1. In this problem, suppose that $f(x, y, z)=\frac{x^{3}-2 y z}{y^{2}+x z}$. Notice that $f(-1,1,2)=5$.*
a) Find $\nabla f(x, y, z)$. Compute $\nabla f(-1,1,2)$ which you may wish to simplify.

Answer $f_{x}=\frac{3 x^{2}\left(y^{2}+x z\right)-z\left(x^{3}-2 y z\right)}{\left(y^{2}+x z\right)^{2}}, f_{y}=\frac{-2 z\left(y^{2}+x z\right)-2 y\left(x^{3}-2 y z\right)}{\left(y^{2}+x z\right)^{2}}, f_{z}=\frac{-2 y\left(y^{2}+x z\right)-x\left(x^{3}-2 y z\right)}{\left(y^{2}+x z\right)^{2}} . \nabla f(x, y, z)=$ $\left\langle f_{x}, f_{y}, f_{z}\right\rangle$. At $(-1,1,2)$, the denominator of all the terms is $(-1)^{2}$, so things are not too horrible. ∇f is $\langle 7,14,-3\rangle$.
b) b) Write the equation of a plane tangent to $\frac{x^{3}-2 y z}{y^{2}+x z}=5 f(x, y, z)=5$ at the point $(-1,1,2)$.

Answer $7(x-(-1))+14(y-1)-3(z-2)=0$.
c) Write parametric equations for a line normal to $f(x, y, z)=5$ at the point $(-1,1,2)$.

Answer $x=7 t-1, y=14 t+1, z=-3 t+2$.
d) Find the directional derivative of f in the direction of the unit vector $\left\langle-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right\rangle$ at the point $(-1,1,2)$.

Answer $7\left(-\frac{1}{\sqrt{6}}\right)+14\left(\frac{2}{\sqrt{6}}\right)-3\left(\frac{1}{\sqrt{6}}\right)$
e) Find a unit vector in the direction of the largest directional derivative of f at the point $(-1,1,2)$.

Answer Since $7^{2}+14^{2}+(-3)^{2}=49+196+9=254$, the answer is $\left\langle\frac{7}{\sqrt{254}}, \frac{14}{\sqrt{254}}, \frac{-3}{\sqrt{254}}\right\rangle$.
f) What is the value of the largest directional derivative of f at the point $(-1,1,2)$?

Answer $\sqrt{254}$.
2. Suppose that $x^{2}+p x+q$ has roots r and s.

$$
x^{2}+x-6=(x-2)(x+3)
$$

a) Write formulas for r and s as functions of p and q. (Nothing more is asked here: only "high school algebra".)
Answer The roots are $-p \pm \sqrt{p^{2}-4 q}$, so $r=\frac{-p+\sqrt{p^{2}-4 q}}{2}$ and $s=\frac{-p-\sqrt{p^{2}-4 q}}{2}$.
b) Verify that the functions found in a) give 2 and -3 for r and s if $p=1$ and $q=-6$.

Answer $r=\frac{-1+\sqrt{1^{2}-4(-6)}}{2}=\frac{-1+\sqrt{25}}{2}=\frac{4}{2}=2$ and $s=\frac{-1-\sqrt{1^{2}-4(-6)}}{2}=\frac{-1-\sqrt{25}}{2}=\frac{-6}{2}=-3$.
c) Suppose p changes from 1 to 1.03 and q, from -6 to -6.04 . Use linear approximation applied to the functions found in a) to find the approximate changes in the roots r and s.
Answer $\Delta r=r_{p} \triangle p+r_{q} \triangle q$. Here $r_{p}=\frac{-1+\frac{1}{2}\left(p^{2}-4 q\right)^{-1 / 2} 2 p}{2}$ and $r_{q}=\frac{\frac{1}{2}\left(p^{2}-4 q\right)^{-1 / 2}(-4)}{2}$. When $p=1$ and $q=-6, r_{p}=-\frac{2}{5}$ and $r_{q}=-\frac{1}{5}$ so $\Delta r=-\frac{2}{5}(.03)-\frac{1}{5}(-.04)=-.004$. Maple tells me that one root of the modified quadratic is ≈ 1.99602, so this $\triangle r$ looks good.
$\triangle s=s_{p} \triangle p+s_{q} \triangle q$. Here $s_{p}=\frac{-1-\frac{1}{2}\left(p^{2}-4 q\right)^{-1 / 2} 2 p}{2}$ and $s_{q}=-\frac{\frac{1}{2}\left(p^{2}-4 q\right)^{-1 / 2}(-4)}{2}$. When $p=1$ and $q=-6$, $r_{p}=-\frac{3}{5}$ and $r_{q}=\frac{1}{5}$ so $\triangle r=-\frac{3}{5}(.03)+\frac{1}{5}(-.04)=-.026$. Maple tells me that the other root is ≈-3.02602, so $\triangle s$ is also good.
3. a) Find an equation of the plane through $(4,1,-2)$ which contains the line $\mathbf{r}(t)=\langle 4,1,6\rangle+t\langle 1,4,1\rangle$.

