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640:135:8, 9, & 10 Answers to version B of Exam #2 4/15/99

1. A point is moving along the graph of the function y = sinx so that ‘fi—f is 2 centimeters per second. Find y and ‘2—7;’

when z = Z.

Answer y =sin(%) = 1. Use the chain rule: Z—f = (cosz). Ifx =1, % = (cos(%))-2= (@) 2 =+/3.

2. Find the indicated limits. Give evidence to support your answers.
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%1 21 T =3 f But 2 and ; both — 0 as z — +00, so the limit is 3.
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1+ 201
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quotient is therefore which is a large positive number, so the limit is +oo.

small positive #

3. Find all relative maximum and minimum values of the function f(z) = (2% — 3)e®. Briefly explain your answers
using calculus.

Answer Relative extrema must occur at critical numbers. Here f'(z) = 2ze® + (2% — 3)e® = (22 + 2z — 3)e®. f'(z)
exists everywhere, so critical numbers occur where f'(x) = 0. But e > 0 for all x, so we need to know where
22 +2x —3 = (z+3)(x —1) is 0. That happens at z = —3 or x = 1. f'(x) changes sign at —3 and 1. Its sign is
positive for x < —3 and z > 1 and negative for —3 < & < 1. Therefore f is increasing to the left of —3 and decreasing
to the right of —3, and f(—3) = ((—3)? — 3)e™2 ~ .3 is a relative maximum. Since f is decreasing to the right of 1
and increasing to the left of 1, f(1) = ((1)% — 3)e! ~ —5.4 is a relative minimum. f" also gives information about
the critical numbers. f"(z) = (2z + 2)e® + (22 + 2z — 3)e® = (22 + 42 — 1)e® so that f”(—3) = —4e~3 < 0 and
f"(1) = 4e > 0. Again we see f has a relative maximum at —3 and a relative minimum at 1.

Comment In this problem and in problems 5 and 6, please realize again that polynomials in the real world often
don’t factor neatly. An exam is not reality!
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4. The program Maple displays this image when asked to graph the equation
y? = 2% — 3xy + 3. [IN FACT, WHAT IS SHOWN HERE IS THE ORIGINAL PICTURE
TOGETHER WITH THE ANSWER TO PART d).]

a) Verify by substitution that the point P = (—2, 1) is on the graph of the equation.
Answer At (=2,1), 2° — 32y +3 = (-2)> - 3(-2)1+1=-8+6+1=1. But
y? =12 =1 also, so (—2, 1) satisfies the equation.

b) Find % in terms of y and z.

Answer Implicit differentiation with both the chain rule and the product rule
give the following: 2yy’ = 322 — 3y — 3zy’. We solve for y' in two steps. First,

2yy’ + 3xy’ = 322 — 3y and then (since 2yy’ + 3zy’ = (2y + 32)y’) ' = 32‘”;__3?

¢) Find an equation for the line tangent to the graph at the point P = (—2,1).

2 _9\2_ _ .
Answer At P, y' = 32”; +3?;y = 32((1)213(3(21)) = 222 = —%  An equation of the
tangent line must be y —1 = —% (2 — (—2)). This can be “simplified”, if you must, »
toy=—2z-1.

d) Sketch this tangent line in the appropriate place on the image displayed.
Answer [ had Maple draw this. The slope of the line drawn is negative. The
approximate z-intercept of the tangent line also agrees with the previous answer.

5. Suppose W(z) = —12% + 6z — 5Inz.

)

a) Compute W'(z) and W"(x). Where are these functions equal to 0? “10
Answer W(z) = —z+6— 2. W/(z) =0 when —z+6 — 2 =0 or when —z% 4+ 6z —5 = 0 or when 2z — 6z +5 = 0.
But 2> —6z+5=(z —5)(z — 1) so W/(z) =0 at 1 and 5. W"(z) = =1+ 5. Now —1 + % = 0 when z* = 5. This
occurs when = +1/5. Actually the single root of this equation which is in the domain of W"(x) is ++/5 because
the domain of W (z) (which has a logarithm in it!) is only positive 2! Here either the answer ++/5 or the answer
++/5 will be accepted.

b) What is lim W(z)?

z—0t

Answer As © — 0, certainly —%xQ + 6z — 0. Note that to consider Inz we must have z > 0. If z — 0T, then
Inz — —oo. We can put all the pieces together to conclude that W (z) — +o0 as z — 0T.

