The Maple command which follows defines a function piecewise. In the language of Laplace transforms, $F(x)=\mathcal{U}\left(x-\frac{\pi}{3}\right)-\mathcal{U}\left(x-\frac{\pi}{2}\right)$. It is a block of height 1 in the interval $\left[\frac{\pi}{3}, \frac{\pi}{2}\right]$ and is 0 otherwise.

$$
>F:=x->\text { piecewise }(x<\operatorname{Pi} / 3,0, x<\operatorname{Pi} / 2,1,0) \text {; }
$$

I'll use this as initial data for the heat equation with temperature at the ends always 0 . So we're looking for $u(x, t)$ with $u_{t}=u_{x x}$ and, for all t, both $u(0, t)=0$ and $u(\pi, t)=0$.
Interpretation Would you believe a thin bar has temperature 0 except for a central chunk which has temperature equal to 1 ? This seems physically unlikely. This is more possibly an initial condition for diffusion, say a sugar solution in water. Adjust the units for concentration so that the highest concentration expected is 1 and a solution entirely water has concentration 0 . Then we've considering a thin tube of water which has a high concentration of sugar in a central interval: maybe this is possible.
Separation of variables suggests that we compute the Fourier series of the function, F. We want a Fourier sine series which will be valid on the interval $[0, \pi]$. This Maple command gets the Fourier sine coefficients:

```
>g:=n-> (2/Pi)*int (F (x)*sin(n*x), x=0..Pi);
```

Let's check:

```
>g(3);
```

$$
\begin{gathered}
2 \\
----- \\
3 \mathrm{Pi}
\end{gathered}
$$

The following instruction assembles a partial sum of the Fourier sine series for F :

```
>Q:=(N,t)->sum(g(n)*sin(n*x),n=1..N);
```

We can check it:

```
>Q(3);
```



```
    Pi Pi Pi
```

To the right is a picture of the $100^{\text {th }}$ partial sum for F and F itself. The graph results from the Maple command

```
>plot({F(x),Q(100)},x=0..Pi);
```

Notice that Maple attempts to fit the graph into a square. The true aspect ratio (horizontal: vertical) is actually about 3-to-1.

Now let's look at graphs of solutions to the heat equation, approximating the initial data given by F on $[0, \pi]$ with the zero boundary conditions. So we need a slight variation of the partial Fourier sum defined above. Here it is:

$$
>Q Q:=(N, t)->\operatorname{sum}\left(g(n) * \sin (n * x) * \exp \left(-n^{\wedge} 2 * t\right), n=1 . . N\right) ;
$$

And here is a test:

```
>QQ (3,t) ;
    sin(x) exp(-t) sin(2 x) exp(-4 t) sin(3 x) exp(-9 t)
        -------------- + 1/2 ------------------ - 2/3 ----------------------
            Pi
                    Pi
                            Pi
```

If this is too complicated, we can look at a fixed value of t :

```
>QQ(3,.01);
    0.3151426498 sin(x) + 0.1529143885 sin(2.x) - 0.1939422210 sin(3.x)
```

On the next page is the result of the following command for various values of t :

```
>plot({F(x),QQ(100,t)},x=0..Pi);
```


