TV Review Problems

- (1) Find the domain and range of the following functions: a) $f(x) = \sqrt{x+3}$ b) $g(x) = \frac{4}{x^4+1}$ c) $h(x) = \sin(x)$
- (2) True or false: a) $2^a 3^b = 6^{a+b}$ b) $2^a 2^b = 2^{a+b}$ c) $\ln(a+b) = (\ln a)(\ln b)$ d) $e^{\ln a - \ln b} = a/b$
- (3) Evaluate the limits if possible or state that it does not exist. a) $\lim_{x\to 2} \frac{x^2-5}{2x+3}$ b) $\lim_{x\to -1} \frac{3x^2+4x+1}{x+1}$ c) $\lim_{x\to 9} \frac{x-8}{\sqrt{x-3}}$ d) $\lim_{x\to 0} \frac{\tan(5x)}{\tan(6x)}$ e) $\lim_{x\to 1} \frac{|x^2-1|}{x-1}$
- (4) Prove rigorously that $\lim_{x\to -1}(4+8x) = -4$.
- (5) Find a, b so that f(x) is continuous.

$$f(x) = \begin{cases} x^2 + a & x < 2\\ b - x & -2 \le x < 2\\ 5 & x = 2\\ cx - x^2 & 2 < x \end{cases}$$

- (6) Complete the following sentences: The limit of f(x) at a exists if f(x) is continuous at a if f(x) is differentiable at a if f(x).
- (7) Compute the derivative of the following functions from the definition. a) $f(x) = 4 - x^2$ b) $g(x) = \frac{1}{2-x}$ c) $h(x) = x^3$
- (8) Find the derivative with respect to x. a) $y = \sin(2x)\cos^2 x$ b) $y = \frac{e^x}{x^2+1}$ c) $y = \arctan(x^3+1)$ d) $y = x^{\sqrt{x}}x^{\ln x}$ e) $\int_5^{\ln x}\sqrt{1-t^2} dt$
- (9) Find the equation of the tangent line of y/x = x + y at x = 3.

- (10) You are traveling in a rocket which is traveling vertically at a speed of 800mph. The rocket is tracked through a telescope by your professor which is located 10 miles from the launching pad. Find the rate at which the angle between the telescope and the ground is increasing 3 minutes after lift-off.
- (11) Estimate using linear approximation/linearization $8.1^{1/3} 2$.
- (12) Find the linearization of $A(r) = 4/3\pi r^3$ at a = 3.
- (13) Prove that $\sin x \cos x = 3x$ has exactly one solution.
- (14) Sketch the graph of the following functions (find min/max, inflection points, asymptotes, etc): a) $y = \frac{x}{x^3+1}$ b) $y = (x^2 x)e^{-x}$
- (15) Evaluate the limits. a) $\lim_{x\to\infty} \frac{x^3+2x}{4x^3-9}$ b) $\lim_{x\to-\infty} \frac{12x+1}{\sqrt{4x^2+4x}}$ c) $\lim_{x\to0} \frac{e^x-1}{\sin x}$ d) $\lim_{x\to1} (1+\ln x)^{1/(x-1)}$
- (16) A box is constructed out of two different types of wood. The wood for the square top and bottom cost \$1 per square foot and the rectangular sides cost \$ 2 per square foot. Find the dimensions that minimize the cost if the box has volume V cubic feet.
- (17) Use Newton's Method to find a root of $f(x) = x^2 x 1$ to two decimal places.
- (18) Find the absolute maximum and absolute minimum of $f(x) = 3x^4 4x^3 12x^2 + 7$ on [-2,3].
- (19) Find the indefinite integrals. a) $\int (6x^7 + 4x^6 + 3x^2) dx$ b) $\int (y+2)^4 dy$ c) $\int x(x+1)^{1/4} dx$ d) $\int \frac{\cos\sqrt{x}}{\sqrt{x}} dx$

(20) Evaluate the definite integrals.

a)
$$\int_{1}^{4} r^{-2} dr$$
 b) $\int_{0}^{\pi/4} \sec t \tan t \, dt$ c) $\int_{0}^{1} \frac{x \, dx}{\sqrt{1-x^4}}$

- (21) a) Evaluate the Riemann sum for the function f(x) = x² on the interval [0,6] using six rectangles and right endpoints (i.e. R₆).
 b) Find R_N.
 c) Find ∫₀⁶ x² dx by finding lim_{N→∞} R_N. Is it what you expected?
- (22) Find the vertical displacement over the time interval [1,6] of a helicopter whose vertical acceleration at time t is a(t) = 2t + 1 and initial velocity is 0.
- (23) Note: $P(t) = P_0 e^{kt}$. Find the decay constant of Radium-226 given that its half-life is 1622 years.
- (24) Find the area bounded by $y = 4 x^2$ and $y = x^2 4$.

Good luck on the final!