Answer The vector from $(4,1,-2)$ to $(4,1,6)$ is $\langle 0,0,8\rangle$ and $\langle 0,0,8\rangle \times\langle 1,4,1\rangle$ is $-32 \mathbf{i}+8 \mathbf{j}$, which is a vector perpendicular to the plane we want. So: $-32(x-4)+8(y-1)=0$.
b) The plane found in a) and the line $\mathbf{s}(t)=\langle-2,0,3\rangle+t\langle 3,1,1\rangle$ intersect. Find the point of intersection.

Answer For the new line, $x=-2+3 t, y=0+1 t$, and $z=3+t$. This is on the plane $-32(x-4)+8(y-1)=0$ when $-32((-2+3 t)-4)+8(t-1)=0$ or $-88 t+56=0$ so $t=\frac{7}{11}$. The point is $\left(-2+3\left(\frac{7}{11}\right), \frac{7}{11}, 3+\left(\frac{7}{11}\right)\right)$. 4. If $x=s^{2}-t^{2}, y=2 s t$, and $z=f(x, y)$, show that $\left(\frac{\partial z}{\partial s}\right)^{2}+\left(\frac{\partial z}{\partial t}\right)^{2}=4 \sqrt{x^{2}+y^{2}}\left(\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}\right)$.

Answer The Chain Rule says that $z_{s}=z_{x} x_{s}+z_{y} y_{s}=z_{x} 2 s+z_{y} 2 t$ and $z_{t}=z_{x} x_{t}+z_{y} y_{t}=z_{x}(-2 t)+z_{y} 2 s$. Therefore $\left(z_{s}\right)^{2}+\left(z_{t}\right)^{2}=\left(z_{x} 2 s+z_{y} 2 t\right)^{2}+\left(z_{x}(-2 t)+z_{y} 2 t\right)^{2}=\left(z_{x}\right)^{2} 4 s^{2}+8 s t+\left(z_{y}\right)^{2} 4 t^{2}\left(z_{x}\right)^{2} 4 t^{2}-8 s t+$ $\left(z_{y}\right)^{2} 4 s^{2}=4\left(s^{2}+t^{2}\right)\left(\left(z_{x}\right)^{2}+\left(z_{y}\right)^{2}\right)$, Since $x=s^{2}-t^{2}$ and $y=2 s t, x^{2}+y^{2}=s^{4}-2 s^{2} t^{2}+t^{4}+4(s t)^{2}=$ $s^{4}+2 s^{2} t^{2}+t^{4}=\left(s^{2}+t^{2}\right)^{2}$, and $\sqrt{x^{2}+y^{2}}=s^{2}+t^{2}$.
5. Find $\lim _{(x, y) \rightarrow(0,0)} \frac{x y \cos y}{3 x^{2}+y^{2}}$ or show that the limit does not exist.

Answer When $x=0, \frac{x y \cos y}{3 x^{2}+y^{2}}$ becomes 0. So if the limit exists, its value should be 0 . When $y=0$, the quotient is also 0 . But if $x=y=t$, then the quotient becomes $\frac{t^{2} \cos t}{4 t^{2}}$ which is $\frac{\cos t}{4}$. As $t \rightarrow 0$, this $\rightarrow \frac{1}{4}$. The limit does not exist.
$* \overline{\text { Yes: } \frac{(-1)^{3}-2(1)(2)}{1^{2}+(-1) 2}=\frac{-1-4}{1-2}=\frac{-5}{-1}=5 .}$
6. Suppose the function $f(x, y)$ with domain all of \mathbb{R}^{2} is defined by $f(x, y)= \begin{cases}y & \text { if } y>x^{2} \\ x & \text { if } y \leq x^{2}\end{cases}$
a) Sketch a graph of $z=f(x, y)$. (You may wish to sketch two graphs and assert that your answer is a combination of these two!)
Answer Here, with some effort, is a Maple graph of this function. Maple does allow functions defined "piecewise" (try help(piecewise)!). A direct plot3d command of the piecewise function gives a rather poor result (try it!) because Maple does not handle "discontinuous" surfaces well. (It has more success in two dimensions, where the option discont=true can be used). What's shown is two different three-dimensional plots displayed together.