OVER



(20)

12

c) Sketch a graph on the axes given of y = W(z) for x between 0 and 7. ° I
e Label any relative maxima with an M on your graph.
e Label any relative minima with an m on your graph.
e Label any points of inflection with an I on your graph.

m
Answer Again I asked Maple to draw this picture for me. Then I labeled
the “bumps”, M and m, and the “wiggle”, I. 4
increasing?” Answer 1<z <5
In what interval(s) on decreasing? Answer 0 <z <1&5<2<7 2
this graph is W (z) concave up? Answer 0 <z < V5
concave down? Answer V5 <z <7 L T N N A Jaan

6. A rectangle is bounded by the z-axis and the semicircle y = /25 — 22 (see figure).
What length and width should the rectangle have so that its area is a maximum? o)
Briefly explain using calculus why your answer gives a maximum.

X

-5 0 5
Answer The rectangle’s horizontal dimension (the length) is 2x. Its vertical dimension (the width) is /25 — 22.
The rectangle’s area is A(z) = 2zv/25 — 22. A(z)’s domain is 0 < z < 5. Extreme values are either at critical
numbers or at endpoints. A(0) = 0 and A(5) = 0. A'(z) = 2v/25 — 2% + 2z - $(25 — 2?)~1/2(-2z), which can be

2 2
rewritten algebraically: 2v/25 — 22 — — 22> — 2@8-—27) 227 _ 50—4a®  A1(4) qoesn’t exist at 5 in our domain (when
8 Y V25 —z2 V25—z2 V25—z2

the bottom is 0) but that’s an endpoint and already considered. A’(z) = 0 when 50 — 422 = 0 which happens when

T = % (choose the positive square root to be in our domain). A(%) = 2(\%) 25 — (%)2 and this is a maximum

(see the justification below, please!). The length, 2z, is 5v/2, and the width, v/25 — 22, is /25 — (%)2

The function level The func- The first deri;fative level Since The second derivative level We can compute
tion A(x) attains its maximum at A’(z) = 3242 it is easy to see A"(z). Tt is —82V/25—2?— (50—427) 3 (25—2*) TM/2(—2x)

either endpoints or critical num Y 5 '(z) (V25-27)?
1ther endpoints or critical NnuM- that for 0 < z < 2=, A'(z) > 0 : : _ 5
bers in this closed interval. Its 2 We only need the sign of this when x = 7 The

5 !
value at the endpoints is 0, and and for 5 < r <5, A () < 0. 50 _ 442 term vanishes at this value of z () so A”
its value at the only critical num- Therefore A is increasing to the at the critical number is =32¥25_2% ~ There’s one

. A/ —r2)2 °
ber is clearly positive. Therefore left of % and decreasing to the minus sign and everything( eige g;s) positive. Since
A(z) must attain its maximum at right of \/ij So A(z) must have a4 (%) < 0, A(z) is concave down and A(x) must
the critical number. maximum at z = \% have ; maximumn.
THE ZERO'™ DERIVATIVE TEST THE FIRST DERIVATIVE TEST THE SECOND DERIVATIVE TEST

7. To the right is a graph of h'(x), the derivative of a function, h. Use this graph -
to answer the questions below.
a) Use information from the graph of h'(z) to find the x where the mazimum value
of h in the interval 1 < z < 3 will occur. Briefly explain using calculus why your
answer is correct. Answer There’s exactly one z (~ 1.4) in the interval 1 <2 <3 1
with A'(z) = 0. If 1 < z < 1.4, A'(z) > 0 so there A(z) is increasing, and if
1.4 <z < 3, A(x) < 0 so there A(z) is decreasing. Therefore A has a relative
maximum at 1.4, and A(1.4) > A(z) if z is any other number in the interval. --;
Comment We can’t conclude that A(z)’s maximum value occurs at 1.4 only from
the fact that A(z) has a relative maximum at 1.4. More discussion is needed. -
b) Suppose that h(3) = 5. Use information from the graph and the differential or o o
tangent line approximation to find an approximate value of h(3.04). Briefly explain ~ /'(¥), the derivative of h(z)
using calculus and information from the graph why your approximation for h(3.04) is greater than or less than the
exact value of h(3.04). Answer h(zx + Azx) = h(z) + h'(z)Az. Here x = 3 and Az = .04. We're told that h(3) =5
and the graph shows that h'(3) = —2, so h(2.04) = 5+ (—2) - (.04) = 4.92. The difference between the function and
its tangent line for small Az’s is proportional to the second derivative, h”(z). h”(3) is the derivative

of h'(z) at x = 3. Tangent lines to the graph of h'(z) near z = 3 have positive slope, so h”(3) > 0.

The true value of h(3.04) must be greater than 4.92 because y = h(z) must be concave up near @9

x = 3. Here’s a picture of h(z) and its tangent line near 3, illustrating that A'(3) < 0 and A" (3) > 0.
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