What you should learn from Recitation 9: Laplace Transforms

Fei Qi

Rutgers University

fq15@math.rutgers.edu

April 6, 2014
The slides are intended to serve as records for a recitation for math 244 course. It should never serve as any replacement for formal lectures or as any reviewing material. The author is not responsible for consequences brought by inappropriate use.

There may be errors. Use them at your own discretion. Anyone who notify me with an error will get some award in grade points.
Given function $f(t)$,
Laplace Transform

Given function $f(t)$, the Laplace transform $\mathcal{L}f(t)$ is the following function $F(s)$

$$F(s) = \mathcal{L}f(t) = \int_{0}^{\infty} e^{-st} f(t) \, dt$$

And we have the following properties

Linearity:
For any numbers k_1, k_2,
$$\mathcal{L}(k_1 f_1(t) + k_2 f_2(t)) = k_1 \mathcal{L}(f_1(t)) + k_2 \mathcal{L}(f_2(t))$$

Injectivity:
If $f_1(t); f_2(t)$ are continuous and $\mathcal{L}(f_1(t)) = \mathcal{L}(f_2(t))$,
then $f_1(t) = f_2(t)$.

Injectivity':
If $f_1(t)$ and $f_2(t)$ are piecewise continuous and $\mathcal{L}(f_1(t)) = \mathcal{L}(f_2(t))$,
then $f_1(t)$ and $f_2(t)$ may differ at the discontinuous points (which we don't quite care in applications).

Remark: The inverse Laplace transform exists and can be defined via complex functions, the theory of which could be seen in Calc5.

Fei Qi (Rutgers University)
Laplace Transform

Given function $f(t)$, the Laplace transform $\mathcal{L}f(t)$ is the following function $F(s)$ defined through an improper integral:

$$F(s) = \mathcal{L}(f(t)) = \int_0^\infty e^{-st}f(t)\,dt$$

And we have the following properties

Linearity:

For any numbers k_1, k_2,

$$\mathcal{L}(k_1 f_1(t) + k_2 f_2(t)) = k_1 \mathcal{L}(f_1(t)) + k_2 \mathcal{L}(f_2(t))$$

Injectivity:

If $f_1(t), f_2(t)$ are continuous and $\mathcal{L}(f_1(t)) = \mathcal{L}(f_2(t))$, then $f_1(t) = f_2(t)$.

Injectivity':

If $f_1(t)$ and $f_2(t)$ are piecewise continuous and $\mathcal{L}(f_1(t)) = \mathcal{L}(f_2(t))$, then $f_1(t)$ and $f_2(t)$ may differ at the discontinuous points (which we don't quite care in applications).

Remark: The inverse Laplace transform exists and can be defined via complex functions, the theory of which could be seen in Calc5.
Given function $f(t)$, the Laplace transform $\mathcal{L}f(t)$ is the following function $F(s)$ defined through an improper integral:

$$F(s) = \mathcal{L}(f(t)) = \int_0^\infty e^{-st} f(t) dt.$$
Laplace Transform

Given function \(f(t) \), the Laplace transform \(\mathcal{L}f(t) \) is the following function \(F(s) \) defined through an improper integral:

\[
F(s) = \mathcal{L}(f(t)) = \int_{0}^{\infty} e^{-st} f(t) dt.
\]

And we have the following properties
Laplace Transform

Given function \(f(t) \), the Laplace transform \(\mathcal{L}f(t) \) is the following function \(F(s) \) defined through an improper integral:

\[
F(s) = \mathcal{L}(f(t)) = \int_0^\infty e^{-st} f(t) \, dt.
\]

And we have the following properties

- **Linearity:**

 For any numbers \(k_1 \) and \(k_2 \),

 \[
 L(k_1 f_1(t) + k_2 f_2(t)) = k_1 L(f_1(t)) + k_2 L(f_2(t)).
 \]
Laplace Transform

Given function $f(t)$, the Laplace transform $\mathcal{L}f(t)$ is the following function $F(s)$ defined through an improper integral:

$$F(s) = \mathcal{L}(f(t)) = \int_0^\infty e^{-st} f(t)dt.$$

And we have the following properties

- **Linearity**: For any numbers k_1, k_2,
Laplace Transform

Given function \(f(t) \), the Laplace transform \(\mathcal{L}f(t) \) is the following function \(F(s) \) defined through an improper integral:

\[
F(s) = \mathcal{L}(f(t)) = \int_{0}^{\infty} e^{-st} f(t) dt.
\]

And we have the following properties

- Linearity: For any numbers \(k_1, k_2 \),

\[
\mathcal{L}(k_1 f_1(t) + k_2 f_2(t)) = k_1 \mathcal{L}(f_1(t)) + k_2 \mathcal{L}(f_2(t)).
\]
Given function $f(t)$, the Laplace transform $\mathcal{L}f(t)$ is the following function $F(s)$ defined through an improper integral:

$$F(s) = \mathcal{L}(f(t)) = \int_0^\infty e^{-st}f(t)dt.$$

And we have the following properties

- **Linearity:** For any numbers k_1, k_2,

$$\mathcal{L}(k_1f_1(t) + k_2f_2(t)) = k_1\mathcal{L}(f_1(t)) + k_2\mathcal{L}(f_2(t)).$$

- **Injectivity:**
Laplace Transform

Given function \(f(t) \), the Laplace transform \(\mathcal{L}f(t) \) is the following function \(F(s) \) defined through an improper integral:

\[
F(s) = \mathcal{L}(f(t)) = \int_{0}^{\infty} e^{-st} f(t) dt.
\]

And we have the following properties

- **Linearity:** For any numbers \(k_1, k_2 \),
 \[
 \mathcal{L}(k_1 f_1(t) + k_2 f_2(t)) = k_1 \mathcal{L}(f_1(t)) + k_2 \mathcal{L}(f_2(t)).
 \]

- **Injectivity:** If \(f_1(t), f_2(t) \) are continuous and \(\mathcal{L}(f_1(t)) = \mathcal{L}(f_2(t)) \),
Laplace Transform

Given function \(f(t) \), the Laplace transform \(\mathcal{L}f(t) \) is the following function \(F(s) \) defined through an improper integral:

\[
F(s) = \mathcal{L}(f(t)) = \int_0^\infty e^{-st}f(t)\,dt.
\]

And we have the following properties

- **Linearity:** For any numbers \(k_1, k_2 \),
 \[
 \mathcal{L}(k_1 f_1(t) + k_2 f_2(t)) = k_1 \mathcal{L}(f_1(t)) + k_2 \mathcal{L}(f_2(t)).
 \]

- **Injectivity:** If \(f_1(t), f_2(t) \) are continuous and \(\mathcal{L}(f_1(t)) = \mathcal{L}(f_2(t)) \), then \(f_1(t) = f_2(t) \).
Laplace Transform

Given function $f(t)$, the Laplace transform $\mathcal{L}f(t)$ is the following function $F(s)$ defined through an improper integral:

$$F(s) = \mathcal{L}(f(t)) = \int_0^\infty e^{-st}f(t)dt.$$

And we have the following properties

- **Linearity:** For any numbers k_1, k_2,
 $$\mathcal{L}(k_1f_1(t) + k_2f_2(t)) = k_1\mathcal{L}(f_1(t)) + k_2\mathcal{L}(f_2(t)).$$

- **Injectivity:** If $f_1(t), f_2(t)$ are continuous and $\mathcal{L}(f_1(t)) = \mathcal{L}(f_2(t))$, then $f_1(t) = f_2(t)$.
- **Injectivity’:**
Laplace Transform

Given function \(f(t) \), the Laplace transform \(\mathcal{L}f(t) \) is the following function \(F(s) \) defined through an improper integral:

\[
F(s) = \mathcal{L}(f(t)) = \int_0^\infty e^{-st} f(t) dt.
\]

And we have the following properties

- **Linearity**: For any numbers \(k_1, k_2 \),
 \[
 \mathcal{L}(k_1 f_1(t) + k_2 f_2(t)) = k_1 \mathcal{L}(f_1(t)) + k_2 \mathcal{L}(f_2(t)).
 \]

- **Injectivity**: If \(f_1(t), f_2(t) \) are continuous and \(\mathcal{L}(f_1(t)) = \mathcal{L}(f_2(t)) \), then \(f_1(t) = f_2(t) \).
- **Injectivity’**: If \(f_1(t) \) and \(f_2(t) \) are piecewise continuous and \(\mathcal{L}(f_1(t)) = \mathcal{L}(f_2(t)) \),
Laplace Transform

Given function \(f(t) \), the Laplace transform \(\mathcal{L}f(t) \) is the following function \(F(s) \) defined through an improper integral:

\[
F(s) = \mathcal{L}(f(t)) = \int_{0}^{\infty} e^{-st} f(t) dt.
\]

And we have the following properties

- **Linearity**: For any numbers \(k_1, k_2 \),
 \[
 \mathcal{L}(k_1 f_1(t) + k_2 f_2(t)) = k_1 \mathcal{L}(f_1(t)) + k_2 \mathcal{L}(f_2(t)).
 \]

- **Injectivity**: If \(f_1(t), f_2(t) \) are continuous and \(\mathcal{L}(f_1(t)) = \mathcal{L}(f_2(t)) \), then \(f_1(t) = f_2(t) \).

- **Injectivity'**: If \(f_1(t) \) and \(f_2(t) \) are piecewise continuous and \(\mathcal{L}(f_1(t)) = \mathcal{L}(f_2(t)) \), then \(f_1(t) \) and \(f_2(t) \) may differ at the discontinuous points.
Laplace Transform

Given function $f(t)$, the Laplace transform $\mathcal{L}f(t)$ is the following function $F(s)$ defined through an improper integral:

$$F(s) = \mathcal{L}(f(t)) = \int_0^\infty e^{-st}f(t)dt.$$

And we have the following properties

- **Linearity**: For any numbers k_1, k_2,
 $$\mathcal{L}(k_1f_1(t) + k_2f_2(t)) = k_1\mathcal{L}(f_1(t)) + k_2\mathcal{L}(f_2(t)).$$

- **Injectivity**: If $f_1(t), f_2(t)$ are continuous and $\mathcal{L}(f_1(t)) = \mathcal{L}(f_2(t))$, then $f_1(t) = f_2(t)$.

- **Injectivity’**: If $f_1(t)$ and $f_2(t)$ are piecewise continuous and $\mathcal{L}(f_1(t)) = \mathcal{L}(f_2(t))$, then $f_1(t)$ and $f_2(t)$ may differ at the discontinuous points (which we don’t quite care in applications).

Remark: The inverse Laplace transform exists and can be defined via complex functions, the theory of which could be seen in Calc5.
Laplace Transform

Given function \(f(t) \), the Laplace transform \(\mathcal{L}f(t) \) is the following function \(F(s) \) defined through an improper integral:

\[
F(s) = \mathcal{L}(f(t)) = \int_0^\infty e^{-st} f(t) dt.
\]

And we have the following properties

- **Linearity:** For any numbers \(k_1, k_2 \),

 \[
 \mathcal{L}(k_1 f_1(t) + k_2 f_2(t)) = k_1 \mathcal{L}(f_1(t)) + k_2 \mathcal{L}(f_2(t)).
 \]

- **Injectivity:** If \(f_1(t), f_2(t) \) are continuous and \(\mathcal{L}(f_1(t)) = \mathcal{L}(f_2(t)) \), then \(f_1(t) = f_2(t) \).

- **Injectivity’:** If \(f_1(t) \) and \(f_2(t) \) are piecewise continuous and \(\mathcal{L}(f_1(t)) = \mathcal{L}(f_2(t)) \), then \(f_1(t) \) and \(f_2(t) \) may differ at the discontinuous points (which we don’t quite care in applications).

