Recall: Phase Line for first order (linear) autonomous ODE
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Stable equ'ﬂibrfnm

The equilibrium may appear as: stable; semistable; unstable
Phase Portrait: 2-dim generalization

For a homogeneous 2x2 linear system
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(notice the right-hand-side does not depend on t, aka, autonomous)
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is (always) an equilibrium
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Therefore we can talk about its stability. As one might imagine, there are 9
different types.

Example 1: (Nodal Source)
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The eigenvalues are 2 and 1, distinct and both positive. The general

solution is
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To draw the phase portrait: T
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WARNING: We just gave TWO integral curves! None of them ever passes
the origin!

—xi.
(3) Cl': o,G#+0, T’mr\ ?@)= C:.Zt [_.'l ] T
Tt moves Oc[trngv the line %j=-7%,
Whenever- C >0, X&) muves in —the fmw#\ quadrant ;"('
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As + 7, T4 wmovas away From the origin.



Few= e ]+ Qe [L1] dominated by Ce )] (This is becouse .
a opproaches to 0

Xt) =, elf[ ; ] + et [_,,:l dowi nacted E\a Cle'b[_ “\J MUcH faseor than e*)
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Remark: The equilibrium is obviously "unstable" under perturbation in all
directions. The term nodal means it's not "degenerate" (a degenerate
example will seen in the case of repeated eigenvalue). The term source is
self-evident if you imagine the integral curves as "flows".

Remark: The above process can actually be simplified, as will be seen
from the next example.

Example 2: (Nodal Sink)
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The eigenvalues are -2 and -1, distinct and both negative. The general

solution is
X 2t | | st !
[X{J:C'C t[‘l] raét(]

The phase portrait is almost the same as above, except the arrows are
reversed and also the integral curves are curved differently.
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(2) Look at ?ateric Cula
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(4) Traw all othe curves.

N,
7

<

Remark: The equilibrium is "stable" x_/

under perturbation to all directions.
The term sink is self-evident.
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Example 3: (Saddle Point)
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The eigenvalues are 2 and -1, one positive and the other negative. The
general solution is

[)-ae )] ael]

The phase would be very different. To draw it:
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(1) Tovst mark the e?,i(?ibriun omd  drow a'onz +the
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Remark: In this case the equilibrium is "stable" under perturbation from
one direction but "unstable" from ALL other directions. This is far from
being "semistable" and basically speaking it's "unstable”.

Remark: Situation in 2x2 system is so different that we should use a
completely new set of terminologies. The term saddle point is clear if the
integral curves are "imagined" as the gradient field (in fact it is the "flow"
generated by the gradient field).



Example 4: (Proper Node)
[Y./J: [& O} EY}
X: O CQ. ’7(9.

The eigenvalues are 2 and 2, repeated and positive. For this special case,
one can find two linearly independent eigenvectors and write the general

solution as
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Notice that every vector in the plane is now an eigenvector. So the
integral curve is a straight line and the phase portrait looks like
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Exercise: Draw the phase portrait for the following system
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Example 5: (Improper Node)
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The eigenvalues are 0 and 0, repeated zero. For this matrix one can
obtain only "one" eigenvector and to solve the system one has to get the
generalized eigenvector. The general solution is

GlRaeli]ra(+ 0+ E)
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The phase portrait for this system is different but easy

(1) Mack +he equilibrism [ o]
Set Ci#0, Ca=0
Obsevve that W is c«ms-hm{-[:g [_CC'J
So eveny 'Fm'n-t a[on?-l-lu Lina is on e?m'-&'loh‘m.
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yith NJO omows.

(2) Set C,=0,Cito.
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“Hat s 'me.”l.ﬁ.

So "l’l\«.s I's '!'L.L /Flwu'e W‘f,




Example 5: (Improper Node)
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The eigenvalues are 3 and 3, repeated and positive. For this matrix one
can obtain only "one" eigenvector and to solve the system one has to get
the generalized eigenvector. The general solution is

l-adli]radt R+
= (C' [—lll +G {T} Clt[-'lDeﬁ

This case differs to above by simply an exponential factor. We shall use
the above example to figure out what we have here.

~

(1) A[onj the Line olafined \93 the &'304%66'(107,
0<ue +o -('Lg Twc{enu -’{) Cu,
2 6 s g e [
Mowk the Wzd 2igenvectsr U= 4] —
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B) t-5-c0 RO a‘(:?maclus 4o [Z}
K ) dominated, by c.'c[_'d &t
A1) dominated by 5[ ]€*
Metice t<o, <o He in-bugnogs cume tands o [g}
tangently o [‘[l]

4) Traw the othe fn'b.qug cumves

(5) tor Gaeo, vepeat the mxl}rﬂk above
'f'o 13;.!‘ Hhe Tllm Tx’»"h-':f as gewum,

Remark: This differs to the degenerate
case by an exponential factor, which can
be thought as "winding" the straight lines
into curved lines.
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Example 6: (Improper Node)

The eigenvalues are -3 and -3, repeated and positive. For this matrix one
can obtain only "one" eigenvector and to solve the system one has to get

the generalized eigenvector. The general solution is

e rad <[]+
= (e[3]relfTrae])e"



