## TV Review Problems

(1) Find the domain and range of the following functions:
a) $f(x)=\sqrt{x+3}$
b) $g(x)=\frac{4}{x^{4}+1}$
c) $h(x)=\sin (x)$
(2) True or false:
a) $2^{a} 3^{b}=6^{a+b}$
b) $2^{a} 2^{b}=2^{a+b}$
c) $\ln (a+b)=(\ln a)(\ln b)$
d) $e^{\ln a-\ln b}=a / b$
(3) Evaluate the limits if possible or state that it does not exist.
a) $\lim _{x \rightarrow 2} \frac{x^{2}-5}{2 x+3}$
b) $\lim _{x \rightarrow-1} \frac{3 x^{2}+4 x+1}{x+1}$
c) $\lim _{x \rightarrow 9} \frac{x-8}{\sqrt{x}-3}$
d) $\lim _{x \rightarrow 0} \frac{\tan (5 x)}{\tan (6 x)}$
e) $\lim _{x \rightarrow 1} \frac{\left|x^{2}-1\right|}{x-1}$
(4) Prove rigorously that $\lim _{x \rightarrow-1}(4+8 x)=-4$.
(5) Find $a, b$ so that $f(x)$ is continuous.

$$
f(x)= \begin{cases}x^{2}+a & x<2 \\ b-x & -2 \leq x<2 \\ 5 & x=2 \\ c x-x^{2} & 2<x\end{cases}
$$

(6) Complete the following sentences: The limit of $f(x)$ at $a$ exists if.$f(x)$ is continuous at $a$ if $\quad . f(x)$ is differentiable at $a$ if .
(7) Compute the derivative of the following functions from the definition.
a) $f(x)=4-x^{2}$
b) $g(x)=\frac{1}{2-x}$
c) $h(x)=x^{3}$
(8) Find the derivative with respect to $x$.
a) $y=\sin (2 x) \cos ^{2} x$
b) $y=\frac{e^{x}}{x^{2}+1}$
c) $y=\arctan \left(x^{3}+1\right)$
d) $y=x^{\sqrt{x}} x^{\ln x}$
e) $\int_{5}^{\ln x} \sqrt{1-t^{2}} d t$
(9) Find the equation of the tangent line of $y / x=x+y$ at $x=3$.
(10) You are traveling in a rocket which is traveling vertically at a speed of 800 mph . The rocket is tracked through a telescope by your professor which is located 10 miles from the launching pad. Find the rate at which the angle between the telescope and the ground is increasing 3 minutes after lift-off.
(11) Estimate using linear approximation/ linearization $8.1^{1 / 3}-2$.
(12) Find the linearization of $A(r)=4 / 3 \pi r^{3}$ at $a=3$.
(13) Prove that $\sin x-\cos x=3 x$ has exactly one solution.
(14) Sketch the graph of the following functions (find $\mathrm{min} / \mathrm{max}$, inflection points, asymptotes, etc): a) $y=\frac{x}{x^{3}+1}$
b) $y=\left(x^{2}-x\right) e^{-x}$
(15) Evaluate the limits.
a) $\lim _{x \rightarrow \infty} \frac{x^{3}+2 x}{4 x^{3}-9}$
b) $\lim _{x \rightarrow-\infty} \frac{12 x+1}{\sqrt{4 x^{2}+4 x}}$
c) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{\sin x}$
d) $\lim _{x \rightarrow 1}(1+\ln x)^{1 /(x-1)}$
(16) A box is constructed out of two different types of wood. The wood for the square top and bottom cost $\$ 1$ per square foot and the rectangular sides cost $\$ 2$ per square foot. Find the dimensions that minimize the cost if the box has volume V cubic feet.
(17) Use Newton's Method to find a root of $f(x)=x^{2}-x-1$ to two decimal places.
(18) Find the absolute maximum and absolute minimum of $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+7$ on $[-2,3]$.
(19) Find the indefinite integrals.
a) $\int\left(6 x^{7}+4 x^{6}+3 x^{2}\right) d x$
b) $\int(y+2)^{4} d y$
c) $\int x(x+1)^{1 / 4} d x$
d) $\int \frac{\cos \sqrt{x}}{\sqrt{x}} d x$
(20) Evaluate the definite integrals.
a) $\int_{1}^{4} r^{-2} d r$
b) $\int_{0}^{\pi / 4} \sec t \tan t d t$
c) $\int_{0}^{1} \frac{x d x}{\sqrt{1-x^{4}}}$
(21) a) Evaluate the Riemann sum for the function $f(x)=x^{2}$ on the interval $[0,6]$ using six rectangles and right endpoints (i.e. $R_{6}$ ).
b) Find $R_{N}$.
c) Find $\int_{0}^{6} x^{2} d x$ by finding $\lim _{N \rightarrow \infty} R_{N}$. Is it what you expected?
(22) Find the vertical displacement over the time interval $[1,6]$ of a helicopter whose vertical acceleration at time $t$ is $a(t)=2 t+1$ and initial velocity is 0 .
(23) Note: $P(t)=P_{0} e^{k t}$. Find the decay constant of Radium-226 given that its half-life is 1622 years.
(24) Find the area bounded by $y=4-x^{2}$ and $y=x^{2}-4$.

Good luck on the final!