b) For which points (x, y) is $f(x, y)$ continuous? Consider all possible points in the domain, \mathbb{R}^{2}. Give some explanations for your answers. Answer Certainly inside each region with the $y=x^{2}$ removed the function is continuous. Thus, if (x, y) satisfies $y<x^{2}$ or, respectively, $y>x^{2}$, then "locally" (in a small disc around the point) $f(x, y)$ is x, respectively y. Polynomials are continuous everywhere. Where else can this function be continuous? Of course, the needed equation is $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=f\left(x_{0}, y_{0}\right)$. This is true at two points on the curve $y=x^{2}$ because the values of y and x agree at these two points! Where are the equations $y=x$ and $y=x^{2}$ both true? The points are $(0,0)$ and $(1,1)$. Everywhere else on the parabola the values of y and x disagree, and the limit itself does not exists. So the function is not continuous at $y=x^{2}$ for $x \neq 0$ and $x \neq 1$, but it is continuous at $(0,0)$ and $(1,1)$.
7. A particle has position vector given by $\mathbf{R}(t)=\frac{1}{t} \mathbf{i}+t^{2} \mathbf{j}-3 t \mathbf{k}$.
a) What are the velocity and acceleration vectors of this particle when $t=1$?

Answer $\mathbf{v}(t)=-\frac{1}{t^{2}} \mathbf{i}+2 t \mathbf{j}-3 \mathbf{k}$ so $\mathbf{v}(1)=-\mathbf{i}+2 \mathbf{j}-3 \mathbf{k}$. Also, $\mathbf{a}(t)=\frac{2}{t^{3}} \mathbf{i}+2 \mathbf{j}+0 \mathbf{k}$ so $\mathbf{a}(1)=2 \mathbf{i}+2 \mathbf{j}$.
b) Write the acceleration vector when $t=1$ as a sum of two vectors, one parallel to the velocity vector when $t=1$ and one perpendicular to the velocity vector when $t=1$.
Answer $|\mathbf{v}(1)|=\sqrt{1+4+9}=\sqrt{14}$, and $\mathbf{a}(1) \cdot \mathbf{v}(1)=-2+4=2$ so that $\mathbf{a}_{\|}=\frac{\mathbf{a}(1) \cdot \mathbf{v}(1)}{|\mathbf{v}(1)|^{2}} \mathbf{v}(1)=$ $\frac{2}{14}(-\mathbf{i}+2 \mathbf{j}-3 \mathbf{k})$. Normal component: $\mathbf{a}_{\perp}=\mathbf{a}-\mathbf{a}_{T}=2 \mathbf{i}+2 \mathbf{j}-\frac{2}{14}(-\mathbf{i}+2 \mathbf{j}-3 \mathbf{k})$. A check: $\mathbf{a}_{\perp} \cdot \mathbf{v}(1)=$ $\left(\frac{15}{7} \mathbf{i}+\frac{12}{7} \mathbf{j}+\frac{3}{7} \mathbf{k}\right) \cdot(-\mathbf{i}+2 \mathbf{j}-3 \mathbf{k})=-\frac{15}{7}+\frac{24}{7}-\frac{9}{7}=0$ so that the "normal" component is perpendicular to the velocity vector, as it's supposed to be.
8. The flight of an airplane is described in this paragraph:

A The plane flies straight north for 30 miles. B The plane then makes a level quarter circular turn of radius $\frac{1}{3}$ mile. There is no change in altitude. C The plane then flies straight east for 20 miles. D The plane then gains altitude, flying on a right circular helical curve which has base radius 2 miles. The plane flies one and half loops of the helix, and has a 5 mile increase in altitude. \mathbf{E} The plane then flies straight west for 10 miles. Early thoughts The length of $\mathbf{B} \approx \frac{1}{4} \cdot 2 \pi \cdot \frac{1}{3} \approx \frac{1}{2}$ and $\kappa=3$. κ^{3-} In \mathbf{D} we have $x=2 \cos t, y=2 \sin t$, and $z=? t$. "One and κ a half loops" means t goes from 0 to 3π. z goes from 0 to 5 . When $t=3 \pi, z=5$. Thus $?(3 \pi)=5$. Since $3 \pi \approx 10, ? \approx \frac{1}{2}$. For the helix, $\kappa=\frac{a}{a^{2}+b^{2}}$ and $\tau=\frac{b}{a^{2}+b^{2}}$. Since $a=2$ and $b \approx .5, \kappa \approx .47$ and $\tau \approx .12$. Student graphs need not have such details! \mathbf{D} 's length is a bit more than $1.5 \cdot 2 \pi \cdot 2 \approx 20$. a) Sketch a graph of the curvature, κ, of the plane flight as a function of the distance the plane has traveled. Write on the horizontal axis the letters $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$, and \mathbf{E} when

A
B C τ^{1-}

B C
D
E