Remark: The inverse Laplace transform exists and can be defined via complex functions, the theory of which could be seen in Calc5.
Mostly commonly used Laplace transforms

The following formulas are supposed to be memorized
Mostly commonly used Laplace transforms

The following formulas are supposed to be memorized

\[f(t) = 1 \]
Mostly commonly used Laplace transforms

The following formulas are supposed to be memorized

\[f(t) = 1 \quad \leftrightarrow \quad F(s) = \frac{1}{s} \quad (s > 0) \]
Mostly commonly used Laplace transforms

The following formulas are supposed to be memorized

\[f(t) = 1 \iff F(s) = \frac{1}{s} \quad (s > 0) \]

\[f(t) = t^n \]
Mostly commonly used Laplace transforms

The following formulas are supposed to be memorized

\[f(t) = 1 \implies F(s) = \frac{1}{s} \quad (s > 0) \]

\[f(t) = t^n \implies F(s) = \frac{n!}{s^{n+1}} \quad (s > 0) \]
Mostly commonly used Laplace transforms

The following formulas are supposed to be memorized

\[f(t) = 1 \quad \leadsto \quad F(s) = \frac{1}{s} \quad (s > 0) \]

\[f(t) = t^n \quad \leadsto \quad F(s) = \frac{n!}{s^{n+1}} \quad (s > 0) \]

\[f(t) = e^{at} \]
Mostly commonly used Laplace transforms

The following formulas are supposed to be memorized

\[f(t) = 1 \implies F(s) = \frac{1}{s} \quad (s > 0) \]

\[f(t) = t^n \implies F(s) = \frac{n!}{s^{n+1}} \quad (s > 0) \]

\[f(t) = e^{at} \implies F(s) = \frac{1}{s - a} \quad (s > a) \]
Mostly commonly used Laplace transforms

The following formulas are supposed to be memorized

\[f(t) = 1 \quad \implies \quad F(s) = \frac{1}{s} \quad (s > 0) \]
\[f(t) = t^n \quad \implies \quad F(s) = \frac{n!}{s^{n+1}} \quad (s > 0) \]
\[f(t) = e^{at} \quad \implies \quad F(s) = \frac{1}{s - a} \quad (s > a) \]
\[f(t) = \cos bt \]
Mostly commonly used Laplace transforms

The following formulas are supposed to be memorized

\[f(t) = 1 \quad \implies \quad F(s) = \frac{1}{s} \quad (s > 0) \]

\[f(t) = t^n \quad \implies \quad F(s) = \frac{n!}{s^{n+1}} \quad (s > 0) \]

\[f(t) = e^{at} \quad \implies \quad F(s) = \frac{1}{s - a} \quad (s > a) \]

\[f(t) = \cos bt \quad \implies \quad F(s) = \frac{s}{s^2 + b^2} \quad (s > 0) \]
Mostly commonly used Laplace transforms

The following formulas are supposed to be memorized

\[f(t) = 1 \quad \leadsto \quad F(s) = \frac{1}{s} \quad (s > 0) \]

\[f(t) = t^n \quad \leadsto \quad F(s) = \frac{n!}{s^{n+1}} \quad (s > 0) \]

\[f(t) = e^{at} \quad \leadsto \quad F(s) = \frac{1}{s - a} \quad (s > a) \]

\[f(t) = \cos bt \quad \leadsto \quad F(s) = \frac{s}{s^2 + b^2} \quad (s > 0) \]

\[f(t) = \sin bt \]
Mostly commonly used Laplace transforms

The following formulas are supposed to be memorized

\[f(t) = 1 \quad \implies \quad F(s) = \frac{1}{s} \quad (s > 0) \]

\[f(t) = t^n \quad \implies \quad F(s) = \frac{n!}{s^{n+1}} \quad (s > 0) \]

\[f(t) = e^{at} \quad \implies \quad F(s) = \frac{1}{s - a} \quad (s > a) \]

\[f(t) = \cos bt \quad \implies \quad F(s) = \frac{s}{s^2 + b^2} \quad (s > 0) \]

\[f(t) = \sin bt \quad \implies \quad F(s) = \frac{b}{s^2 + b^2} \quad (s > 0) \]
Also there are two formulas that will be extremely useful and therefore shall be memorized.
Also there are two formulas that will be extremely useful and therefore shall be memorized.

- **Exponential shift formula**
Also there are two formulas that will be extremely useful and therefore shall be memorized.

- Exponential shift formula

\[\mathcal{L}(e^{at}f(t)) = F(s - a) \]
Exponential Shift Formula, \(t \)-axis Translation formula

Also there are two formulas that will be extremely useful and therefore shall be memorized.

- **Exponential shift formula**

\[
\mathcal{L}(e^{at}f(t)) = F(s - a)
\]

where \(F(s) = \mathcal{L}(f(t)) \).
Also there are two formulas that will be extremely useful and therefore shall be memorized.

- **Exponential shift formula**
 \[
 \mathcal{L}(e^{at}f(t)) = F(s - a)
 \]
 where \(F(s) = \mathcal{L}(f(t))\).

- **t-axis translation formula**
 \[
 \mathcal{L}(u_c(t)f(t)) = e^{-cs}F(s)
 \]
Also there are two formulas that will be extremely useful and therefore shall be memorized.

- **Exponential shift formula**

 \[\mathcal{L}(e^{at}f(t)) = F(s - a) \]

 where \(F(s) = \mathcal{L}(f(t)) \).

- **t-axis translation formula**

 \[\mathcal{L}(u_c(t)f(t - c)) = F(s), \]

 as showed in MIT Lecture 22.

It might help to avoid the complication brought by \(f(t - c) \).
Also there are two formulas that will be extremely useful and therefore shall be memorized.

- **Exponential shift formula**
 \[\mathcal{L}(e^{at}f(t)) = F(s - a) \]
 where \(F(s) = \mathcal{L}(f(t)) \).

- **t-axis translation formula**
 \[\mathcal{L}(u_c(t)f(t - c)) = F(s), \]
 where \(F(s) = \mathcal{L}(f(t)) \).
Also there are two formulas that will be extremely useful and therefore shall be memorized.

- **Exponential shift formula**
 \[\mathcal{L}(e^{at}f(t)) = F(s - a) \]
 where \(F(s) = \mathcal{L}(f(t)) \).

- **t-axis translation formula**
 \[\mathcal{L}(u_c(t)f(t - c)) = F(s), \]
 where \(F(s) = \mathcal{L}(f(t)) \).

- A more useful version of the t-axis translation formula,
Exponential Shift Formula, \(t \)-axis Translation formula

Also there are two formulas that will be extremely useful and therefore shall be memorized.

- **Exponential shift formula**

 \[
 \mathcal{L}(e^{at}f(t)) = F(s - a)
 \]

 where \(F(s) = \mathcal{L}(f(t)) \).

- **\(t \)-axis translation formula**

 \[
 \mathcal{L}(u_c(t)f(t - c)) = e^{-cs} \mathcal{L}(f(t))
 \]

 where \(F(s) = \mathcal{L}(f(t)) \).

- A more useful version of the \(t \)-axis translation formula, as showed in MIT Lecture 22, is
Also there are two formulas that will be extremely useful and therefore shall be memorized.

- **Exponential shift formula**

 \[\mathcal{L}(e^{at}f(t)) = F(s - a) \]

 where \(F(s) = \mathcal{L}(f(t)) \).

- **t-axis translation formula**

 \[\mathcal{L}(u_c(t)f(t - c)) = F(s), \]

 where \(F(s) = \mathcal{L}(f(t)) \).

- A more useful version of the t-axis translation formula, as showed in MIT Lecture 22, is

 \[\mathcal{L}(u_c(t)) \]
Also there are two formulas that will be extremely useful and therefore shall be memorized.

- **Exponential shift formula**
 \[
 \mathcal{L}(e^{at}f(t)) = F(s - a)
 \]
 where \(F(s) = \mathcal{L}(f(t)) \).

- **\(t\)-axis translation formula**
 \[
 \mathcal{L}(u_c(t)f(t - c)) = F(s),
 \]
 where \(F(s) = \mathcal{L}(f(t)) \).

- A more useful version of the \(t\)-axis translation formula, as showed in MIT Lecture 22, is
 \[
 \mathcal{L}(u_c(t)f(t))
 \]
Exponential Shift Formula, \(t \)-axis Translation formula

Also there are two formulas that will be extremely useful and therefore shall be memorized.

- Exponential shift formula

\[
\mathcal{L}(e^{at}f(t)) = F(s-a)
\]

where \(F(s) = \mathcal{L}(f(t)) \).

- \(t \)-axis translation formula

\[
\mathcal{L}(u_c(t)f(t-c)) = F(s),
\]

where \(F(s) = \mathcal{L}(f(t)) \).

- A more useful version of the \(t \)-axis translation formula, as showed in MIT Lecture 22, is

\[
\mathcal{L}(u_c(t)f(t)) = e^{-cs}
\]
Exponential Shift Formula, t-axis Translation formula

Also there are two formulas that will be extremely useful and therefore shall be memorized.

- **Exponential shift formula**

 \[\mathcal{L}(e^{at}f(t)) = F(s - a) \]

 where \(F(s) = \mathcal{L}(f(t)) \).

- **t-axis translation formula**

 \[\mathcal{L}(u_c(t)f(t - c)) = F(s), \]

 where \(F(s) = \mathcal{L}(f(t)) \).

- A more useful version of the t-axis translation formula, as showed in MIT Lecture 22, is

 \[\mathcal{L}(u_c(t)f(t)) = e^{-cs} \mathcal{L}(f(t + c)), \]
Also there are two formulas that will be extremely useful and therefore shall be memorized.

- **Exponential shift formula**
 \[\mathcal{L}(e^{at}f(t)) = F(s - a) \]
 where \(F(s) = \mathcal{L}(f(t)) \).

- **t-axis translation formula**
 \[\mathcal{L}(u_c(t)f(t - c)) = F(s), \]
 where \(F(s) = \mathcal{L}(f(t)) \).

- A more useful version of the \(t \)-axis translation formula, as showed in MIT Lecture 22, is
 \[\mathcal{L}(u_c(t)f(t)) = e^{-cs} \mathcal{L}(f(t + c)), \]
 It might help to avoid the complication brought by \(f(t - c) \).
Derivative formulas

In order to use Laplace transform to solve ODEs, you should also memorize these formulas:

\[L(f'(t)) = sF(s) - f(0) \]

\[L(f''(t)) = s^2F(s) - sf(0) - f'(0) \]

\[L(f'''(t)) = s^3F(s) - s^2f(0) - sf'(0) - f''(0) \]

\[L(f''''(t)) = s^4F(s) - s^3f(0) - s^2f'(0) - sf''(0) - f'''(0) \]

Attention: Don't mess up with the signs! From the second term on, everything is negative.
Derivative formulas

In order to use Laplace transform to solve ODEs, you should also memorize these formulas: Assuming $\mathcal{L}(f(t)) = F(s)$:

\[
\mathcal{L}(f'(t)) = sF(s) - f(0)
\]

\[
\mathcal{L}(f''(t)) = s^2F(s) - sf(0) - f'(0)
\]

\[
\mathcal{L}(f'''(t)) = s^3F(s) - s^2f(0) - 2sf'(0) - f''(0)
\]

Attention: Don't mess up with the signs! From the second term on, everything is negative.
In order to use Laplace transform to solve ODEs, you should also memorize these formulas: Assuming $\mathcal{L}(f(t)) = F(s)$:

\[
\mathcal{L}(f'(t)) = sF(s) - f(0)
\]

\[
\mathcal{L}(f''(t)) = s^2F(s) - sf(0) - f'(0)
\]

\[
\mathcal{L}(f'''(t)) = s^3F(s) - s^2f(0) - sf'(0) - f''(0)
\]

\[
\mathcal{L}(f''''(t)) = s^4F(s) - s^3f(0) - s^2f'(0) - sf''(0) - f'''(0)
\]

Attention: Don't mess up with the signs! From the second term on, everything is negative.
In order to use Laplace transform to solve ODEs, you should also memorize these formulas: Assuming $\mathcal{L}(f(t)) = F(s)$:

\[
\mathcal{L}(f'(t)) = sF(s) - f(0)
\]
Derivative formulas

In order to use Laplace transform to solve ODEs, you should also memorize these formulas: Assuming $\mathcal{L}(f(t)) = F(s)$:

$$
\mathcal{L}(f'(t)) = sF(s) - f(0)
$$

$$
\mathcal{L}(f''(t)) = s^2F(s) - sf(0) - f'(0)
$$
In order to use Laplace transform to solve ODEs, you should also memorize these formulas: Assuming $\mathcal{L}(f(t)) = F(s)$:

$$
\begin{align*}
\mathcal{L}(f'(t)) &= sF(s) - f(0) \\
\mathcal{L}(f''(t)) &= s^2F(s) - sf(0) - f'(0)
\end{align*}
$$
In order to use Laplace transform to solve ODEs, you should also memorize these formulas: Assuming $\mathcal{L}(f(t)) = F(s)$:

\[
\begin{align*}
\mathcal{L}(f'(t)) &= sF(s) - f(0) \\
\mathcal{L}(f''(t)) &= s^2F(s) - sf(0) - f'(0) \\
\mathcal{L}(f^{(3)}(t)) &= s^3F(s) - s^2f(0) - sf'(0) - f''(0)
\end{align*}
\]
In order to use Laplace transform to solve ODEs, you should also memorize these formulas: Assuming $\mathcal{L}(f(t)) = F(s)$:

\[
\begin{align*}
\mathcal{L}(f'(t)) &= sF(s) - f(0) \\
\mathcal{L}(f''(t)) &= s^2 F(s) - sf(0) - f'(0) \\
\mathcal{L}(f^{(3)}(t)) &= s^3 F(s) - s^2 f(0) - sf'(0) - f''(0)
\end{align*}
\]
Derivative formulas

In order to use Laplace transform to solve ODEs, you should also memorize these formulas: Assuming $\mathcal{L}(f(t)) = F(s)$:

\[
\begin{align*}
\mathcal{L}(f'(t)) &= sF(s) - f(0) \\
\mathcal{L}(f''(t)) &= s^2 F(s) - sf(0) - f'(0) \\
\mathcal{L}(f^{(3)}(t)) &= s^3 F(s) - s^2 f(0) - sf'(0) - f''(0) \\
\mathcal{L}(f^{(4)}(t)) &= s^4 F(s) - s^3 f(0) - s^2 f'(0) - sf''(0) - f'''(0)
\end{align*}
\]

