I defined a small triangular initial condition for Maple as an initial position:
$>F:=x->$ piecewise $(x<P i / 3,0, x<P i / 3+P i / 12, x-(P i / 3), x<P i / 2, P i / 3+P i / 6-x, 0)$;
Here is a picture of the initial perturbation, together with the sum of the first 10 terms of its Fourier sine series. To the right is a similar picture, except that what's shown is the sum of the first 100 terms of its Fourier sine series. I can't see any difference between the two curves in the picture on the right.

The equations used are: $b_{n}=\frac{2}{\pi} \int_{0}^{\pi} F(x) \sin (n x) d x$ with $Q_{N}(x)=\sum_{n=1}^{N} b_{n} \sin (n x)$, the partial sum of the Fourier sine series. Let's "solve" the wave equation with this initial data, and with the boundary conditions corresponding to the ends fastened at 0 and π : so we want $u(x, t)$ satisfying: $\mathbf{P D E} u_{x x}=u_{t t} ; \mathbf{B C} u(0, t)=0$; $u(\pi, t)=0$ for all t; IC $u(x, 0)=F(x)$ and $u_{x}(x, 0)=0$, both for $0 \leq x \leq \pi$. The approximate solution will be $V_{N}(x)=\sum_{n=1}^{N} b_{n} \sin (n x) \cos (n t)$. Here are pictures for various t 's:

$t=\frac{\pi}{2}$

$t=\frac{2 \pi}{3}$
$t=\pi$

Now let's "solve" an initial velocity problem. Here we suppose that the initial velocity of the string is up one unit in the interval $\left[\frac{\pi}{3}, \frac{\pi}{2}\right]$.

```
>G:=x->piecewise(x<Pi/3,0,x<Pi/2,1,0);
```

And here is a picture of the Fourier sine series, first for $n=10$ and then for $n=100$:

The equations used here are: $c_{n}=\frac{2}{\pi} \int_{0}^{\pi} G(x) \sin (n x) d x$, with $Q_{N}(x)=\sum_{n=1}^{N} b_{n} \sin (n x)$, the partial sum of the Fourier sine series. Now let's "solve" the wave equation with this initial data, and with the boundary conditions corresponding to the ends fastened at 0 and π : so we want $u(x, t)$ satisfying: PDE $u_{x x}=u_{t t}$; BC $u(0, t)=0 ; u(\pi, t)=0$ for all $t ; \mathbf{I C} u(x, 0)=0$ and $u_{x}(x, 0)=G(x)$, both for $0 \leq x \leq \pi$.
The approximate solution will be $V_{N}(x)=\sum_{n=1}^{N} \frac{b_{n}}{n} \sin (n x) \sin (n t)$. Here are pictures for various t 's:

