Exercises 1-3 pertain to operator convexity: Let \mathcal{A} be a C^* algebra with identity 1, and let \mathcal{A}^+ denote the cone of positive elements of of \mathcal{A}. A function $f : (0, \infty) \to \mathbb{R}$ is operator convex in case for all strictly positive $a, b \in \mathcal{A}$ and all $t \in [0, 1]$,
\[f(ta + (1-t)b) \leq f(a) + (1-t)f(b), \]
using the partial order defined by \mathcal{A}^+. (Strictly positive means the spectrum lies in $(0, \infty)$, and not only in $[0, \infty)$).

Exercise 1: Show that the function $f(t) = t^{-1}$ is operator convex.

Exercise 2: Show that for all $p \in (0, 1)$, function $f(t) = t^p$ is has the integral representation
\[t^p = \frac{\sin(\pi p)}{\pi} \int_0^{\infty} s^p \left(\frac{1}{s} - \frac{1}{t+s} \right) ds. \]
Use this to show that $-f$ is operator convex for such p.

Exercise 3: Use the fact that for $f(t) = t \ln t$,
\[f(t) = \lim_{p \to 1} \frac{t^p - t}{p - 1} \]
to show that f is operator convex.

Exercise 4: Let \mathcal{A} be a C^* algebra without an identity. Show that for all $a \in \mathcal{A}$,
\[\|a\| = \sup_{\|b\| \leq 1} \|ab\|. \]

Exercise 5: Let \mathcal{H} be a separable Hilbert space. Let \mathcal{F} be the $*$-algebra of all finite rank operators on \mathcal{H}. Compute \mathcal{F}' and \mathcal{F}''. Show that if $a \in \mathcal{B}(\mathcal{H})$ with $\|a\| \leq 1$, then there is a sequence $\{a_n\}$ in \mathcal{F} that converges to a in the strong operator topology.

Exercise 6: Let π and σ be two cyclic representations of C^* algebra \mathcal{A} on Hilbert spaces \mathcal{H} and \mathcal{K} respectively, with cyclic vectors ζ and η respectively. Show that if
\[\langle \zeta, \pi(a)\zeta \rangle_{\mathcal{H}} = \langle \eta, \sigma(a)\eta \rangle_{\mathcal{K}} \]
then π and σ are equivalent; i.e., there us a unitary $u : \mathcal{H} \to \mathcal{K}$ such that
\[\pi(a)u = u\sigma(a) \]
for all $a \in \mathcal{A}$.