Attention: Don’t mess up with the signs! From the second term on, everything is negative.
In order to use Laplace transform to solve ODEs, you should also memorize these formulas: Assuming $\mathcal{L}(f(t)) = F(s)$:

\[
\begin{align*}
\mathcal{L}(f'(t)) &= sF(s) - f(0) \\
\mathcal{L}(f''(t)) &= s^2F(s) - sf(0) - f'(0) \\
\mathcal{L}(f^{(3)}(t)) &= s^3F(s) - s^2f(0) - sf'(0) - f''(0) \\
\mathcal{L}(f^{(4)}(t)) &= s^4F(s) - s^3f(0) - s^2f'(0) - sf''(0) - f^{(3)}(0)
\end{align*}
\]
Derivative formulas

In order to use Laplace transform to solve ODEs, you should also memorize these formulas: Assuming $L(f(t)) = F(s)$:

\begin{align*}
L(f'(t)) &= sF(s) - f(0) \\
L(f''(t)) &= s^2F(s) - sf(0) - f'(0) \\
L(f^{(3)}(t)) &= s^3F(s) - s^2f(0) - sf'(0) - f''(0) \\
L(f^{(4)}(t)) &= s^4F(s) - s^3f(0) - s^2f'(0) - sf''(0) - f^{(3)}(0)
\end{align*}

Attention: Don’t mess up with the signs! From the second term on, everything is negative.
Find the solution to the following IVP:

\[y'' - 3y' + 2y = e^t, \quad y(0) = 0, \quad y'(0) = 1 \]
Quiz Problem 2

Find the solution to the following IVP:

\[y'' - 3y' + 2y = e^t, \quad y(0) = 0, \quad y'(0) = 1 \]

- Perform the Laplace transform:
Quiz Problem 2

Find the solution to the following IVP:

\[y'' - 3y' + 2y = e^t, \quad y(0) = 0, \quad y'(0) = 1 \]

Perform the Laplace transform: Let \(Y(s) = \mathcal{L}(y(t)) \),
Quiz Problem 2

Find the solution to the following IVP:

\[y'' - 3y' + 2y = e^t, \quad y(0) = 0, \quad y'(0) = 1 \]

- Perform the Laplace transform: Let \(Y(s) = \mathcal{L}(y(t)) \), then

\[
(s^2 Y(s) - sy(0) - y'(0))
\]
Quiz Problem 2

Find the solution to the following IVP:

\[y'' - 3y' + 2y = e^t, \quad y(0) = 0, \quad y'(0) = 1 \]

- Perform the Laplace transform: Let \(Y(s) = \mathcal{L}(y(t)) \), then

\[
(s^2 Y(s) - sy(0) - y'(0)) - 3(sY(s) - y(0))
\]
Quiz Problem 2

Find the solution to the following IVP:

\[y'' - 3y' + 2y = e^t, \quad y(0) = 0, \quad y'(0) = 1 \]

Perform the Laplace transform: Let \(Y(s) = \mathcal{L}(y(t)) \), then

\[
(s^2 Y(s) - sy(0) - y'(0)) - 3(sY(s) - y(0)) + 2Y(s)
\]
Quiz Problem 2

Find the solution to the following IVP:

\[y'' - 3y' + 2y = e^t, \quad y(0) = 0, \quad y'(0) = 1 \]

Perform the Laplace transform: Let \(Y(s) = \mathcal{L}(y(t)) \), then

\[
(s^2 Y(s) - sy(0) - y'(0)) - 3(sY(s) - y(0)) + 2Y(s) = \frac{1}{s - 1},
\]
Quiz Problem 2

Find the solution to the following IVP:

\[y'' - 3y' + 2y = e^t, \ y(0) = 0, \ y'(0) = 1 \]

Perform the Laplace transform: Let \(Y(s) = \mathcal{L}(y(t)) \), then

\[
(s^2 Y(s) - sy(0) - y'(0)) - 3(sY(s) - y(0)) + 2Y(s) = \frac{1}{s - 1},
\]

Putting in \(y(0) \) and \(y'(0) \):
Quiz Problem 2

Find the solution to the following IVP:

\[y'' - 3y' + 2y = e^t, \ y(0) = 0, \ y'(0) = 1 \]

Perform the Laplace transform: Let \(Y(s) = \mathcal{L}(y(t)) \), then

\[(s^2 Y(s) - sy(0) - y'(0)) - 3(sY(s) - y(0)) + 2Y(s) = \frac{1}{s - 1}, \]

Putting in \(y(0) \) and \(y'(0) \):

\[(s^2 - 3s + 2)Y(s) - 1 = \frac{1}{s - 1} \]
Quiz Problem 2

Find the solution to the following IVP:

\[y'' - 3y' + 2y = e^t, \; y(0) = 0, \; y'(0) = 1 \]

Perform the Laplace transform: Let \(Y(s) = \mathcal{L}(y(t)) \), then

\[
(s^2 Y(s) - sy(0) - y'(0)) - 3(sY(s) - y(0)) + 2Y(s) = \frac{1}{s - 1},
\]

Putting in \(y(0) \) and \(y'(0) \):

\[
(s^2 - 3s + 2)Y(s) - 1 = \frac{1}{s - 1}
\]

Solve for \(Y(s) \):
Quiz Problem 2

Find the solution to the following IVP:

\[y'' - 3y' + 2y = e^t, \; y(0) = 0, \; y'(0) = 1 \]

- Perform the Laplace transform: Let \(Y(s) = \mathcal{L}(y(t)) \), then

\[
(s^2 Y(s) - sy(0) - y'(0)) - 3(sY(s) - y(0)) + 2Y(s) = \frac{1}{s - 1},
\]

Putting in \(y(0) \) and \(y'(0) \):

\[
(s^2 - 3s + 2)Y(s) - 1 = \frac{1}{s - 1}
\]

Solve for \(Y(s) \):

\[
Y(s) = \frac{s}{(s^2 - 3s + 2)(s - 1)}.
\]
Quiz Problem 2

- Break $Y(s)$ into partial fractions:
Quiz Problem 2

- Break $Y(s)$ into partial fractions:

$$Y(s) = \frac{s}{(s - 2)(s - 1)^2}$$
Quiz Problem 2

Break $Y(s)$ into partial fractions:

$$Y(s) = \frac{s}{(s - 2)(s - 1)^2} = \frac{A}{(s - 1)^2} + \frac{B}{s - 1} + \frac{C}{s - 2}$$
Break $Y(s)$ into partial fractions:

$$Y(s) = \frac{s}{(s - 2)(s - 1)^2} = \frac{A}{(s - 1)^2} + \frac{B}{s - 1} + \frac{C}{s - 2}$$

By the cover-up method, one quickly determines that
Quiz Problem 2

Break $Y(s)$ into partial fractions:

$$Y(s) = \frac{s}{(s - 2)(s - 1)^2} = \frac{A}{(s - 1)^2} + \frac{B}{s - 1} + \frac{C}{s - 2}$$

By the cover-up method, one quickly determines that

$$A = \left. \frac{s}{s - 2} \right|_{s=1}$$
Quiz Problem 2

Break $Y(s)$ into partial fractions:

$$Y(s) = \frac{s}{(s - 2)(s - 1)^2} = \frac{A}{(s - 1)^2} + \frac{B}{s - 1} + \frac{C}{s - 2}$$

By the cover-up method, one quickly determines that

$$A = \frac{s}{s - 2} \bigg|_{s = 1} = -1$$
Quiz Problem 2

- Break \(Y(s) \) into partial fractions:

\[
Y(s) = \frac{s}{(s - 2)(s - 1)^2} = \frac{A}{(s - 1)^2} + \frac{B}{s - 1} + \frac{C}{s - 2}
\]

By the cover-up method, one quickly determines that

\[
A = \frac{s}{s - 2} \bigg|_{s = 1} = -1, \quad C = \frac{s}{(s - 1)^2} \bigg|_{s = 2}
\]
Quiz Problem 2

- Break $Y(s)$ into partial fractions:

$$Y(s) = \frac{s}{(s - 2)(s - 1)^2} = \frac{A}{(s - 1)^2} + \frac{B}{s - 1} + \frac{C}{s - 2}$$

By the cover-up method, one quickly determines that

$$A = \left. \frac{s}{s - 2} \right|_{s=1} = -1, \quad C = \left. \frac{s}{(s - 1)^2} \right|_{s=2} = 2$$
Quiz Problem 2

- Break $Y(s)$ into partial fractions:

$$Y(s) = \frac{s}{(s-2)(s-1)^2} = \frac{A}{(s-1)^2} + \frac{B}{s-1} + \frac{C}{s-2}$$

By the cover-up method, one quickly determines that

$$A = \left. \frac{s}{s-2} \right|_{s=1} = -1, \quad C = \left. \frac{s}{(s-1)^2} \right|_{s=2} = 2.$$

Now compute to determine B.

Fei Qi
(Rutgers University)
Quiz Problem 2

Break \(Y(s) \) into partial fractions:

\[
Y(s) = \frac{s}{(s - 2)(s - 1)^2} = \frac{A}{(s - 1)^2} + \frac{B}{s - 1} + \frac{C}{s - 2}
\]

By the cover-up method, one quickly determines that

\[
A = \left. \frac{s}{s - 2} \right|_{s=1} = -1, \quad C = \left. \frac{s}{(s - 1)^2} \right|_{s=2} = 2.
\]

Now compute to determine \(B \)

\[
B = \frac{s}{s - 1}
\]
Quiz Problem 2

- Break $Y(s)$ into partial fractions:

$$Y(s) = \frac{s}{(s-2)(s-1)^2} = \frac{A}{(s-1)^2} + \frac{B}{s-1} + \frac{C}{s-2}$$

By the cover-up method, one quickly determines that

$$A = \frac{s}{s-2} \bigg|_{s=1} = -1, \quad C = \frac{s}{(s-1)^2} \bigg|_{s=2} = 2.$$

Now compute to determine B

$$B = \frac{s}{s-1} = \frac{s}{(s-2)(s-1)^2} - \frac{1}{(s-1)^2} - \frac{2}{s-2}$$
Quiz Problem 2

- Break $Y(s)$ into partial fractions:

$$Y(s) = \frac{s}{(s - 2)(s - 1)^2} = \frac{A}{(s - 1)^2} + \frac{B}{s - 1} + \frac{C}{s - 2}$$

By the cover-up method, one quickly determines that

$$A = \left. \frac{s}{s - 2} \right|_{s=1} = -1, \quad C = \left. \frac{s}{(s - 1)^2} \right|_{s=2} = 2.$$

Now compute to determine B

$$\frac{B}{s - 1} = \frac{s}{(s - 2)(s - 1)^2} - \frac{-1}{(s - 1)^2} - \frac{2}{s - 2}$$

$$= \frac{s + (s - 2) - 2(s - 1)^2}{(s - 2)(s - 1)^2}$$
Quiz Problem 2

• Break \(Y(s) \) into partial fractions:

\[
Y(s) = \frac{s}{(s - 2)(s - 1)^2} = \frac{A}{(s - 1)^2} + \frac{B}{s - 1} + \frac{C}{s - 2}
\]

By the cover-up method, one quickly determines that

\[
A = \frac{s}{s - 2} \bigg|_{s=1} = -1, \quad C = \frac{s}{(s - 1)^2} \bigg|_{s=2} = 2.
\]

Now compute to determine \(B \)

\[
\frac{B}{s - 1} = \frac{s}{(s - 2)(s - 1)^2} - \frac{1}{(s - 1)^2} - \frac{2}{s - 2}
\]

\[
= \frac{s + (s - 2) - 2(s - 1)^2}{(s - 2)(s - 1)^2} = \frac{2(s - 1)^2 - 2(s - 1)^2}{(s - 2)(s - 1)^2}
\]
Quiz Problem 2

- Break $Y(s)$ into partial fractions:

$$Y(s) = \frac{s}{(s - 2)(s - 1)^2} = \frac{A}{(s - 1)^2} + \frac{B}{s - 1} + \frac{C}{s - 2}$$

By the cover-up method, one quickly determines that

$$A = \frac{s}{s - 2} \bigg|_{s=1} = -1, \quad C = \frac{s}{(s - 1)^2} \bigg|_{s=2} = 2.$$

Now compute to determine B

$$\frac{B}{s - 1} = \frac{s}{(s - 2)(s - 1)^2} - \frac{-1}{(s - 1)^2} - \frac{2}{s - 2}$$

$$= \frac{s + (s - 2) - 2(s - 1)^2}{(s - 2)(s - 1)^2} = \frac{2(s - 1) - 2(s - 1)^2}{(s - 2)(s - 1)^2}$$

$$= \frac{2 - 2(s - 1)}{(s - 2)(s - 1)}$$
Quiz Problem 2

- Break $Y(s)$ into partial fractions:

$$Y(s) = \frac{s}{(s - 2)(s - 1)^2} = \frac{A}{(s - 1)^2} + \frac{B}{s - 1} + \frac{C}{s - 2}$$

By the cover-up method, one quickly determines that

$$A = \frac{s}{s - 2} \bigg|_{s=1} = -1, \quad C = \frac{s}{(s - 1)^2} \bigg|_{s=2} = 2.$$

