Math 507: Functional Analysis (Spring, 2004)

B1 Suppose K is a compact non-empty subset of \mathbb{C}. Show that there is $T \in L(H)$ so that $\sigma(T)=K$.
B2 The Volterra operator, $V: L^{2}([0,1]) \rightarrow L^{2}([0,1])$, is defined by $V f(x)=\int_{0}^{x} f(t) d t$.
a) What is V^{*} ? $V+V^{*}$? What is the image of $V+V^{*}$?

Remark This is problem 7 of section 2.2 in Conway's A Course in Functional Analysis.
b) What is $\sigma_{p}(V)$, the collection of eigenvalues of V ?

B3 (Continuing the preceding problem.) What can you say about $\sigma(V)$? (You will probably need the Spectral Radius Formula and inductive discussion of V^{n} and $\left\|V^{n}\right\|$.)

B4 (Hilbert matrix) Show that $\left\langle A e_{j}, e_{i}\right\rangle=(i+j+1)^{-1}$ for $0 \leq i, j<\infty$ defines a bounded operator on $\ell^{2}(\mathbb{N} \cup\{0\}$) (square-summable sequences beginning with the index 0) with $\|A\| \leq \pi$.
Remark This is problem 10 of section 2.1 in Conway's A Course in Functional Analysis. The problem statement there contains further references.

B5 If H is an infinite dimensional Hilbert space, show that no orthonormal basis for H is a Hamel (vector space) basis. Show that a Hamel basis is uncountable.

B6 Suppose H is the collection of all absolutely continuous functions $f(0):[0,1] \rightarrow \mathbb{F}$ with $f(0)=0$ and $f^{\prime} \in L^{2}([0,1])$. Let $\langle f, g\rangle=\int_{0}^{1} f^{\prime}(t) \overline{g^{\prime}(t)} d t$.
a) Prove that H is a Hilbert space.
b) Find an orthonormal basis of H.

Remark This is problem 3 of section 1.1 and problem 4 of section 1.4 in Conway's A Course in Functional Analysis.

B7 Let $H=\ell^{2}(\mathbb{N} \cup\{0\})$ (square-summable sequences beginning with the index 0).
a) Show that if $\left\{\alpha_{n}\right\} \in H$, then the power series $\sum_{n=0}^{\infty} \alpha_{n} z^{n}$ has radius of convergence ≥ 1.
b) If $|\lambda|<1$ and $L: H \rightarrow \mathbb{F}$ is defined by $L\left(\left\{\alpha_{n}\right\}\right)=\sum_{n=0}^{\infty} \alpha_{n} \lambda^{n}$, find the vector h_{0} in H so that $L(h)=\left\langle h, h_{0}\right\rangle$ for all $h \in H$. What is the norm of L ?
c) Define $\tilde{L}: H \underset{\sim}{\rightarrow} \mathbb{F}$ by $\tilde{L}\left(\left\{\alpha_{n}\right\}\right)=\sum_{n=1}^{\infty} n \alpha_{n} \lambda^{n-1}$, again with $|\lambda|<1$. Now find the corresponding $\tilde{h_{0}}$ so that $\tilde{L}(h)=\left\langle h, \tilde{h_{0}}\right\rangle$ for all $h \in H$.
Remark This is problem 3 and problem 4 of section 1.3 in Conway's A Course in Functional Analysis.

B8 Suppose that A and B are self-adjoint. Prove that $A B$ is self-adjoint if and only $A B=B A$.
Remark This is problem 11 of section 2.3 in Conway's A Course in Functional Analysis.

