) E AD™
and there is a hod a pair (P,%) € I'* such that the following holds.

1. 3 has branch condensation and is I'-fullness preserving.

2. L(I',R) E LSA if and only if P is of lsa type.

47



3. A7 is a successor ordinal, Code(Xp-) € T and L(T',R) E “(P, Xp-) is a suitable
pair such that o(P~,Xp-) = a”.

4. There is a sequence (B; : i < w) C (B(P~,Yp- )X TR guiding ¥.

5. For any B € (B(P~,%p-))*TR) there is R € pI(P,X) such that Yr respects
B.
Then L(T,R) E ¢ and MX"® = ML (P, 5)7.
The next theorem is the adaptation of Theorem 2.24 of [3] to our current context.

It can be proved via exactly the same proof. Because of this, we omit the proof.

Theorem 11.2 (Computation of HOD) Assume AD'. Suppose T' C p(R) is
such that I' = p(R) N L(I',R). Then the following holds:

1. Suppose L(T',R) E ¢. Suppose B+1< Q. Let (P,X) witness ¢ for 3. Then
letting M = ML (P, %), E = EM and A = XM, for every o <

ot = 0L and M|OE = (VIOP" E [ 05, A [ VIO €).

2. If L(T,R) E ¢ then letting M = METR B — M and A = M for every
a < QF

oM — gT

«

and M|6% = (VaIOP" E [ 05, A | VJIOP" €).

3. Suppose I'* C p(R) is such that I' C I'*, L(I'*,R) E AD™ and there is a hod a
pair (P, X) € I'* such that the following holds:

(a) 3 has branch condensation and is T'-fullness preserving,
15 a successor ordinal, C'ode -)el an -)1isa
(b) \P dinal, Code(Xp-) € T' and L(I',R) E “(P,Xp-)
suitable pair such that o(P~,Ap-) = a”,
c) there is a sequence (B; 11 < w) C - - ’ uLdin
(c) th g (B ) C (B(P, Ap-))" ) guiding ¥,
or any € L, Ap- =) there 1s €Ep , such that 2g
d) f B B(P~, Ap- ) LR th R I(P,% h that ¥
respects B.
Then L(T,R) E ¢ and MX"® = ML (P, A).

Thus, working in a model of ADT, if & < Q then to compute HODI6, we only
need to produce a hod pair (P,X) such that T'(P,X) = {A CR: w(A) < 6,}. We
will show that this is true in any model of AD™ provided that there is no transitive
class inner model containing the reals and satisfying AD' + LSA.

"Recall that MZ (P, X)) is the direct limit of all Y-iterates of P
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12 The generation of the mouse full pointclasses

In this section, our goal is to show that if SMC holds and I is a mouse full pointclass
such that I' # p(R) and there is a good pointclass I'* such that I' C I'* then there is
(P, %) such that I'(P, X) = I'. Recall that we let

#1sqa: There is « such that 6,0 < © and L(I',11) F LSA.

As in Section 6.1 of [3], we will construct (P, ) as above via a hod pair con-
struction of some sufficiently strong background universe. However, the background
universes given by Theorem 2.25 of [3] will not be sufficient for us. Below we describe
a stronger background universe which we will use for such constructions.

Theorem 12.1 Assume AD™' and suppose I is a good pointclass and is not the last
good pointclass. Let (N, V) Suslin, co-Suslin capture I'. There is then a function F'
defined on R such that for a Turing cone of z, F(z) = (N¥, M, 8%,6%, 3., A,) such

that T
1. x codes N,
2. N;1og = M.|0y,
3. M, is a W-mouse and M7 (M,) E “60 is a Woodin cardinal”,
4. for alln < 89, MPY(Mg|n) E “6° isn’t a Woodin cardinal”
5. NI E “00 < 8! are the only Woodin cardinals”,
6. X, is the unique iteration strategy of M, (induced by the strategy Of/\/lf’qj(/\/lx)),
7. NX|6L is a (U, %,)-mouse over M, and N} = LY|N}|6}],
8. A, is a strategy of N* and (N, 6%, A,) Suslin, co-Suslin captures Code(V) and
hence, (N, 6L, %,) Suslin, co-Suslin captures T,

9. for any a < 6% and for any Ni-generic g C Coll(w, ), (N[g],Sz) Suslin,
co-Suslin captures Code((X:) m, 1) and its complement at (62)T.