Now compute to determine B

$$\frac{B}{s - 1} = \frac{s}{(s - 2)(s - 1)^2} - \frac{-1}{(s - 1)^2} - \frac{2}{s - 2}$$

$$= \frac{s + (s - 2) - 2(s - 1)^2}{(s - 2)(s - 1)^2} = \frac{2(s - 1) - 2(s - 1)^2}{(s - 2)(s - 1)^2}$$

$$= \frac{2 - 2(s - 1)}{(s - 2)(s - 1)} = \frac{-2s + 4}{(s - 2)(s - 1)}$$
Quiz Problem 2

- Break \(Y(s) \) into partial fractions:

\[
Y(s) = \frac{s}{(s-2)(s-1)^2} = \frac{A}{(s-1)^2} + \frac{B}{s-1} + \frac{C}{s-2}
\]

By the cover-up method, one quickly determines that

\[
A = \frac{s}{s-2} \bigg|_{s=1} = -1, \quad C = \frac{s}{(s-1)^2} \bigg|_{s=2} = 2.
\]

Now compute to determine \(B \)

\[
\frac{B}{s-1} = \frac{s}{(s-2)(s-1)^2} - \frac{-1}{(s-1)^2} - \frac{2}{s-2}
\]

\[
= \frac{s + (s-2) - 2(s-1)^2}{(s-2)(s-1)^2} = \frac{2(s-1) - 2(s-1)^2}{(s-2)(s-1)^2}
\]

\[
= \frac{2 - 2(s-1)}{(s-2)(s-1)} = -\frac{2s + 4}{(s-2)(s-1)} = \frac{-2}{s-1}
\]
Quiz Problem 2

Break $Y(s)$ into partial fractions:

$$Y(s) = \frac{s}{(s - 2)(s - 1)^2} = \frac{A}{(s - 1)^2} + \frac{B}{s - 1} + \frac{C}{s - 2}$$

By the cover-up method, one quickly determines that

$$A = \frac{s}{s - 2} \bigg|_{s=1} = -1, \quad C = \frac{s}{(s - 1)^2} \bigg|_{s=2} = 2.$$

Now compute to determine B

$$\frac{B}{s - 1} = \frac{s}{(s - 2)(s - 1)^2} - \frac{-1}{(s - 1)^2} - \frac{2}{s - 2}$$

$$= \frac{s + (s - 2) - 2(s - 1)^2}{(s - 2)(s - 1)^2} = \frac{2(s - 1) - 2(s - 1)^2}{(s - 2)(s - 1)^2}$$

$$= \frac{2 - 2(s - 1)}{(s - 2)(s - 1)} = \frac{-2s + 4}{(s - 2)(s - 1)} = \frac{-2}{s - 1}$$

So $B = -2$
Now that

\[Y(s) = -\frac{1}{(s - 1)^2} - \frac{2}{s - 1} + \frac{2}{s - 2}, \]
Now that

\[Y(s) = -\frac{1}{(s - 1)^2} - \frac{2}{s - 1} + \frac{2}{s - 2}, \]

we perform the inverse Laplace transform.
Quiz Problem 2

Now that

\[Y(s) = -\frac{1}{(s - 1)^2} - \frac{2}{s - 1} + \frac{2}{s - 2}, \]

we perform the inverse Laplace transform. Notice that
Now that

\[Y(s) = -\frac{1}{(s - 1)^2} - \frac{2}{s - 1} + \frac{2}{s - 2}, \]

we perform the inverse Laplace transform. Notice that

\[Y(s) = -\frac{1!}{(s - 1)^2} \]
Now that

\[Y(s) = -\frac{1}{(s-1)^2} - \frac{2}{s-1} + \frac{2}{s-2}, \]

we perform the inverse Laplace transform. Notice that

\[Y(s) = -\frac{1!}{(s-1)^2} - 2\frac{1}{s-1} \]
Now that

\[Y(s) = -\frac{1}{(s - 1)^2} - \frac{2}{s - 1} + \frac{2}{s - 2}, \]

we perform the inverse Laplace transform. Notice that

\[Y(s) = -\frac{1!}{(s - 1)^2} - 2\frac{1}{s - 1} + 2\frac{1}{s - 2}, \]
Now that

\[Y(s) = -\frac{1}{(s - 1)^2} - \frac{2}{s - 1} + \frac{2}{s - 2}, \]

we perform the inverse Laplace transform. Notice that

\[Y(s) = -\frac{1!}{(s - 1)^2} - 2\frac{1}{s - 1} + 2\frac{1}{s - 2}, \]

from the formulas you are supposed to memorize,
Now that
\[Y(s) = -\frac{1}{(s - 1)^2} - \frac{2}{s - 1} + \frac{2}{s - 2}, \]
we perform the inverse Laplace transform. Notice that
\[Y(s) = -\frac{1!}{(s - 1)^2} - 2\frac{1}{s - 1} + 2\frac{1}{s - 2}, \]
from the formulas you are supposed to memorize,
\[y(t) = -e^t t^2 \]
Quiz Problem 2

Now that

\[Y(s) = -\frac{1}{(s - 1)^2} - \frac{2}{s - 1} + \frac{2}{s - 2}, \]

we perform the inverse Laplace transform. Notice that

\[Y(s) = -\frac{1!}{(s - 1)^2} - 2\frac{1}{s - 1} + 2\frac{1}{s - 2}, \]

from the formulas you are supposed to memorize,

\[y(t) = -e^t t^2 - 2e^t \]
Now that

\[Y(s) = -\frac{1}{(s - 1)^2} - \frac{2}{s - 1} + \frac{2}{s - 2}, \]

we perform the inverse Laplace transform. Notice that

\[Y(s) = -\frac{1!}{(s - 1)^2} - 2\frac{1}{s - 1} + 2\frac{1}{s - 2}, \]

from the formulas you are supposed to memorize,

\[y(t) = -e^t t^2 - 2e^t + 2e^{2t} \]
Now that
\[Y(s) = -\frac{1}{(s - 1)^2} - \frac{2}{s - 1} + \frac{2}{s - 2}, \]
we perform the inverse Laplace transform. Notice that
\[Y(s) = -\frac{1!}{(s - 1)^2} - 2\frac{1}{s - 1} + 2\frac{1}{s - 2}, \]
from the formulas you are supposed to memorize,
\[y(t) = -e^t t^2 - 2e^t + 2e^{2t} \]
and the ODE is solved.
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

- By integration by parts:
Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

- By integration by parts:

\[I = \int_0^\infty e^{-st} e^t \cos 3t \, dt \]
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

- By integration by parts:

\[
\begin{align*}
I &= \int_0^\infty e^{-st} e^t \cos 3t \, dt = \int_0^\infty e^{(1-s)t} \cos 3t \, dt
\end{align*}
\]
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

- By integration by parts:

\[
I = \int_0^\infty e^{-st} e^t \cos 3t \, dt = \int_0^\infty e^{(1-s)t} \cos 3t \, dt
\]

\[
= \int_0^\infty e^{(1-s)t} \frac{1}{3} d \sin 3t
\]
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

By integration by parts:

\[I = \int_0^\infty e^{-st} e^t \cos 3t \, dt = \int_0^\infty e^{(1-s)t} \cos 3t \, dt \]

\[= \int_0^\infty e^{(1-s)t} \frac{1}{3} d \sin 3t \]

\[= \frac{1}{3} e^{(1-s)t} \sin 3t \bigg|_0^\infty - \frac{1}{3} \int_0^\infty \sin 3t de^{(1-s)t} \]
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

- By integration by parts:

\[
I = \int_0^\infty e^{-st} e^t \cos 3t \, dt = \int_0^\infty e^{(1-s)t} \cos 3t \, dt
\]

\[
= \int_0^\infty e^{(1-s)t} \frac{1}{3} d \sin 3t
\]

\[
= \frac{1}{3} e^{(1-s)t} \sin 3t \bigg|_0^\infty - \frac{1}{3} \int_0^\infty \sin 3t e^{(1-s)t} \, dt
\]

\[
= 0 - 0 - \frac{1-s}{3} \int_0^\infty e^{(1-s)t} \sin 3t \, dt
\]
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

(continued)

\[
\begin{align*}
I &= 0 - 0 - \frac{1-s}{3} \int_0^\infty e^{(1-s)t} \sin 3tdt \\
\end{align*}
\]
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

(continued)

\[
I = 0 - 0 - \frac{1 - s}{3} \int_0^\infty e^{(1-s)t} \sin 3tdt
\]

\[
= \frac{1 - s}{3} \int_0^\infty e^{(1-s)t} \frac{1}{3} d \cos 3t
\]
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

(continued)

\[I = 0 - 0 - \frac{1-s}{3} \int_0^\infty e^{(1-s)t} \sin 3t \, dt \]

\[= \frac{1-s}{3} \int_0^\infty e^{(1-s)t} \frac{1}{3} d \cos 3t \]

\[= \frac{1-s}{9} e^{(1-s)t} \cos 3t \bigg|_0^\infty - \frac{1-s}{9} \int_0^\infty \cos 3t \, de^{(1-s)t} \]
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

(continued)

\[I = 0 - 0 - \frac{1-s}{3} \int_0^\infty e^{(1-s)t} \sin 3tdt \]

\[= \frac{1-s}{3} \int_0^\infty e^{(1-s)t} \sin 3t \frac{1}{3} d \cos 3t \]

\[= \frac{1-s}{9} e^{(1-s)t} \cos 3t \bigg|_0^\infty - \frac{1-s}{9} \int_0^\infty \cos 3t d e^{(1-s)t} \]

\[= 0 - \frac{1-s}{9} - \frac{(1-s)^2}{9} \int_0^\infty e^{(1-s)t} \cos 3tdt = \frac{s-1}{9} - \frac{(1-s)^2}{9} I \]
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

(continued)

\[I = 0 - 0 - \frac{1-s}{3} \int_0^\infty e^{(1-s)t} \sin 3tdt \]

\[= \frac{1-s}{3} \int_0^\infty e^{(1-s)t} \frac{1}{3} d\cos 3t \]

\[= \frac{1-s}{9} e^{(1-s)t} \cos 3t \bigg|_0^\infty - \frac{1-s}{9} \int_0^\infty \cos 3t d(e^{(1-s)t}) \]

\[= 0 - \frac{1-s}{9} - \frac{(1-s)^2}{9} \int_0^\infty e^{(1-s)t} \cos 3tdt = \frac{s-1}{9} - \frac{(1-s)^2}{9} I \]

Therefore

\[I = \frac{s-1}{9} - \frac{(1-s)^2}{9} \]

Therefore

\[I = \frac{s-1}{9} \frac{1}{1 + \frac{(1-s)^2}{9}} \]
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

(continued)

\[
I = 0 - 0 - \frac{1 - s}{3} \int_0^\infty e^{(1-s)t} \sin 3tdt
\]

\[
= \frac{1 - s}{3} \int_0^\infty e^{(1-s)t} \frac{1}{3} d \cos 3t
\]

\[
= \frac{1 - s}{9} e^{(1-s)t} \cos 3t \bigg|_0^\infty - \frac{1 - s}{9} \int_0^\infty \cos 3t d e^{(1-s)t}
\]

\[
= 0 - \frac{1 - s}{9} - \frac{(1 - s)^2}{9} \int_0^\infty e^{(1-s)t} \cos 3tdt = \frac{s - 1}{9} - \frac{(1 - s)^2}{9} I
\]

Therefore

\[
I = \frac{\frac{s-1}{9}}{1 + \frac{(1-s)^2}{9}} = \frac{s - 1}{(s - 1)^2 + 9}
\]
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

- By exponential shift formula:
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

- By exponential shift formula: We know that

\[\mathcal{L}(\cos 3t) = \frac{s}{s^2 + 9}. \]
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

- By exponential shift formula: We know that

\[\mathcal{L}(\cos 3t) = \frac{s}{s^2 + 9}. \]

And also recall that

\[\mathcal{L}(e^t f(t)) = F(s - 1), \text{ where } F(s) = \mathcal{L}(f(t)). \]
Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

- By exponential shift formula: We know that

\[\mathcal{L}(\cos 3t) = \frac{s}{s^2 + 9}. \]

And also recall that

\[\mathcal{L}(e^t f(t)) = F(s - 1), \text{ where } F(s) = \mathcal{L}(f(t)). \]

Putting \(f(t) = \cos 3t \) into the formula
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

- By exponential shift formula: We know that
 \[\mathcal{L}(\cos 3t) = \frac{s}{s^2 + 9}. \]
 And also recall that
 \[\mathcal{L}(e^t f(t)) = F(s - 1), \text{ where } F(s) = \mathcal{L}(f(t)). \]
 Putting \(f(t) = \cos 3t \) into the formula one gets
 \[\mathcal{L}(e^t \cos 3t) \]
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

By exponential shift formula: We know that

\[\mathcal{L}(\cos 3t) = \frac{s}{s^2 + 9}. \]

And also recall that

\[\mathcal{L}(e^t f(t)) = F(s - 1), \text{ where } F(s) = \mathcal{L}(f(t)). \]

Putting \(f(t) = \cos 3t \) into the formula one gets

\[\mathcal{L}(e^t \cos 3t) = F(s - 1) \]
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

- By exponential shift formula: We know that
 \[\mathcal{L}(\cos 3t) = \frac{s}{s^2 + 9}. \]

And also recall that

\[\mathcal{L}(e^t f(t)) = F(s - 1), \text{ where } F(s) = \mathcal{L}(f(t)). \]

Putting \(f(t) = \cos 3t \) into the formula one gets

\[\mathcal{L}(e^t \cos 3t) = F(s - 1) = \frac{s - 1}{(s - 1)^2 + 9}. \]
Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

- By complexification:
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

- By complexification: we just need to figure the real part of \(\mathcal{L}(e^t e^{3it}) \).
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

- By complexification: we just need to figure the real part of \(\mathcal{L}(e^t e^{3it}). \)

Since

\[\mathcal{L}(e^t e^{3it}) \]
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

- By complexification: we just need to figure the real part of \(\mathcal{L}(e^t e^{3it}). \)

Since

\[\mathcal{L}(e^t e^{3it}) = \mathcal{L}(e^{(1+3i)t}) \]
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

By complexification: we just need to figure the real part of \(\mathcal{L}(e^t e^{3it}). \) Since

\[\mathcal{L}(e^t e^{3it}) = \mathcal{L}(e^{(1+3i)t}) = \frac{1}{s - 1 - 3i}, \]
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

- By complexification: we just need to figure the real part of \(\mathcal{L}(e^t e^{3it}) \).

