The last two lectures will discuss some aspects of solutions of the heat and wave equations for two-dimensional regions. Sections 13.5 and 13.8 of the text contain some relevant material. In these problems, S denotes the π-by- π square with lower left corner at (0,0).

1. In the lecture a solution to $\Delta u=u_{x x}+u_{y y}=0$ on S was found which satisfied (BC) $u(x, 0)=0 \& u(x, \pi)=0$ for $0 \leq x \leq \pi ; u(0, y)=0 \& u(\pi, y)=1$ for $0 \leq y \leq \pi$ That solution will be called $U(x, y)$ in this problem.
a) Suppose $V(x, y)$ is the solution to $\Delta u=0$ on S satisfying:
(BC) $u(x, 0)=0 \& u(x, \pi)=1$ for $0 \leq x \leq \pi ; u(0, y)=0 \& u(\pi, y)=0$ for $0 \leq y \leq \pi$.
Describe $V(x, y)$ in terms of $U(x, y)$.
b) Suppose $W(x, y)$ is the solution to $\Delta u=0$ on S satisfying:
(BC) $u(x, 0)=1 \& u(x, \pi)=0$ for $0 \leq x \leq \pi ; u(0, y)=0 \& u(\pi, y)=0$ for $0 \leq y \leq \pi$.
Describe $W(x, y)$ in terms of $U(x, y)$.
c) Suppose $Z(x, y)$ is the solution to $\Delta u=0$ on S satisfying:
(BC) $u(x, 0)=5 \& u(x, \pi)=-7$ for $0 \leq x \leq \pi ; u(0, y)=22 \& u(\pi, y)=4$ for $0 \leq y \leq \pi$. Describe $Z(x, y)$ in terms of $U(x, y)$.
Note No significant computation is needed in this problem: use linearity and ingenuity.
2. Find a solution to $\Delta u=0$ on S satisfying
(BC) $u(x, 0)=0 \& u(x, \pi)=0$ for $0 \leq x \leq \pi ; u(0, y)=0$ for $0 \leq y \leq \pi ; u(\pi, y)=0$ for $0 \leq y \leq \frac{\pi}{2}$ and $u(\pi, y)=1$ for $\frac{\pi}{2}<y \leq \pi$.
The solution should be written in terms of an appropriate infinite series.
3. Suppose $F(x, y)=7 \sin 3 x \sin 8 y-9 \sin 11 x \sin 4 y$.
a) Find a solution to the heat equation $u_{t}=\Delta u$ in S subject to the following boundary and initial conditions:
(BC) $u(x, 0,0)=0 \& u(x, \pi, 0)=0$ for $0 \leq x \leq \pi ; u(0, y, 0)=0 \& u(\pi, y, 0)=0$ for $0 \leq y \leq \pi$
(IC) $u(x, y, 0)=F(x, y)$.
What happens to $u(x, y, t)$ as $\rightarrow \infty$?
b) Find a solution to the wave equation $u_{t t}=\Delta u$ in S subject to the following boundary and initial conditions:
(BC) $u(x, 0,0)=0 \& u(x, \pi, 0)=0$ for $0 \leq x \leq \pi ; u(0, y, 0)=0 \& u(\pi, y, 0)=0$ for $0 \leq y \leq \pi$
(IC) $u(x, y, 0)=F(x, y)$ and $u_{t}(x, y, 0)=0$.
What happens to $u(x, y, t)$ as $\rightarrow \infty$?
4. Suppose $f(x, y)$ is 1 exactly when $0 \leq x \leq \frac{\pi}{2}$ and $0 \leq y \leq \frac{\pi}{3}$. Write $f(x, y)$ as the sum of a double sine series in S.
Note Here's a picture of a partial sum when the $\sin (n x) \sin (m y)$'s satisfy $n, m \leq 50$.