The proof of Theorem 12.1 is very much like the proof of Theorem 2.25 of [3]. It
is unfortunately unpublished and is also beyond the scope of this paper. Here is our
theorem on generation of pointclasses.
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Theorem 12.2 (The generation of the mouse full pointclasses) Assume AD™
and —#sq. Suppose I' # o(R) is a mouse full pointclass such that ' E SMC'. Then
the following holds:

1. Suppose first that T is completely mouse full and let A C R witness it. Then
the following holds:

(a) Suppose L(A,R) £ —LSA. Then there is (P,X) € L(A,R) such that
L(A,R) E “X has branch condensation and is fullness preserving” and
LP,x)=rT.

(b) Suppose L(A,R) E LSA. Then there is an sts pair (P,%) € L(A,R) such
that L(A,R) E “YX has branch condensation and is fullness preserving”
and T'(P,X) =T".

2. If T is mouse full but not completely mouse full then there is a hod pair or an
anomalous hod pair (P, X) such that ¥ has branch condensation and I'(P,X) =
r.

Proof. Our proof has the same structure as the proof of Theorem 6.1 of [3]. The
proof is by induction. Suppose I'" # p(R) is a mouse full pointclass such that when-
ever ['* is properly contained in I" and is a mouse full pointclass then there is a hod
pair (P,X) as in 1 or 2. We want to show that the claim holds for I'. We examine
several cases.

Case 1. 0" isn’t the largest Suslin cardinal.

Let A C R be such that w(A) = I'. Recall that Ar is the set of reals o which
code a pair (0g, o) of continuous functions such that o;'“A is a code for a set in
HPr and 0, '“A is a code for a quadruple (o, A, M, ¥) such that (a, A, M) € Mice"
and W is the unique strategy of M. We let B = Ar.

For each hod pair (P,3X) € I, there is a sjs (A; : i < w) such that A; € T" for
every i and Micet, = Ay. We then let C' be the set of reals o coding a continuous
function such that o~1[A] codes

1. a hod pair (P, X) such that Code(X) € T,
2. asjs (A; 1 i < w) such that A; € T for all # and MiceL = Ay.

Let I'™* be a good pointclass such that A, B,C € Ap« and let F' and (N, W) be as in
Theorem 12.1. Let x be such that (N7, 4!, A,) Suslin, co-Suslin captures A, B, C.

T Tx?
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We claim that some model of I'-hod pair construction of N*|60 is as desired. Here
the proof is somewhat different than the proof of Theorem 6.1 of [3]. There the con-
tradictory assumption that such construction do not reach I' lead to a construction
of a hod pair (P,X) such that \¥ = §” and P F “67 is regular”. This meant that
a pointclass satisfying ADg + “© is regular” had been reached giving the desired
contradiction. In our current situation, if the constructions never stops then we will
end up with an lsa type hod premouse P of height §2. The following claim shows
how to finish the argument from there.

Claim 1. Suppose the I'-hod pair construction of N*[§? doesn’t stop and never
reaches I'. Then there is a pointclass satisfying #;.,.

Proof. Let (P*,A) be the output of the hod pair construction of N*[62. Thus,
we have that o(P*) = 6%. Let P = LpA™ (M*(P*)).

w

Subclaim 1. P € N.

Proof. To see this, notice first that we have that
C(M*(P*),A) CT and T(M™*(P*),A) #T.

It then follows that there is (Q, ®) € I' such that I'(Q, ®) = T'(M™(P*), A) implying
that, because of comparison, that (M™*(P*),A) € I'. We can then fix z such that z
codes a Wadge reduction of Micel,., to Code(V).