Since

\[\mathcal{L}(e^t e^{3it}) = \mathcal{L}(e^{(1+3i)t}) = \frac{1}{s - 1 - 3i}, \]

by arithmetic of complex numbers.
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

- By complexification: we just need to figure the real part of \(\mathcal{L}(e^t e^{3it}) \).
 Since

\[\mathcal{L}(e^t e^{3it}) = \mathcal{L}(e^{(1+3i)t}) = \frac{1}{s - 1 - 3i}, \]

by arithmetic of complex numbers (that multiplies the conjugate of the denominator both at top and at bottom):
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

- By complexification: we just need to figure the real part of \(\mathcal{L}(e^t e^{3it}). \)
 Since

 \[\mathcal{L}(e^t e^{3it}) = \mathcal{L}(e^{(1+3i)t}) = \frac{1}{s - 1 - 3i}, \]

 by arithmetic of complex numbers (that multiplies the conjugate of the denominator both at top and at bottom):

 \[\mathcal{L}(e^t e^{3it}) \]
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

By complexification: we just need to figure the real part of \(\mathcal{L}(e^t e^{3it}) \).

Since

\[\mathcal{L}(e^t e^{3it}) = \mathcal{L}(e^{(1+3i)t}) = \frac{1}{s - 1 - 3i}, \]

by arithmetic of complex numbers (that multiplies the conjugate of the denominator both at top and at bottom):

\[\mathcal{L}(e^t e^{3it}) = \frac{s - 1 + 3i}{(s - 1)^2 + 9}. \]
Quiz Problem 1

Find the Laplace transform of the function

$$f(t) = e^t \cos 3t.$$

- By complexification: we just need to figure the real part of $\mathcal{L}(e^t e^{3it})$. Since

$$\mathcal{L}(e^t e^{3it}) = \mathcal{L}(e^{(1+3i)t}) = \frac{1}{s - 1 - 3i},$$

by arithmetic of complex numbers (that multiplies the conjugate of the denominator both at top and at bottom):

$$\mathcal{L}(e^t e^{3it}) = \frac{s - 1 + 3i}{(s - 1)^2 + 9} = \frac{s - 1}{(s - 1)^2 + 9} + i \frac{3}{(s - 1)^2 + 9},$$
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

- By complexification: we just need to figure the real part of \(\mathcal{L}(e^t e^{3it}). \)

Since

\[\mathcal{L}(e^t e^{3it}) = \mathcal{L}(e^{(1+3i)t}) = \frac{1}{s - 1 - 3i}, \]

by arithmetic of complex numbers (that multiplies the conjugate of the denominator both at top and at bottom):

\[\mathcal{L}(e^t e^{3it}) = \frac{s - 1 + 3i}{(s - 1)^2 + 9} = \frac{s - 1}{(s - 1)^2 + 9} + i \frac{3}{(s - 1)^2 + 9}, \]

then
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

- By complexification: we just need to figure the real part of \(\mathcal{L}(e^t e^{3it}). \)

Since

\[
\mathcal{L}(e^t e^{3it}) = \mathcal{L}(e^{(1+3i)t}) = \frac{1}{s - 1 - 3i},
\]

by arithmetic of complex numbers (that multiplies the conjugate of the denominator both at top and at bottom):

\[
\mathcal{L}(e^t e^{3it}) = \frac{s - 1 + 3i}{(s - 1)^2 + 9} = \frac{s - 1}{(s - 1)^2 + 9} + i \frac{3}{(s - 1)^2 + 9},
\]

then

\[\mathcal{L}(e^t \cos 3t) \]
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

- By complexification: we just need to figure the real part of \(\mathcal{L}(e^t e^{3it}). \)

Since
\[
\mathcal{L}(e^t e^{3it}) = \mathcal{L}(e^{(1+3i)t}) = \frac{1}{s - 1 - 3i},
\]
by arithmetic of complex numbers (that multiplies the conjugate of the denominator both at top and at bottom):
\[
\mathcal{L}(e^t e^{3it}) = \frac{s - 1 + 3i}{(s - 1)^2 + 9} = \frac{s - 1}{(s - 1)^2 + 9} + i\frac{3}{(s - 1)^2 + 9},
\]
then
\[
\mathcal{L}(e^t \cos 3t) = \text{the real part of} \mathcal{L}(e^t e^{3it})
\]
Quiz Problem 1

Find the Laplace transform of the function

\[f(t) = e^t \cos 3t. \]

By complexification: we just need to figure the real part of \(\mathcal{L}(e^t e^{3it}) \).

Since

\[\mathcal{L}(e^t e^{3it}) = \mathcal{L}(e^{(1+3i)t}) = \frac{1}{s - 1 - 3i}, \]

by arithmetic of complex numbers (that multiplies the conjugate of the denominator both at top and at bottom):

\[\mathcal{L}(e^t e^{3it}) = \frac{s - 1 + 3i}{(s - 1)^2 + 9} = \frac{s - 1}{(s - 1)^2 + 9} + i \frac{3}{(s - 1)^2 + 9}, \]

then

\[\mathcal{L}(e^t \cos 3t) = \text{the real part of} \mathcal{L}(e^t e^{3it}) = \frac{s - 1}{(s - 1)^2 + 9}. \]
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \ y'(0) = 1, \ y''(0) = 0, \ y'''(0) = 1 \]
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

Perform the Laplace transform:

\[
\begin{align*}
\mathcal{L}\{y(t)\} &= \frac{y(0)}{s} + \frac{y'(0)}{s^2} + \frac{y''(0)}{s^3} + \frac{y'''(0)}{s^4} + \mathcal{L}\{y^{(4)}\}(s),
\end{align*}
\]

\[
\begin{align*}
\mathcal{L}\{y(t)\} &= \frac{4}{s^3} - \frac{6}{s^2} + \frac{1}{s} + \mathcal{L}\{y^{(4)}\}(s),
\end{align*}
\]

By algebra one gets

\[Y(s) = \frac{s^2 + 7}{s^4 + 4s^3 + 7s^2 + 4s + 1} \]
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

- Perform the Laplace transform: Let \(Y(s) = \mathcal{L}(y(t)) \).
Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

- Perform the Laplace transform: Let \(Y(s) = \mathcal{L}(y(t)) \). By

\[
s^4 Y(s) - s^3 y(0) - s^2 y'(0) - sy''(0) - y'''(0)
\]
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

- Perform the Laplace transform: Let \(Y(s) = \mathcal{L}(y(t)) \). By

\[
s^4 Y(s) - s^3 y(0) - s^2 y'(0) - sy''(0) - y'''(0) = s^4 Y(s) - s^2 - 1,
\]

Fei Qi (Rutgers University)
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

Perform the Laplace transform: Let \(Y(s) = \mathcal{L}(y(t)) \). By

\[
\begin{align*}
s^4 Y(s) - s^3 y(0) - s^2 y'(0) - sy''(0) - y'''(0) &= s^4 Y(s) - s^2 - 1, \\
s^3 Y(s) - s^2 y(0) - sy'(0) - y''(0) &= s^3 Y(s) - s^2 - 1,
\end{align*}
\]
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \ y(0) = 0, \ y'(0) = 1, \ y''(0) = 0, \ y'''(0) = 1 \]

Perform the Laplace transform: Let \(Y(s) = L(y(t)) \). By

\[
\begin{align*}
 s^4 Y(s) - s^3 y(0) - s^2 y'(0) - sy''(0) - y'''(0) &= s^4 Y(s) - s^2 - 1, \\
 s^3 Y(s) - s^2 y(0) - sy'(0) - y''(0) &= s^3 Y(s) - s,
\end{align*}
\]
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

- Perform the Laplace transform: Let \(Y(s) = \mathcal{L}(y(t)) \). By

\[
\begin{align*}
s^4Y(s) - s^3y(0) - s^2y'(0) - sy''(0) - y'''(0) &= s^4 Y(s) - s^2 - 1, \\
s^3Y(s) - s^2y(0) - sy'(0) - y''(0) &= s^3 Y(s) - s, \\
s^2Y(s) - sy(0) - y'(0) &= s^2 Y(s) - 1.
\end{align*}
\]
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

- Perform the Laplace transform: Let \(Y(s) = \mathcal{L}(y(t)) \). By

 \[
 s^4 Y(s) - s^3 y(0) - s^2 y'(0) - sy''(0) - y'''(0) = s^4 Y(s) - s^2 - 1, \\
 s^3 Y(s) - s^2 y(0) - sy'(0) - y''(0) = s^3 Y(s) - s, \\
 s^2 Y(s) - sy(0) - y'(0) = s^2 Y(s) - 1
 \]
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

- Perform the Laplace transform: Let \(Y(s) = \mathcal{L}(y(t)) \). By

\[
\begin{align*}
 s^4 Y(s) - s^3 y(0) - s^2 y'(0) - sy''(0) - y''(0) &= s^4 Y(s) - s^2 - 1, \\
 s^3 Y(s) - s^2 y(0) - sy'(0) - y''(0) &= s^3 Y(s) - s, \\
 s^2 Y(s) - sy(0) - y'(0) &= s^2 Y(s) - 1, \\
 sY(s) - y(0) &= sY(s) - y(0)
\end{align*}
\]
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

- Perform the Laplace transform: Let \(Y(s) = \mathcal{L}(y(t)) \). By

\[
\begin{align*}
 s^4 Y(s) - s^3 y(0) - s^2 y'(0) - sy''(0) - y'''(0) &= s^4 Y(s) - s^2 - 1, \\
 s^3 Y(s) - s^2 y(0) - sy'(0) - y''(0) &= s^3 Y(s) - s, \\
 s^2 Y(s) - sy(0) - y'(0) &= s^2 Y(s) - 1, \\
 sY(s) - y(0) &= sY(s),
\end{align*}
\]
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

- Perform the Laplace transform: Let \(Y(s) = \mathcal{L}(y(t)) \). By

\[
\begin{align*}
 s^4 Y(s) - s^3 y(0) - s^2 y'(0) - sy''(0) - y'''(0) &= s^4 Y(s) - s^2 - 1, \\
 s^3 Y(s) - s^2 y(0) - sy'(0) - y''(0) &= s^3 Y(s) - s, \\
 s^2 Y(s) - sy(0) - y'(0) &= s^2 Y(s) - 1, \\
 sY(s) - y(0) &= sY(s),
\end{align*}
\]

the original ODE becomes
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

- Perform the Laplace transform: Let \(Y(s) = L(y(t)) \). By

 \[
 s^4 Y(s) - s^3 y(0) - s^2 y'(0) - s y''(0) - y'''(0) = s^4 Y(s) - s^2 - 1,

 s^3 Y(s) - s^2 y(0) - s y'(0) - y''(0) = s^3 Y(s) - s,

 s^2 Y(s) - s y(0) - y'(0) = s^2 Y(s) - 1, \quad sY(s) - y(0) = sY(s),

 the original ODE becomes

 \[
 (s^4 - 4s^3 + 6s^2 - 4s + 1)Y(s)
 \]
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

Perform the Laplace transform: Let \(Y(s) = \mathcal{L}(y(t)) \). By

\[
\begin{align*}
 s^4 Y(s) - s^3 y(0) - s^2 y'(0) - s y''(0) - y'''(0) & = s^4 Y(s) - s^2 - 1, \\
 s^3 Y(s) - s^2 y(0) - s y'(0) - y''(0) & = s^3 Y(s) - s, \\
 s^2 Y(s) - s y(0) - y'(0) & = s^2 Y(s) - 1, \\
 sY(s) - y(0) & = sY(s),
\end{align*}
\]

the original ODE becomes

\[
(s^4 - 4s^3 + 6s^2 - 4s + 1) Y(s) - s^2 - 1
\]
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

