I want steady-state solutions for the two-dimensional heat equation, $u_{t t}=u_{x x}+u_{y y}$, in one the square which has sides parallel to the coordinate axes and each side π units long, with lower-left hand corner is at the origin, $(0,0)$. Since u is supposed to be a steady-state solution, $u_{t}=0$ always, and we can omit the t in the variables we give u. We are actually looking for solutions $u(x, y)$ to Laplace's equation, $u_{x x}+u_{y y}=0$ in the π-by- π square. The boundary conditions are:
(BC) $u(x, 0)=0 \& u(x, \pi)=0$ for $0 \leq x \leq \pi ; u(0, y)=0 \& u(\pi, y)=1$ for $0 \leq y \leq \pi$ Here are Maple commands to generate a partial sum of the Fourier sine series for the

function 1 (a function which is always 1):

```
>c:=n-> (2/Pi)*int (1*sin(n*y),y=0..Pi);
>plot(sum(c(j)*sin(j*y),j=1..50),y=0..Pi,thickness=2,color=black);
```

As can be expected, the graph is all fuzzy at the ends (Gibb's phenomenon again). Now we can try to look at a partial sum of the solution to Laplace's equation:

$$
>u:=(x, y)->\operatorname{sum}((1 / \sinh (j * P i)) * c(j) * \sin (j * y) * \sinh (j * x), j=1 \ldots 50)
$$

Maple reports that $u(1 ., 2$.$) is .1176183537$. We can draw some pictures with these commands:

```
>plot3d(u(x,y) ,x=0..Pi,y=0..Pi,axes=normal);
>contourplot(u(x,y),x=0..Pi,y=0..Pi,contours=10, color=black);
```

Below to the left is a picture of the surface $z=u(x, y)$. On the right is a contour plot of $u(x, y)$:

Here are some slices of this surface by planes perpendicular to the $x y$-plane. The commands were:

```
>plot({u(x,.1),u(x,.3),u(x,.5)},x=0..Pi,color=black,thickness=2);
>plot({u(.1,y),u(.3,y),u(.7,y)},y=0..Pi,color=black,thickness=2);
```

Which slices are which curves?