Let P** = (FEA NG and let R = P*|((0°)7)P"". We claim that P < P*.
Assume towards a contradiction that P € P* and let Q@ <P be the least such that
p(Q) = &Y and Q #4 P*. Let @ be the strategy of Q which witnesses that Q is a
A#*-mouse. Fix w which codes a Wadge reduction of Code(®) to Code(W).

Let now I'"* be a good pointclass such that I < I'* and Code(®) € Ars-.
Let F* be as in Theorem 2.5 of [3] and let y € dom(F™*) be such that if F*(y) =
(KCy, Wy, Ay, @) then (K3, 5, ®,) Suslin, co-Suslin captures F, z, 2, w and Code(®).

We then let M be the iterate of N according to A, which is above 62 and is
constructed via a (¥, X, )-construction of K|\, done over N|d0. Let

N = (jE,A“S)MITW;,M(%)_

Let T be the comparison tree of A/ and Q (we have that A/ doesn’t move in this
comparison) without its last branch. It then follows that 7 € MJw, Q] and if
b = ®(T) then b € M[w,Q]. But now universality of background constructions
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implies that in fact N reaches a level satisfying “there is a superstrong cardinal”.
This contradiction completes the proof. O

It then follows that P € N and hence (P, A) is an lsa type hod pair. However,
at this point we do not know if A is fullness preserving mainly because we do not
have enough absoluteness between N and V. Next, we produce an Isa type hod
pair which does have fullness preservation.

Subclaim 2. There is an Isa hod pair (Q, ®) such that ® is fullness preserving.

Proof. Fix a good pointclass I'** such that I'* < I'** and that F' € Ap«. Let F* be as
in Theorem 2.5 of [3] and let y € dom(F*) be such that if F*(y) = (K;, W,, A, ®,)
then F,z are Suslin, co-Suslin captured by (Kj, A, ®,). Let M be the iterate A,-

iterate of NV constructed via T B _construction of KilA, and let @ = marx m(P).
Let ® be the strategy of Q which it inherits from ®,. It follows from the proof of
Subclaim 1 that Q is full. It then follows from Theorem 18.3 of [4] that ® is fullness
preserving. U

The next subclaim finishes the proof of the claim.
Subclaim 3. L(®,R) F there is [ such that L(I',R) F #4,.

Proof. 1t follows from Lemma 8.1 that L(I'(Q,®)) E LSA. Moreover, it follows
from SMC' that the set {(z,y) : y & Lp®" (x)} cannot be uniformized by any func-
tion which is ODgsts . for some real z. Because & ¢ I'(Q, ®)), the claim follows.
U

U

Thus we have that I'-hod pair constructions of N*|6Y have to stop. Next we show
that they cannot stop because they break down implying that they stop because
they reach I'. An important remark is that it follows from the proof of the claim
that I'-hod pair construction cannot reach an lIsa type hod pair P before reaching I
as otherwise, letting ¥ be its strategy, as in Subclaim 3, (P, ) produces a model
satisfying #;s,. Thus, all hod mice reached by the I'-hod pair construction before
reaching I' must either be not lsa type or the corresponding strategy must be not
fullness preserving.

The proof that the construction doesn’t break down is very much like the proof
of Theorem 6.1 of [3] with one wrinkle. Suppose P is a model appearing in the I'-hod
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pair construction of NV}[69. Suppose A" is a successor and 0 = 6> | is a measurable
cardinal. We have to show that adding a new extender to P doesn’t project to or
across 0. Below we only show how to handle this case, the rest is left to the reader
(as it is very similar to the proof of Theorem 6.1 of [3]).

Suppose then P* is a model of I'-hod pair construction and X* is its strategy.
Suppose further that \¥" is a successor ordinal and if § = 52\);*71 then ¢ is a measur-
able cardinal in P*. Suppose that for some extender E the next model of the I'-hod
pair construction is P = (P*, E). Let X be the strategy of P. If p(P) > ((67)")"
then we can continue the construction.

Suppose then that p(P) < 4. If I'(P,X) = I' then we are done. Hence we assume
that I'(P, X) # I' implying that Code(X) € I' (using the comparison argument).

The argument now follows the same line of thought as the proof of Theorem 6.1
of [3]. Suppose first that p(P) < §. Fix a < QU such that w(Code(X)) < 6-. Let
I ={A:w(A) <.} Notice that whenever (Q,A) € T is such that

T(Q,A) =T(P,%) and Moo (P, %) = Moo(Q, A).

It then follows that M. (P,¥) € HOD*T®). Let 8 be such that 65 = sup(r3 ., |
67). Tt then follows that p(My,) < 6, contradiction!

We must then have that p(P) = §. Let Q@ = P°. Let F be the first extender
on the sequence of P with critical point 7. Let n € w be largest such that that
pn(P) > 07 and let S = Ult, (P, F). Notice that p(S) = §7. Moreover, it follows
from I-fullness that S* = Q.

Let now A C 67 be the set coding P. Notice that A is also the new subset
defined over §. Moreover, its not hard to see that comparison implies that when-
ever (W, ®) is a hod pair such T(W,®) = T'(P,¥), Q = W’ and &g = Xg then
A is the new set defined over W. It then follows that letting I'* be as in the pre-
vious paragraph then L(IT'*)R) F A € OD¢ode(sp)- It then follows from SMC and
the fullness of Q that in fact A € Q. But Q@ < P implying that A € P, contradiction.

Case 2. 0" is the largest Suslin cardinal.

The difference between Case 1 and Case 2 is that we now cannot choose a good
pointclass I'* such that I' C I'*. The proof then is by reflection. Suppose that there is
no Ist hod pair (P, ) such that ¥ is fullness preserving and has branch condensation
and I'(P,3) = I'. The non existence of such a pair can be reflected.

Let then A C R be such that for some a, L,(A,R) E ZF + AD* + LSA and
that there is no sts pair (P,X) € L,(A,R) such that in L,(A,R) is ¥ is fullness
preserving and has branch condensation and
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I'(P,YX)={BCR:w(B) <w(A)}.

Let " ={B CR:w(B) < w(A)}. It follows from Case 1 that there is a hod pair
(P, ) such that P is of Isa type and I'(P~, Xp-) = I'*. We claim that ¥X%¢ € L,(R)
and spend the rest of the argument showing it.

Let 7 : P — My (P,X) be the iteration embedding. Let 7 = 7* | Pb. It
follows from Theorem 11.2 that m, 7*(P) € Lo(A,R). We intend to use 7 to define
Y5t over Lo(A,R). The proof is very much like our results proven in Section 7. Let
M = 71*(P).

Suppose T = (Mz,f : 1 < m < w) is a finite stack on P. We say the the
branches of T are 7-certified if there is a sequence of embeddings (or : R € tn('f))
and a sequence of hod pairs (Qr, Ag : R € tn(T)), such that whenever R € tn(T),
the following conditions hold:

1. if 77<®? exists then o : R® = M and 7 = 0 o 7/<”?,

2. if 77 doesn’t exists then letting E be the undropping extender of 7_;73, then
o:Ult(P* E) - M and 7 = o o7,

3. (Qr,AR) is a hod pair in L, (A, R) such that Ag is fullness preserving and has
branch condensation and letting 7z : Or — Muo(Qr, Ar), or|0® C rng(tr),

4. if a +1 < A® and T is the longest irreducible component of 7 based on R(«)
then letting k : R(a) — Qr(8) be given by k(z) = 7' (or(2)), T is according
to k-pullback of Ag, (s and o [ R(e) is the iteration embedding according to
the k-pullback of (Az)g(s).-

Suppose 7 is a finite stack on P is such that for some cutpoint R, 7T<r? exists
and 7;73 is a normal irreducible tree on R based on the top window of R. Suppose
Q is an sts mouse such that M(Tor) < Q and J1(Q) E “6(Tex) isn’t a Woodin
cardinal”. We say Q is m-certified if

1. if MT(M(T)) E “6(Tor) isn’t a Woodin cardinal” then Q < M*T(M(T)),

2. if MT(M(T)) E “6(Tor) is a Woodin cardinal” then Q has an iteration strat-

egy A such that whenever Sisa A-iterateﬁof Qand U € S is according to ¥°
then the branches of T~ {M™*(M(T))} U are m-certified.