- Perform the Laplace transform: Let \(Y(s) = \mathcal{L}(y(t)) \). By

\[
\begin{align*}
 s^4 Y(s) - s^3 y(0) - s^2 y'(0) - sy''(0) - y'''(0) &= s^4 Y(s) - s^2 - 1, \\
 s^3 Y(s) - s^2 y(0) - sy'(0) - y''(0) &= s^3 Y(s) - s, \\
 s^2 Y(s) - sy(0) - y'(0) &= s^2 Y(s) - 1, \\
 sY(s) - y(0) &= sY(s),
\end{align*}
\]

the original ODE becomes

\[
(s^4 - 4s^3 + 6s^2 - 4s + 1)Y(s) - s^2 - 1 + 4s
\]
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

- Perform the Laplace transform: Let \(Y(s) = \mathcal{L}(y(t)) \). By

\[
\begin{align*}
 s^4Y(s) - s^3y(0) - s^2y'(0) - sy''(0) - y'''(0) &= s^4Y(s) - s^2 - 1, \\
 s^3Y(s) - s^2y(0) - sy'(0) - y''(0) &= s^3Y(s) - s, \\
 s^2Y(s) - sy(0) - y'(0) &= s^2Y(s) - 1, \\
 sY(s) - y(0) &= sY(s),
\end{align*}
\]

the original ODE becomes

\[
(s^4 - 4s^3 + 6s^2 - 4s + 1)Y(s) - s^2 - 1 + 4s - 6\]
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

- Perform the Laplace transform: Let \(Y(s) = \mathcal{L}(y(t)) \). By

\[
\begin{align*}
 s^4 Y(s) - s^3 y(0) - s^2 y'(0) - sy''(0) - y'''(0) &= s^4 Y(s) - s^2 - 1, \\
 s^3 Y(s) - s^2 y(0) - sy'(0) - y''(0) &= s^3 Y(s) - s, \\
 s^2 Y(s) - sy(0) - y'(0) &= s^2 Y(s) - 1, \\
 sY(s) - y(0) &= sY(s),
\end{align*}
\]

the original ODE becomes

\[
(s^4 - 4s^3 + 6s^2 - 4s + 1)Y(s) - s^2 - 1 + 4s - 6 = 0
\]

By algebra one gets
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

- Perform the Laplace transform: Let \(Y(s) = \mathcal{L}(y(t)) \). By

\[
\begin{align*}
 s^4 Y(s) - s^3 y(0) - s^2 y'(0) - s y''(0) - y'''(0) &= s^4 Y(s) - s^2 - 1, \\
 s^3 Y(s) - s^2 y(0) - s y'(0) - y''(0) &= s^3 Y(s) - s, \\
 s^2 Y(s) - s y(0) - y'(0) &= s^2 Y(s) - 1, \\
 s Y(s) - y(0) &= s Y(s),
\end{align*}
\]

the original ODE becomes

\[(s^4 - 4s^3 + 6s^2 - 4s + 1) Y(s) - s^2 - 1 + 4s - 6 = 0 \]

By algebra one gets

\[Y(s) = \frac{s^2 - 4s + 7}{(s - 1)^4} \]
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

- Break \(Y(s) \) into partial fractions.
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

- Break \(Y(s) \) into partial fractions. Let’s use cover up method here.
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

- Break \(Y(s) \) into partial fractions. Let’s use cover up method here. Let

\[
\frac{s^2 - 4s + 7}{(s - 1)^4}
\]
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

- Break \(Y(s) \) into partial fractions. Let’s use cover up method here. Let

\[
\frac{s^2 - 4s + 7}{(s - 1)^4} = \frac{A}{(s - 1)^4} + \frac{B}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

- Break \(Y(s) \) into partial fractions. Let’s use cover up method here. Let

\[
\frac{s^2 - 4s + 7}{(s - 1)^4} = \frac{A}{(s - 1)^4} + \frac{B}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]

The cover up method gives
Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

Break \(Y(s) \) into partial fractions. Let’s use cover up method here. Let

\[
\frac{s^2 - 4s + 7}{(s - 1)^4} = \frac{A}{(s - 1)^4} + \frac{B}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]

The cover up method gives

\[A = (s^2 - 4s + 7)|_{s=1} \]
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

- Break \(Y(s) \) into partial fractions. Let’s use cover up method here. Let

\[\frac{s^2 - 4s + 7}{(s - 1)^4} = \frac{A}{(s - 1)^4} + \frac{B}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1} \]

The cover up method gives

\[A = (s^2 - 4s + 7)|_{s=1} = 1 - 4 + 7 \]
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

- Break \(Y(s) \) into partial fractions. Let’s use cover up method here. Let

\[
\frac{s^2 - 4s + 7}{(s - 1)^4} = \frac{A}{(s - 1)^4} + \frac{B}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]

The cover up method gives

\[
A = \left. (s^2 - 4s + 7) \right|_{s=1} = 1 - 4 + 7 = 4
\]
Homework Problem 6.2.17

Solve the IVP
\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

- Break \(Y(s) \) into partial fractions. Let’s use cover up method here. Let

\[
\frac{s^2 - 4s + 7}{(s - 1)^4} = \frac{A}{(s - 1)^4} + \frac{B}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]

The cover up method gives

\[
A = (s^2 - 4s + 7)|_{s=1} = 1 - 4 + 7 = 4
\]

Subtract the left-hand-side with \(4/(s - 1)^4 \),
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

Break \(Y(s) \) into partial fractions. Let’s use cover up method here. Let

\[
\frac{s^2 - 4s + 7}{(s - 1)^4} = \frac{A}{(s - 1)^4} + \frac{B}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]

The cover up method gives

\[A = (s^2 - 4s + 7)|_{s=1} = 1 - 4 + 7 = 4 \]

Subtract the left-hand-side with \(4/(s - 1)^4 \), one gets

\[
\frac{s^2 - 4s + 7 - 4}{(s - 1)^4}
\]
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

Break \(Y(s) \) into partial fractions. Let’s use cover up method here. Let

\[
\frac{s^2 - 4s + 7}{(s - 1)^4} = \frac{A}{(s - 1)^4} + \frac{B}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]

The cover up method gives

\[A = (s^2 - 4s + 7)|_{s=1} = 1 - 4 + 7 = 4 \]

Subtract the left-hand-side with \(4/(s - 1)^4 \), one gets

\[
\frac{s^2 - 4s + 7 - 4}{(s - 1)^4} = \frac{s - 3}{(s - 1)^3}
\]
Homework Problem 6.2.17

Solve the IVP
\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

- Break \(Y(s) \) into partial fractions. Let’s use cover up method here. Let

\[
\frac{s^2 - 4s + 7}{(s - 1)^4} = \frac{A}{(s - 1)^4} + \frac{B}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]

The cover up method gives

\[A = (s^2 - 4s + 7)|_{s=1} = 1 - 4 + 7 = 4 \]

Subtract the left-hand-side with \(4/(s - 1)^4 \), one gets

\[
\frac{s^2 - 4s + 7 - 4}{(s - 1)^4} = \frac{s - 3}{(s - 1)^3} = \frac{B}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

- Break \(Y(s) \) into partial fractions. Let’s use cover up method here. Let

\[
\frac{s^2 - 4s + 7}{(s - 1)^4} = \frac{A}{(s - 1)^4} + \frac{B}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]

The cover up method gives

\[A = (s^2 - 4s + 7)|_{s=1} = 1 - 4 + 7 = 4 \]

Subtract the left-hand-side with \(4/(s - 1)^4 \), one gets

\[
\frac{s^2 - 4s + 7 - 4}{(s - 1)^4} = \frac{s - 3}{(s - 1)^3} = \frac{B}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]

Cover-up method gives
Homework Problem 6.2.17

Solve the IVP

\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \ y(0) = 0, \ y'(0) = 1, \ y''(0) = 0, \ y'''(0) = 1 \]

- Break \(Y(s) \) into partial fractions. Let’s use cover up method here. Let

\[
\frac{s^2 - 4s + 7}{(s - 1)^4} = \frac{A}{(s - 1)^4} + \frac{B}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]

The cover up method gives

\[A = (s^2 - 4s + 7)|_{s=1} = 1 - 4 + 7 = 4 \]

Subtract the left-hand-side with \(4/(s - 1)^4 \), one gets

\[
\frac{s^2 - 4s + 7 - 4}{(s - 1)^4} = \frac{s - 3}{(s - 1)^3} = \frac{B}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]

Cover-up method gives

\[B = (s - 3)|_{s=1} \]
Homework Problem 6.2.17

Solve the IVP
\[y^{(4)} - 4y^{(3)} + 6y'' - 4y' + 1 = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y'''(0) = 1 \]

- Break \(Y(s) \) into partial fractions. Let’s use cover up method here. Let

\[
\frac{s^2 - 4s + 7}{(s - 1)^4} = \frac{A}{(s - 1)^4} + \frac{B}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]

The cover up method gives
\[A = (s^2 - 4s + 7)|_{s=1} = 1 - 4 + 7 = 4 \]

Subtract the left-hand-side with \(4/(s - 1)^4 \), one gets
\[
\frac{s^2 - 4s + 7 - 4}{(s - 1)^4} = \frac{s - 3}{(s - 1)^3} = \frac{B}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]

Cover-up method gives
\[B = (s - 3)|_{s=1} = -2. \]
Homework Problem 6.2.17

Break $Y(s)$ into partial fractions (continued): So

$$\frac{s - 3}{(s - 1)^3} = \frac{-2}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}$$

Again by subtraction one gets

$$\frac{(s - 3) + 2}{(s - 1)^3} = \frac{1}{(s - 1)^2}$$

Then immediately $C = 1$ and $D = 0$.

So

$$Y(s) = 4\frac{(s - 1)^4}{(s - 1)^3} + \frac{1}{(s - 1)^2}$$

Perform the inverse transformation. The formula one should use here is the exponential-shift formula.

Since

$$Y(s) = 4\frac{3!}{3!} \frac{3!}{3!} + \frac{1}{2!} + \frac{1}{1!}$$

$$y(t) = 4\frac{6}{3}e^{t}t^{3} + \frac{1}{2}e^{t}t^{2} + e^{t}t$$

Fei Qi (Rutgers University)
Break $Y(s)$ into partial fractions (continued): So

\[
\frac{s - 3}{(s - 1)^3} = \frac{-2}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]

Again by subtraction one gets
Break $Y(s)$ into partial fractions (continued): So

$$\frac{s - 3}{(s - 1)^3} = \frac{-2}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}$$

Again by subtraction one gets

$$\frac{(s - 3 + 2)}{(s - 1)^3}$$
Break \(Y(s) \) into partial fractions (continued):

\[
\frac{s - 3}{(s - 1)^3} = \frac{-2}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]

Again by subtraction one gets

\[
\frac{(s - 3 + 2)}{(s - 1)^3} = \frac{1}{(s - 1)^2}
\]
Homework Problem 6.2.17

- Break $Y(s)$ into partial fractions (continued): So

$$\frac{s - 3}{(s - 1)^3} = \frac{-2}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}$$

Again by subtraction one gets

$$\frac{(s - 3 + 2)}{(s - 1)^3} = \frac{1}{(s - 1)^2} = \frac{C}{(s - 1)^2} + \frac{D}{s - 1}$$
Break $Y(s)$ into partial fractions (continued): So

\[
\frac{s - 3}{(s - 1)^3} = \frac{-2}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]

Again by subtraction one gets

\[
\frac{(s - 3 + 2)}{(s - 1)^3} = \frac{1}{(s - 1)^2} = \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]

Then immediately $C = 1$
Break $Y(s)$ into partial fractions (continued): So

$$\frac{s - 3}{(s - 1)^3} = \frac{-2}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}$$

Again by subtraction one gets

$$\frac{(s - 3 + 2)}{(s - 1)^3} = \frac{1}{(s - 1)^2} = \frac{C}{(s - 1)^2} + \frac{D}{s - 1}$$

Then immediately $C = 1$ and $D = 0$.

