
Math 421:01 Some vibration examples December 1, 2005

I defined a small triangular initial condition for Maple as an initial position:
>F:=x->piecewise(x<Pi/3,0,x<Pi/3+Pi/12,x-(Pi/3),x<Pi/2,Pi/3+Pi/6-x,0);

Here is a picture of the initial perturbation, together with the sum of the first 10 terms of its Fourier sine
series. To the right is a similar picture, except that what’s shown is the sum of the first 100 terms of its
Fourier sine series. I can’t see any difference between the two curves in the picture on the right.

The equations used are: bn = 2

π

∫
π

0
F (x) sin(nx) dx with QN (x) =

∑N

n=1
bn sin(nx), the partial sum of the

Fourier sine series. Let’s “solve” the wave equation with this initial data, and with the boundary conditions
corresponding to the ends fastened at 0 and π: so we want u(x, t) satisfying: PDE uxx = utt; BC u(0, t) = 0;
u(π, t) = 0 for all t; IC u(x, 0) = F (x) and ux(x, 0) = 0, both for 0 ≤ x ≤ π. The approximate solution will

be VN (x) =
∑

N

n=1
bn sin(nx) cos(nt). Here are pictures for various t’s:
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Now let’s “solve” an initial velocity problem. Here we suppose that the initial velocity of the string is up

one unit in the interval [π

3
, π

2
].

>G:=x->piecewise(x<Pi/3,0,x<Pi/2,1,0);

And here is a picture of the Fourier sine series, first for n = 10 and then for n = 100:
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The equations used here are: cn = 2

π

∫ π

0
G(x) sin(nx) dx, with QN (x) =

∑N

n=1
bn sin(nx), the partial sum of

the Fourier sine series. Now let’s “solve” the wave equation with this initial data, and with the boundary
conditions corresponding to the ends fastened at 0 and π: so we want u(x, t) satisfying: PDE uxx = utt;
BC u(0, t) = 0; u(π, t) = 0 for all t; IC u(x, 0) = 0 and ux(x, 0) = G(x), both for 0 ≤ x ≤ π.

The approximate solution will be VN (x) =
∑N

n=1

bn

n
sin(nx) sin(nt). Here are pictures for various t’s:
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