Suppose then 7T is a finite stack on P. We then say that T is m-certified if

1. the branches of T are m-certified and
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2. whenever R € tn(7) is such that 7T<mb exists then letting 7 be the longest
irreducible initial segment of 7 that is based on the top window of R, if a <
Ih(T) and M7 & “6(T | ) isn’t a Woodin cardinal” then letting Q < M7 be
the longest such that Q@ F “6(7 | «) is a Woodin cardinal” then Q is m-certified.

It can now straightforward to check that the following are equivalent:
1. T is according to X5t
2. T is m-certified.

We leave the details to the reader. We comment that clause 4 in the definition of
stacks that have m-certified branches guarantees that the embedding og | R(«a) is
according to X.

It then easily follows that ¥ € L, (A, R), contradiction. d

13 LSA pointclass from a Woodin limit of Wood-
ins

Theorem 13.1 Suppose there is a Woodin cardinal that is a limit of Woodin cardi-
nal. Then there is an inner model satisfying ADTLSA.

Proof. Woodin showed that, under our current hypothesis, there is an inner model
that has divergent models of AD™, i.e., there are sets of reals A, B C R such that
L(A/R) E AD*, L(B,R) E AD", A ¢ L(B,R) and B ¢ L(A,R). Moreover,
his constructions shows that we can assume that both L(A,R) and L(B,R) satisfy
MC + © = 6. Thus, we assume that such a pair of models exists.

We let I' = L(A,R) N L(A,R) N p(R). We now assume that there is no inner
model satisfying ADT + LSA. It follows from the proof of Subclaim 2 in the proof
of Lemma 12.2 that

(1) there is no inner model M containing the ordinals and reals such that M FE
ADT + “there is an Ist pair (P, X) such that X is fullness preserving and has branch
condensation”.
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Using Theorem 12.2 we get that there is (P, X) € L(A,R) and (Q,A) € L(B,R)
such that I'(P,X) =T'(Q,A) =TI'. Asin [3], we intend to compare (P, ) and (Q, A)
inV.

Before we do that, however, notice that because L(I'yR) F ADg (this is an
unpublished result of Woodin), it follows that both P and Q are of limit type. The
proof of Theorem 6.26 implies that in fact both P and O have to be non-meek. The
proof of Theorem 3.3 and Theorem 6.26 of [3] imply that there are (R, V) and (S, ®)
such that R € pI(P,X), S € pl(Q,\), ¥ =Yg, & = Ag, R* = 8%, Uy = Og and
whenever W € pB(R,¥) N pB(S,®), ¥y = Pyy. We then have that the further
comparison of R and S doesn’t use low level disagreements. It follows from Lemma
8.5 of [4] that the comparison of R and § is just an extender comparison.

Let now (7,U) be the trees on R and S respectively that are constructed using
the extender comparison of R and S until we reach models R* and &* such that

572* = 58* —def 0 and R*|5 = 8*|5

Suppose first that we can reach such a stage in < w; many steps. Suppose next that
MT(R*|6) E “§ isn’t a Woodin cardinal”. It then follows that R* = S* and the
comparison halts, contradiction.

It then must be the case that MT(R*|0) F “0 is a Woodin cardinal”. Let
M = MT(R|§). Notice that we have that U5f = @55, We also must have that
(M, T58) =T(M, @587) =T'. (Otherwise, we have that Code(U%) € I' and hence,
using (1), we get that R* < Lp"TR-YA7 (M) and S* < LpTR)¥3 (M) implying
that R* < 8* or vice versa. It then follows that the comparison actually halts giv-
ing us contradiction. ) But now we have that Code(®55) € L(I',R) implying that
I' =T (M, ®5%) C T, contradiction.

We must then have that the construction of (77,U) lasts w;-steps. However, notice
that in this case, as both sides use the same Q-structures (this follows from (1)), the
extender comparison of R and S can be done in both L(A,R) and L(B,R). It then
follows that, as w; is measurable in both L(A,R) and L(B,R), that 7 and U have
branch which gives us a contradiction. U
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