Perform the inverse transformation. The formula one should use here is the exponential-shift formula. Since

$$Y(s) = \frac{4}{3!} s^{4 - 2} + \frac{1}{2!} s^{2 - 2} = 2 \frac{3}{2} t^3 e^{t} + te^{t}.$$
Homework Problem 6.2.17

- Break \(Y(s) \) into partial fractions (continued):

\[
\frac{s - 3}{(s - 1)^3} = \frac{-2}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]

Again by subtraction one gets

\[
\frac{(s - 3 + 2)}{(s - 1)^3} = \frac{1}{(s - 1)^2} = \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]

Then immediately \(C = 1 \) and \(D = 0 \). So

\[
Y(s) = \frac{4}{(s - 1)^4} - \frac{2}{(s - 1)^3} + \frac{1}{(s - 1)^2}.
\]
Break $Y(s)$ into partial fractions (continued): So

$$\frac{s - 3}{(s - 1)^3} = \frac{-2}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}$$

Again by subtraction one gets

$$\frac{(s - 3 + 2)}{(s - 1)^3} = \frac{1}{(s - 1)^2} = \frac{C}{(s - 1)^2} + \frac{D}{s - 1}$$

Then immediately $C = 1$ and $D = 0$. So

$$Y(s) = \frac{4}{(s - 1)^4} - \frac{2}{(s - 1)^3} + \frac{1}{(s - 1)^2}.$$
Homework Problem 6.2.17

- Break $Y(s)$ into partial fractions (continued): So
 \[
 \frac{s - 3}{(s - 1)^3} = \frac{-2}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
 \]
 Again by subtraction one gets
 \[
 \frac{(s - 3 + 2)}{(s - 1)^3} = \frac{1}{(s - 1)^2} = \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
 \]
 Then immediately $C = 1$ and $D = 0$. So
 \[
 Y(s) = \frac{4}{(s - 1)^4} - \frac{2}{(s - 1)^3} + \frac{1}{(s - 1)^2}.
 \]

- Perform the inverse transformation. The formula one should use here is the exponential-shift formula.
Homework Problem 6.2.17

- Break $Y(s)$ into partial fractions (continued): So

$$\frac{s - 3}{(s - 1)^3} = \frac{-2}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}$$

Again by subtraction one gets

$$\frac{(s - 3 + 2)}{(s - 1)^3} = \frac{1}{(s - 1)^2} = \frac{C}{(s - 1)^2} + \frac{D}{s - 1}$$

Then immediately $C = 1$ and $D = 0$. So

$$Y(s) = \frac{4}{(s - 1)^4} - \frac{2}{(s - 1)^3} + \frac{1}{(s - 1)^2}.$$

- Perform the inverse transformation. The formula one should use here is the exponential-shift formula. Since

$$Y(s)$$
Homework Problem 6.2.17

- Break \(Y(s) \) into partial fractions (continued): So

\[
\frac{s - 3}{(s - 1)^3} = \frac{-2}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]

Again by subtraction one gets

\[
\frac{(s - 3 + 2)}{(s - 1)^3} = \frac{1}{(s - 1)^2} = \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]

Then immediately \(C = 1 \) and \(D = 0 \). So

\[
Y(s) = \frac{4}{(s - 1)^4} - \frac{2}{(s - 1)^3} + \frac{1}{(s - 1)^2}.
\]

- Perform the inverse transformation. The formula one should use here is the exponential-shift formula. Since

\[
Y(s) = \frac{4}{3!} \frac{3!}{(s - 1)^4}
\]
Break $Y(s)$ into partial fractions (continued): So

$$\frac{s - 3}{(s - 1)^3} = \frac{-2}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}$$

Again by subtraction one gets

$$\frac{(s - 3 + 2)}{(s - 1)^3} = \frac{1}{(s - 1)^2} = \frac{C}{(s - 1)^2} + \frac{D}{s - 1}$$

Then immediately $C = 1$ and $D = 0$. So

$$Y(s) = \frac{4}{(s - 1)^4} - \frac{2}{(s - 1)^3} + \frac{1}{(s - 1)^2}.$$

Perform the inverse transformation. The formula one should use here is the exponential-shift formula. Since

$$Y(s) = \frac{4}{3!} \frac{3!}{(s - 1)^4} - \frac{2}{(s - 1)^3}$$
Break $Y(s)$ into partial fractions (continued): So

\[
\frac{s - 3}{(s - 1)^3} = \frac{-2}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]

Again by subtraction one gets

\[
\frac{(s - 3 + 2)}{(s - 1)^3} = \frac{1}{(s - 1)^2} = \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]

Then immediately $C = 1$ and $D = 0$. So

\[
Y(s) = \frac{4}{(s - 1)^4} - \frac{2}{(s - 1)^3} + \frac{1}{(s - 1)^2}.
\]

Perform the inverse transformation. The formula one should use here is the exponential-shift formula. Since

\[
Y(s) = \frac{4}{3!} \frac{3!}{(s - 1)^4} - \frac{2!}{(s - 1)^3} + \frac{1!}{(s - 1)^2}
\]
Break $Y(s)$ into partial fractions (continued): So

\[\frac{s - 3}{(s - 1)^3} = \frac{-2}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1} \]

Again by subtraction one gets

\[\frac{(s - 3 + 2)}{(s - 1)^3} = \frac{1}{(s - 1)^2} = \frac{C}{(s - 1)^2} + \frac{D}{s - 1} \]

Then immediately $C = 1$ and $D = 0$. So

\[Y(s) = \frac{4}{(s - 1)^4} - \frac{2}{(s - 1)^3} + \frac{1}{(s - 1)^2}. \]

Perform the inverse transformation. The formula one should use here is the exponential-shift formula. Since

\[Y(s) = \frac{4}{3!} \frac{3!}{(s - 1)^4} - \frac{2}{2!} \frac{2!}{(s - 1)^3} + \frac{1}{1!} \frac{1!}{(s - 1)^2} \]

\[y(t) = \frac{4}{3!} (s - 1)^4 - \frac{2}{2!} (s - 1)^3 + \frac{1}{1!} (s - 1)^2. \]
Break \(Y(s) \) into partial fractions (continued): So

\[
\frac{s - 3}{(s - 1)^3} = \frac{-2}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]

Again by subtraction one gets

\[
\frac{(s - 3 + 2)}{(s - 1)^3} = \frac{1}{(s - 1)^2} = \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]

Then immediately \(C = 1 \) and \(D = 0 \). So

\[
Y(s) = \frac{4}{(s - 1)^4} - \frac{2}{(s - 1)^3} + \frac{1}{(s - 1)^2}.
\]

Perform the inverse transformation. The formula one should use here is the exponential-shift formula. Since

\[
Y(s) = \frac{4}{3! (s - 1)^4} - \frac{2}{2! (s - 1)^3} + \frac{1}{1! (s - 1)^2}
\]

\[
y(t) = \frac{4}{3!} e^t t^3
\]
Homework Problem 6.2.17

- Break $Y(s)$ into partial fractions (continued): So

$$\frac{s - 3}{(s - 1)^3} = \frac{-2}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}$$

Again by subtraction one gets

$$\frac{(s - 3 + 2)}{(s - 1)^3} = \frac{1}{(s - 1)^2} = \frac{C}{(s - 1)^2} + \frac{D}{s - 1}$$

Then immediately $C = 1$ and $D = 0$. So

$$Y(s) = \frac{4}{(s - 1)^4} - \frac{2}{(s - 1)^3} + \frac{1}{(s - 1)^2}.$$

- Perform the inverse transformation. The formula one should use here is the exponential-shift formula. Since

$$Y(s) = \frac{4}{3!} \frac{3!}{(s - 1)^4} - \frac{2!}{(s - 1)^3} + \frac{1!}{(s - 1)^2}$$

$$y(t) = 4 e^t t^3 - e^t t^2$$
Break $Y(s)$ into partial fractions (continued): So

$$\frac{s - 3}{(s - 1)^3} = \frac{-2}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}$$

Again by subtraction one gets

$$\frac{(s - 3 + 2)}{(s - 1)^3} = \frac{1}{(s - 1)^2} = \frac{C}{(s - 1)^2} + \frac{D}{s - 1}$$

Then immediately $C = 1$ and $D = 0$. So

$$Y(s) = \frac{4}{(s - 1)^4} - \frac{2}{(s - 1)^3} + \frac{1}{(s - 1)^2}. $$

Perform the inverse transformation. The formula one should use here is the exponential-shift formula. Since

$$Y(s) = \frac{4}{3! (s - 1)^4} - \frac{2}{2! (s - 1)^3} + \frac{1}{1! (s - 1)^2}$$

$$y(t) = \frac{4}{3!} e^t t^3 - \frac{2}{2!} e^t t^2 + e^t t$$
Break $Y(s)$ into partial fractions (continued): So
\[
\frac{s - 3}{(s - 1)^3} = \frac{-2}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]
Again by subtraction one gets
\[
\frac{(s - 3 + 2)}{(s - 1)^3} = \frac{1}{(s - 1)^2} = \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]
Then immediately $C = 1$ and $D = 0$. So
\[
Y(s) = \frac{4}{(s - 1)^4} - \frac{2}{(s - 1)^3} + \frac{1}{(s - 1)^2}.
\]
Perform the inverse transformation. The formula one should use here is the exponential-shift formula. Since
\[
Y(s) = \frac{4}{3!} \frac{3!}{(s - 1)^4} - \frac{2!}{(s - 1)^3} + \frac{1!}{(s - 1)^2}
\]
\[
y(t) = \frac{4}{3} e^t t^3 - e^t t^2 + e^t t = \frac{2}{3} t^3 e^t.
\]
Break $Y(s)$ into partial fractions (continued): So

$$
\frac{s - 3}{(s - 1)^3} = \frac{-2}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
$$

Again by subtraction one gets

$$
\frac{(s - 3 + 2)}{(s - 1)^3} = \frac{1}{(s - 1)^2} = \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
$$

Then immediately $C = 1$ and $D = 0$. So

$$
Y(s) = \frac{4}{(s - 1)^4} - \frac{2}{(s - 1)^3} + \frac{1}{(s - 1)^2}.
$$

Perform the inverse transformation. The formula one should use here is the exponential-shift formula. Since

$$
Y(s) = \frac{4}{3! (s - 1)^4} - \frac{2}{(s - 1)^3} + \frac{1}{(s - 1)^2}
$$

$$
y(t) = \frac{4}{3!} e^t t^3 - e^t t^2 + e^t t = \frac{2}{3} t^3 e^t - t^2 e^t
$$
Homework Problem 6.2.17

- Break $Y(s)$ into partial fractions (continued): So

\[
\frac{s - 3}{(s - 1)^3} = \frac{-2}{(s - 1)^3} + \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]

Again by subtraction one gets

\[
\frac{(s - 3 + 2)}{(s - 1)^3} = \frac{1}{(s - 1)^2} = \frac{C}{(s - 1)^2} + \frac{D}{s - 1}
\]

Then immediately $C = 1$ and $D = 0$. So

\[
Y(s) = \frac{4}{(s - 1)^4} - \frac{2}{(s - 1)^3} + \frac{1}{(s - 1)^2}.
\]

- Perform the inverse transformation. The formula one should use here is the exponential-shift formula. Since

\[
Y(s) = \frac{4}{3!} \frac{3!}{(s - 1)^4} - \frac{2!}{(s - 1)^3} + \frac{1!}{(s - 1)^2}
\]

\[
y(t) = \frac{4}{3} e^t t^3 - e^t t^2 + e^t = \frac{2}{3} t^3 e^t - t^2 e^t + t e^t.
\]
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases} t & 0 \leq t < 1 \\ 0 & 1 \leq t < \infty \end{cases}, y(0) = 0, y'(0) = 0 \]
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases}
 t & 0 \leq t < 1 \\
 0 & 1 \leq t < \infty
\end{cases} , \quad y(0) = 0, \ y'(0) = 0 \]

- Express the right hand side in a single closed formula.
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases}
 t & 0 \leq t < 1 \\
 0 & 1 \leq t < \infty
\end{cases} ,
 y(0) = 0, y'(0) = 0 \]

Express the right hand side in a single closed formula. By what you have learned in 6.3,
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases}
 t & 0 \leq t < 1 \\
 0 & 1 \leq t < \infty
\end{cases}, \quad y(0) = 0, \, y'(0) = 0 \]

- Express the right hand side in a single closed formula. By what you have learned in 6.3, the ODE can be written as
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases} t & 0 \leq t < 1 \\ 0 & 1 \leq t < \infty \end{cases}, \quad y(0) = 0, \quad y'(0) = 0 \]

Express the right hand side in a single closed formula. By what you have learned in 6.3, the ODE can be written as

\[y'' + y = t - t u_1(t). \]
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases}
 t & 0 \leq t < 1 \\
 0 & 1 \leq t < \infty
\end{cases}, \quad y(0) = 0, y'(0) = 0 \]

- Express the right hand side in a single closed formula. By what you have learned in 6.3, the ODE can be written as
 \[y'' + y = t - tu_1(t). \]

- Perform the Laplace transform
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases}
 t & 0 \leq t < 1 \\
 0 & 1 \leq t < \infty
\end{cases}, y(0) = 0, y'(0) = 0 \]

- Express the right hand side in a single closed formula. By what you have learned in 6.3, the ODE can be written as

 \[y'' + y = t - tu_1(t). \]

- Perform the Laplace transform using the derivative formula and \(t \)-axis translation formula:
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases}
 t & 0 \leq t < 1 \\
 0 & 1 \leq t < \infty
\end{cases} , \quad y(0) = 0, y'(0) = 0 \]

- Express the right hand side in a single closed formula. By what you have learned in 6.3, the ODE can be written as

 \[y'' + y = t - tu_1(t). \]

- Perform the Laplace transform using the derivative formula and t-axis translation formula:

 \[s^2Y(s) + Y(s) = \frac{1}{s^2} \]
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases}
 t & 0 \leq t < 1 \\
 0 & 1 \leq t < \infty
\end{cases}, \quad y(0) = 0, \ y'(0) = 0 \]

