## Math 507: Functional Analysis (Spring, 2004)

D1 Suppose $K$ is a compact subset of a Hilbert space, $H$. Prove that there is a closed separable subspace $H_{1}$ of $H$ with $K \subseteq H_{1}$.
Comment I needed this result in the course. It was clear at the time. Is it still?
D2 (Holomorphic polynomial examples) a) Prove that there is a sequence of polynomials $\left\{P_{n}(z)\right\}$ so that $\lim _{n \rightarrow \infty} P_{n}(z)$ exists for all $z \in \mathbb{C}$ and is 1 if $z=0$ and 0 if $z \neq 0$.
b) Prove that there is a sequence of polynomials $\left\{P_{n}(z)\right\}$ so that $\lim _{n \rightarrow \infty} P_{n}(z)$ exists for all $z \in \mathbb{C}$ and is 1 if $\operatorname{Re} z \geq 0$ and 0 if $\operatorname{Re} z<0$.

D3 Suppose that $K(s, t)$ is a continuous real function on $[0,1] \times[0,1]$, and $T(g)(t)=$ $\int_{0}^{1} K(s, t) g(s) d s$. If $g \in C([0,1])$, then $f=T(g)$ is also continuous on $[0,1]$, and the eigenfunction expansion associated to $T$ and $K$ for $f$ converges absolutely and uniformly to $f$ in $[0,1]$ (not just in $L^{2}$ ).

D4 Suppose $L=D^{2}+x D$ where $D=\frac{d}{d x}$ on $[0,1]$.
a) Find $w$ so that $w L$ is self-adjoint.
b) Find boundary conditions on $[0,1]$ so that $L$ with these boundary conditions is a regular Sturm-Liouville problem for which 0 is not an eigenvalue.

D5 Suppose that $L$ is a Banach limit on $\ell^{\infty}$. Show that there are sequences $X$ and $Y$ in $\ell^{\infty}$ so that $L(X Y) \neq L(X) L(Y)$. Here the product $X Y$ is defined "pointwise" or "coordinatewise": $(X Y)_{n}=X_{n} Y_{n}$. (This problem is found in many texts.)

Definition Two norms $\left\|\|_{1}\right.$ and $\| \|_{2}$ on a vector space $V$ are said to be equivalent if there is a $c>0$ so that $c\|v\|_{1} \leq\|v\|_{2} \leq \frac{1}{c}\|v\|_{1}$ for all $v \in V$.

D6 a) Prove that all norms on $\mathbb{R}^{n}$ are equivalent.
b) Give (and verify!) an example of a $V$ and two norms which are not equivalent.

D7 If $V$ is complete with respect to both $\left\|\|_{1}\right.$ and $\| \|_{2}$, and if $\|v\|_{1} \leq C\|v\|_{2}$ holds for all $v \in V$, then $\left\|\|_{1}\right.$ and $\| \|_{2}$ are equivalent. Can the hypotheses be weakened in this?

D8 Show that $c^{*}$ is isometrically isomorphic to $\ell^{1}$. Are $c$ and $c_{0}$ isometrically isomorphic?
Remark This is problem 4 of section 3.6 in Conway's A Course in Functional Analysis.
D9 Show that if $X \in \ell^{\infty}\|X\|_{\infty} \leq 1$, then there is a sequence $\left\{X_{n}\right\}, X_{n}$ in $\ell^{\infty}$ such that $\left\|X_{n}\right\|_{\infty} \leq 1,\left\|X_{n}-X\right\|_{\infty} \rightarrow 0$, and each $X_{n}$ takes on only a finite number of values.
Remark This is problem 3 of section 3.7 in Conway's A Course in Functional Analysis.

