Fei Qi
Office Hours: Tuesday 5-7PM, Hill 624.
or by appointment.
Email: fg15@scarletmail.rutgers.edu
Website: http://math.rutgers.edu/~fg15

Grading breakup:

Homework: 100 pts
Presentation: 50 pts Everyone must present at least once
Midterm x 2: 100 pts x 2. Graded pass/fail.
Final: 200 pts. Discount might be applied for low attendance,
sloppy HW makeup, etc.

Reference:

W. Rudin. Principle of Mathematical Analysis (classical)
V. Zorich. Mathematical Analysis (modern)
A. Mattuck. Introduction to Analysis (easy, wordy)
Polya - Szegö. Problems and Theorems in Mathematical Analysis.

What Analysis studies: Real-valued functions of real variable(s).
or in short, f: \mathbb{R} \to \mathbb{R}

A priori, one has to understand \mathbb{R}.
Geometrically, real numbers \leftrightarrow points on the number line.
Given a point \(x \) on the \(x \)-axis, a function specifies a point \(y \) on the \(y \)-axis for the point \(x \) by \(y = f(x) \).

As \(x \) ranges through \(x \)-axis, all \((x, f(x)) \) on \(xy \)-plane yields the graph of \(f \).

This has been the picture you are familiar with in Computation-Based Calculus. But Arithmetic is going to be trickier.

History of numbers:

- \(\emptyset \) no two fingers are identical
 - abstraction of notion.
- \(\mathbb{Z}^+ \) positive integers
 - we can count the "number" of fingers, or eggs, or leaves, etc.
 - joining zero
- \(\mathbb{N} \) natural numbers
 - addition \(\checkmark \), multiplication \(\checkmark \)
 - subtraction \(x \), e.g. \(x \in \mathbb{N}, a+3=1 \)
- \(\mathbb{Z} \) integers
 - addition \(\checkmark \), multiplication \(\checkmark \), subtraction \(\checkmark \)
 - division \(x \), e.g. \(a \in \mathbb{Z}, a \cdot 3 = 1 \)
- \(\mathbb{Q} \) rational numbers. \((+, -, \times,
\) completely defined.

Remark: Each extension above somehow "completes" an operation. More precisely, some operation is completely defined after some extension.
Question: does rational number represent all possible lengths of segments?

Example: Let c be the length of a diagonal of the unit square.

Pythagorean Thm: $c^2 = 1^2 + 1^2 = 2$

Claim: c is NOT a rational number.

Pf: Suppose otherwise that $c \in \mathbb{Q}$, then

$c \in \mathbb{Q} \Rightarrow \exists p, q \in \mathbb{Z},$ p, q have no common factor, $c = \frac{p}{q}$

$c^2 = 2 \Rightarrow \frac{p^2}{q^2} = 2 \Rightarrow p^2 = 2q^2 \Rightarrow 2 \mid p^2$

2 is a prime, $2 \mid p^2 \Rightarrow 2 \mid p$

(In general, k is prime, $k \mid ab \Rightarrow (k \mid a$ or $k \mid b)$)

Thus $\exists p_1 \in \mathbb{Z},$ $p = 2p_1$

Then $p^2 = 2q^2 \Rightarrow 4p_1^2 = 2q^2 \Rightarrow 2p_1^2 = q^2 \Rightarrow 2 \mid q^2 \Rightarrow 2 \mid q$.

The highlighted facts indicates 2 is a common factor of p and q, contradicting the choice of p, q.

Therefore $c \notin \mathbb{Q}$.

So to represent all possible lengths of segments, \mathbb{Q} is insufficient.

We need another extension $\mathbb{Q} \to \mathbb{R}$. This will be the main topic in the next few classes.
Discuss: (1) Prove \(\sqrt{3} \notin \mathbb{Q} \)

(2) Modify the argument to show \(\sqrt{6} \notin \mathbb{Q} \)

(3) Let \(r \) be a number such that \(2^r = 3 \), prove that \(r \notin \mathbb{Q} \).

Hint: With \(r = \frac{p}{q} \), rewrite \(2^r = 3 \) so that both sides are integers, to find a contradiction.