- Express the right hand side in a single closed formula. By what you have learned in 6.3, the ODE can be written as
 \[y'' + y = t - tu_1(t). \]

- Perform the Laplace transform using the derivative formula and \(t \)-axis translation formula:
 \[s^2Y(s) + Y(s) = \frac{1}{s^2} - e^{-s} \mathcal{L}(t + 1) \]
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases}
 t & 0 \leq t < 1 \\
 0 & 1 \leq t < \infty
\end{cases},
\ y(0) = 0, \ y'(0) = 0 \]

- Express the right hand side in a single closed formula. By what you have learned in 6.3, the ODE can be written as

\[y'' + y = t - tu_1(t). \]

- Perform the Laplace transform using the derivative formula and \(t \)-axis translation formula:

\[
\begin{align*}
 s^2 Y(s) + Y(s) &= \frac{1}{s^2} - e^{-s} \mathcal{L}(t + 1) \\
 &= \frac{1}{s^2}
\end{align*}
\]
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases} t & 0 \leq t < 1 \\ 0 & 1 \leq t < \infty \end{cases}, \quad y(0) = 0, \quad y'(0) = 0 \]

- Express the right hand side in a single closed formula. By what you have learned in 6.3, the ODE can be written as

\[y'' + y = t - tu_1(t). \]

- Perform the Laplace transform using the derivative formula and \(t \)-axis translation formula:

\[
\begin{align*}
 s^2 Y(s) + Y(s) &= \frac{1}{s^2} - e^{-s} \mathcal{L}(t + 1) \\
 &= \frac{1}{s^2} - e^{-s} \mathcal{L}(t) - e^{-s} \mathcal{L}(1)
\end{align*}
\]
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases}
 t & 0 \leq t < 1 \\
 0 & 1 \leq t < \infty
\end{cases}, \quad y(0) = 0, \; y'(0) = 0 \]

- Express the right hand side in a single closed formula. By what you have learned in 6.3, the ODE can be written as
 \[y'' + y = t - tu_1(t). \]

- Perform the Laplace transform using the derivative formula and \(t \)-axis translation formula:
 \[s^2 Y(s) + Y(s) = \frac{1}{s^2} - e^{-s} \mathcal{L}(t + 1) \]
 \[= \frac{1}{s^2} - e^{-s} \mathcal{L}(t) - e^{-s} \mathcal{L}(1) \]
 \[= \frac{1}{s^2} \]
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases}
 t & 0 \leq t < 1 \\
 0 & 1 \leq t < \infty
\end{cases}, \quad y(0) = 0, \ y'(0) = 0 \]

- Express the right hand side in a single closed formula. By what you have learned in 6.3, the ODE can be written as

\[y'' + y = t - tu_1(t). \]

- Perform the Laplace transform using the derivative formula and \(t \)-axis translation formula:

\[
\begin{align*}
 s^2 Y(s) + Y(s) &= \frac{1}{s^2} - e^{-s} \mathcal{L}(t + 1) \\
 &= \frac{1}{s^2} - e^{-s} \mathcal{L}(t) - e^{-s} \mathcal{L}(1) \\
 &= \frac{1}{s^2} - e^{-s} \frac{1}{s^2}
\end{align*}
\]
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases}
 t & 0 \leq t < 1 \\
 0 & 1 \leq t < \infty
\end{cases}, \quad y(0) = 0, \quad y'(0) = 0 \]

- Express the right hand side in a single closed formula. By what you have learned in 6.3, the ODE can be written as

 \[y'' + y = t - tu_1(t). \]

- Perform the Laplace transform using the derivative formula and \(t \)-axis translation formula:

 \[s^2 Y(s) + Y(s) = \frac{1}{s^2} - e^{-s}\mathcal{L}(t + 1) \]

 \[= \frac{1}{s^2} - e^{-s}\mathcal{L}(t) - e^{-s}\mathcal{L}(1) \]

 \[= \frac{1}{s^2} - e^{-s} \frac{1}{s^2} - e^{-s} \frac{1}{s} \]
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases}
 t & 0 \leq t < 1 \\
 0 & 1 \leq t < \infty
\end{cases}, \quad y(0) = 0, \ y'(0) = 0 \]

- Perform the Laplace transform (continued):
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases} t & 0 \leq t < 1 \\ 0 & 1 \leq t < \infty \end{cases}, \quad y(0) = 0, y'(0) = 0 \]

- Perform the Laplace transform (continued): So after algebra,

\[Y(s) = \frac{1}{s^2 + 1} \]
Solve the IVP

\[y'' + y = \begin{cases}
 t & 0 \leq t < 1 \\
 0 & 1 \leq t < \infty
\end{cases}, \quad y(0) = 0, \ y'(0) = 0 \]

- Perform the Laplace transform (continued): So after algebra,

\[Y(s) = \frac{1}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s}. \]
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases} t & 0 \leq t < 1 \\ 0 & 1 \leq t < \infty \end{cases}, \quad y(0) = 0, \; y'(0) = 0 \]

- Perform the Laplace transform (continued): So after algebra,

\[Y(s) = \frac{1}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s}. \]

- Find the inverse Laplace transform.
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases}
 t & 0 \leq t < 1 \\
 0 & 1 \leq t < \infty
\end{cases}, \quad y(0) = 0, \ y'(0) = 0 \]

- Perform the Laplace transform (continued): So after algebra,

\[Y(s) = \frac{1}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s}. \]

- Find the inverse Laplace transform. By whatever method you have,
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases}
 t & 0 \leq t < 1 \\
 0 & 1 \leq t < \infty
\end{cases} \ , \ y(0) = 0, \ y'(0) = 0 \]

- Perform the Laplace transform (continued): So after algebra,

\[
Y(s) = \frac{1}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s}.
\]

- Find the inverse Laplace transform. By whatever method you have,

\[
\frac{1}{(s^2 + 1)s^2}
\]
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases}
 t & 0 \leq t < 1 \\
 0 & 1 \leq t < \infty
\end{cases} , \quad y(0) = 0, \quad y'(0) = 0 \]

- Perform the Laplace transform (continued): So after algebra,

\[Y(s) = \frac{1}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s} - \frac{e^{-s}}{(s^2 + 1)s} . \]

- Find the inverse Laplace transform. By whatever method you have,

\[\frac{1}{(s^2 + 1)s^2} = \frac{1}{s^2} - \frac{1}{s^2 + 1}, \]
Solve the IVP

\[y'' + y = \begin{cases}
 t & 0 \leq t < 1 \\
 0 & 1 \leq t < \infty
\end{cases}, \quad y(0) = 0, \; y'(0) = 0 \]

- Perform the Laplace transform (continued): So after algebra,

\[Y(s) = \frac{1}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s}. \]

- Find the inverse Laplace transform. By whatever method you have,

\[\frac{1}{(s^2 + 1)s^2} = \frac{1}{s^2} - \frac{1}{s^2 + 1}, \quad \frac{1}{s(s^2 + 1)} \]
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases}
 t & 0 \leq t < 1 \\
 0 & 1 \leq t < \infty
\end{cases}, \quad y(0) = 0, y'(0) = 0 \]

- Perform the Laplace transform (continued): So after algebra,

\[Y(s) = \frac{1}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s}. \]

- Find the inverse Laplace transform. By whatever method you have,

\[\frac{1}{(s^2 + 1)s^2} = \frac{1}{s^2} - \frac{1}{s^2 + 1}, \quad \frac{1}{s} = 1 - \frac{s}{s^2 + 1}. \]
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases}
 t & 0 \leq t < 1 \\
 0 & 1 \leq t < \infty
\end{cases}, \quad y(0) = 0, \quad y'(0) = 0 \]

- Perform the Laplace transform (continued): So after algebra,

\[Y(s) = \frac{1}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s}. \]

- Find the inverse Laplace transform. By whatever method you have,

\[\frac{1}{(s^2 + 1)s^2} = \frac{1}{s^2} - \frac{1}{s^2 + 1}, \quad \frac{1}{s(s^2 + 1)} = \frac{1}{s} - \frac{s}{s^2 + 1} \]

Then

\[y(t) = t \sin t + u_1(t) \left[t \sin(1) + 1 \cos(1) \right] \]
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases} \ t & 0 \leq t < 1 \\ \ 0 & 1 \leq t < \infty \end{cases}, y(0) = 0, y'(0) = 0 \]

- Perform the Laplace transform (continued): So after algebra,

\[Y(s) = \frac{1}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s}. \]

- Find the inverse Laplace transform. By whatever method you have,

\[
\frac{1}{(s^2 + 1)s^2} = \frac{1}{s^2} - \frac{1}{s^2 + 1}, \quad \frac{1}{s(s^2 + 1)} = \frac{1}{s} - \frac{s}{s^2 + 1}.
\]

Then

\[y(t) = (t - \sin t) \]
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases} t & 0 \leq t < 1 \\ 0 & 1 \leq t < \infty \end{cases}, \quad y(0) = 0, \ y'(0) = 0 \]

- Perform the Laplace transform (continued): So after algebra,

\[
Y(s) = \frac{1}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s}.
\]

- Find the inverse Laplace transform. By whatever method you have,

\[
\frac{1}{(s^2 + 1)s^2} = \frac{1}{s^2} - \frac{1}{s^2 + 1}, \quad \frac{1}{s(s^2 + 1)} = \frac{1}{s} - \frac{s}{s^2 + 1}
\]

Then

\[y(t) = (t - \sin t) + u_1(t) \]
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases} t & 0 \leq t < 1 \\ 0 & 1 \leq t < \infty \end{cases}, \quad y(0) = 0, y'(0) = 0 \]

Perform the Laplace transform (continued): So after algebra,

\[Y(s) = \frac{1}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s} . \]

Find the inverse Laplace transform. By whatever method you have,

\[\frac{1}{(s^2 + 1)s^2} = \frac{1}{s^2} - \frac{1}{s^2 + 1}, \quad \frac{1}{s(s^2 + 1)} = \frac{1}{s} - \frac{s}{s^2 + 1} \]

Then

\[y(t) = (t - \sin t) + u_1(t) [t - 1] \]
Solve the IVP

\[y'' + y = \begin{cases} t & \text{if } 0 \leq t < 1 \\ 0 & \text{if } 1 \leq t < \infty \end{cases} , \quad y(0) = 0, \quad y'(0) = 0 \]

- Perform the Laplace transform (continued): So after algebra,

\[Y(s) = \frac{1}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s}. \]

- Find the inverse Laplace transform. By whatever method you have,

\[\frac{1}{(s^2 + 1)s^2} = \frac{1}{s^2} - \frac{1}{s^2 + 1} \quad \frac{1}{s(s^2 + 1)} = \frac{1}{s} - \frac{s}{s^2 + 1} \]

Then

\[y(t) = (t - \sin t) + u_1(t) [t - 1 - \sin(t - 1)] \]
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases} \frac{t}{s^2 + 1} & 0 \leq t < 1 \\ 0 & 1 \leq t < \infty \end{cases}, y(0) = 0, y'(0) = 0 \]

- Perform the Laplace transform (continued): So after algebra,

\[Y(s) = \frac{1}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s}. \]

- Find the inverse Laplace transform. By whatever method you have,

\[\frac{1}{(s^2 + 1)s^2} = \frac{1}{s^2} - \frac{1}{s^2 + 1}, \quad \frac{1}{s(s^2 + 1)} = \frac{1}{s} - \frac{s}{s^2 + 1} \]

Then

\[y(t) = (t - \sin t) + u_1(t) [t - 1 - \sin(t - 1) + 1] \]
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases}
 t & 0 \leq t < 1 \\
 0 & 1 \leq t < \infty
\end{cases}, \quad y(0) = 0, \quad y'(0) = 0 \]

- Perform the Laplace transform (continued): So after algebra,

\[Y(s) = \frac{1}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s}. \]

- Find the inverse Laplace transform. By whatever method you have,

\[\frac{1}{(s^2 + 1)s^2} = \frac{1}{s^2} - \frac{1}{s^2 + 1}, \quad \frac{1}{s(s^2 + 1)} = \frac{1}{s} - \frac{s}{s^2 + 1} \]

Then

\[y(t) = (t - \sin t) + u_1(t) [t - 1 - \sin(t - 1) + 1 - \cos(t - 1)] \]
Homework Problem 6.2.25

Solve the IVP

\[y'' + y = \begin{cases}
 t & 0 \leq t < 1 \\
 0 & 1 \leq t < \infty
\end{cases}, y(0) = 0, y'(0) = 0 \]

- Perform the Laplace transform (continued): So after algebra,

\[
Y(s) = \frac{1}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s^2} - \frac{e^{-s}}{(s^2 + 1)s}.
\]

- Find the inverse Laplace transform. By whatever method you have,

\[
\frac{1}{(s^2 + 1)s^2} = \frac{1}{s^2} - \frac{1}{s^2 + 1}, \quad \frac{1}{s(s^2 + 1)} = \frac{1}{s} - \frac{s}{s^2 + 1}
\]

Then

\[
y(t) = (t - \sin t) + u_1(t) [t - 1 - \sin(t - 1) + 1 - \cos(t - 1)]
\]
The End